Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Adv Mater ; 33(39): e2103000, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34397123

RESUMO

The competing and non-equilibrium phase transitions, involving dynamic tunability of cooperative electronic and magnetic states in strongly correlated materials, show great promise in quantum sensing and information technology. To date, the stabilization of transient states is still in the preliminary stage, particularly with respect to molecular electronic solids. Here, a dynamic and cooperative phase in potassium-7,7,8,8-tetracyanoquinodimethane (K-TCNQ) with the control of pulsed electromagnetic excitation is demonstrated. Simultaneous dynamic and coherent lattice perturbation with 8 ns pulsed laser (532 nm, 15 MW cm-2 , 10 Hz) in such a molecular electronic crystal initiates a stable long-lived (over 400 days) conducting paramagnetic state (≈42 Ωcm), showing the charge-spin bistability over a broad temperature range from 2 to 360 K. Comprehensive noise spectroscopy, in situ high-pressure measurements, electron spin resonance (ESR), theoretical model, and scanning tunneling microscopy/spectroscopy (STM/STS) studies provide further evidence that such a transition is cooperative, requiring a dedicated charge-spin-lattice decoupling to activate and subsequently stabilize nonequilibrium phase. The cooperativity triggered by ultrahigh-strain-rate (above 106 s- 1 ) pulsed excitation offers a collective control toward the generation and stabilization of strongly correlated electronic and magnetic orders in molecular electronic solids and offers unique electro-magnetic phases with technological promises.

2.
Small ; : e2102045, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34235845

RESUMO

Thermal management is of vital importance in various modern technologies such as portable electronics, photovoltaics, and thermoelectric devices. Impeding phonon transport remains one of the most challenging tasks for improving the thermoelectric performance of certain materials such as half-Heusler compounds. Herein, a significant reduction of lattice thermal conductivity (κL ) is achieved by applying a pressure of ≈1 GPa to sinter a broad range of half-Heusler compounds. Contrasting with the common sintering pressure of less than 100 MPa, the gigapascal-level pressure enables densification at a lower temperature, thus greatly modifying the structural characteristics for an intensified phonon scattering. A maximum κL reduction of ≈83% is realized for HfCoSb from 14 to 2.5 W m-1 K-1 at 300 K with more than 95% relative density. The realized low κL originates from a remarkable grain-size refinement to below 100 nm together with the abundant in-grain defects, as determined by microscopy investigations. This work uncovers the phonon transport properties of half-Heusler compounds under unconventional microstructures, thus showing the potential of high-pressure compaction in advancing the performance of thermoelectric materials.

3.
Proc Natl Acad Sci U S A ; 117(44): 27204-27210, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077582

RESUMO

Molecular ferroelectrics combine electromechanical coupling and electric polarizabilities, offering immense promise in stimuli-dependent metamaterials. Despite such promise, current physical realizations of mechanical metamaterials remain hindered by the lack of rapid-prototyping ferroelectric metamaterial structures. Here, we present a continuous rapid printing strategy for the volumetric deposition of water-soluble molecular ferroelectric metamaterials with precise spatial control in virtually any three-dimensional (3D) geometry by means of an electric-field-assisted additive manufacturing. We demonstrate a scaffold-supported ferroelectric crystalline lattice that enables self-healing and a reprogrammable stiffness for dynamic tuning of mechanical metamaterials with a long lifetime and sustainability. A molecular ferroelectric architecture with resonant inclusions then exhibits adaptive mitigation of incident vibroacoustic dynamic loads via an electrically tunable subwavelength-frequency band gap. The findings shown here pave the way for the versatile additive manufacturing of molecular ferroelectric metamaterials.

4.
Nano Lett ; 20(11): 7852-7859, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33054240

RESUMO

Vertical van der Waals (vdWs) heterostructures based on layered materials are attracting interest as a new class of quantum materials, where interfacial charge-transfer coupling can give rise to fascinating strongly correlated phenomena. Transition metal chalcogenides are a particularly exciting material family, including ferromagnetic semiconductors, multiferroics, and superconductors. Here, we report the growth of an organic-inorganic heterostructure by intercalating molecular electron donating bis(ethylenedithio)tetrathiafulvalene into (Li,Fe)OHFeSe, a layered material in which the superconducting ground state results from the intercalation of hydroxide layer. Molecular intercalation in this heterostructure induces a transformation from a paramagnetic to spin-glass-like state that is sensitive to the stoichiometry of molecular donor and an applied magnetic field. Besides, electron-donating molecules reduce the electrical resistivity in the heterostructure and modify its response to laser illumination. This hybrid heterostructure provides a promising platform to study emerging magnetic and electronic behaviors in strongly correlated layered materials.

5.
Nat Commun ; 11(1): 823, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041958

RESUMO

Lead Iodide (PbI2) is a large bandgap 2D layered material that has potential for semiconductor applications. However, atomic level study of PbI2 monolayer has been limited due to challenges in obtaining thin crystals. Here, we use liquid exfoliation to produce monolayer PbI2 nanodisks (30-40 nm in diameter and > 99% monolayer purity) and deposit them onto suspended graphene supports to enable atomic structure study of PbI2. Strong epitaxial alignment of PbI2 monolayers with the underlying graphene lattice occurs, leading to a phase shift from the 1 T to 1 H structure to increase the level of commensuration in the two lattice spacings. The fundamental point vacancy and nanopore structures in PbI2 monolayers are directly imaged, showing rapid vacancy migration and self-healing. These results provide a detailed insight into the atomic structure of monolayer PbI2, and the impact of the strong van der Waals interaction with graphene, which has importance for future applications in optoelectronics.

6.
Adv Mater ; 31(46): e1904251, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31559669

RESUMO

2D crystals are typically uniform and periodic in-plane with stacked sheet-like structure in the out-of-plane direction. Breaking the in-plane 2D symmetry by creating unique lattice structures offers anisotropic electronic and optical responses that have potential in nanoelectronics. However, creating nanoscale-modulated anisotropic 2D lattices is challenging and is mostly done using top-down lithographic methods with ≈10 nm resolution. A phase transformation mechanism for creating 2D striated lattice systems is revealed, where controlled thermal annealing induces Se loss in few-layered PdSe2 and leads to 1D sub-nm etched channels in Pd2 Se3 bilayers. These striated 2D crystals cannot be described by a typical unit cells of 1-2 Å for crystals, but rather long range nanoscale periodicity in each three directions. The 1D channels give rise to localized conduction states, which have no bulk layered counterpart or monolayer form. These results show how the known family of 2D crystals can be extended beyond those that exist as bulk layered van der Waals crystals by exploiting phase transformations by elemental depletion in binary systems.

7.
Nat Commun ; 10(1): 3112, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308363

RESUMO

Ultrathin transition metal carbides with high capacity, high surface area, and high conductivity are a promising family of materials for applications from energy storage to catalysis. However, large-scale, cost-effective, and precursor-free methods to prepare ultrathin carbides are lacking. Here, we demonstrate a direct pattern method to manufacture ultrathin carbides (MoCx, WCx, and CoCx) on versatile substrates using a CO2 laser. The laser-sculptured polycrystalline carbides (macroporous, ~10-20 nm wall thickness, ~10 nm crystallinity) show high energy storage capability, hierarchical porous structure, and higher thermal resilience than MXenes and other laser-ablated carbon materials. A flexible supercapacitor made of MoCx demonstrates a wide temperature range (-50 to 300 °C). Furthermore, the sculptured microstructures endow the carbide network with enhanced visible light absorption, providing high solar energy harvesting efficiency (~72 %) for steam generation. The laser-based, scalable, resilient, and low-cost manufacturing process presents an approach for construction of carbides and their subsequent applications.

8.
J Am Chem Soc ; 141(33): 13074-13080, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31361482

RESUMO

Vacancy-ordered lead-free perovskites with more-stable crystalline structures have been intensively explored as the alternatives for resolving the toxic and long-term stability issues of lead halide perovskites (LHPs). The dispersive energy bands produced by the closely packed halide octahedral sublattice in these perovskites are meanwhile anticipated to facility the mobility of charge carriers. However, these perovskites suffer from unexpectedly poor charge carrier transport. To tackle this issue, we have employed the ultrafast, elemental-specific X-ray transient absorption (XTA) spectroscopy to directly probe the photoexcited electronic and structural dynamics of a prototypical vacancy-ordered lead-free perovskite (Cs3Bi2Br9). We have discovered that the photogenerated holes quickly self-trapped at Br centers, simultaneously distorting the local lattice structure, likely forming small polarons in the configuration of Vk center (Br2- dimer). More significantly, we have found a surprisingly long-lived, structural distorted state with a lifetime of ∼59 µs, which is ∼3 orders of magnitude slower than that of the charge carrier recombination. Such long-lived structural distortion may produce a transient "background" under continuous light illumination, influencing the charge carrier transport along the lattice framework.

9.
Nano Lett ; 16(8): 4763-72, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27388115

RESUMO

Recently, the domains of low-dimensional (low-D) materials and disordered materials have been brought together by the demonstration of several new low-D, disordered systems. The thermal transport properties of these systems are not well-understood. Using amorphous graphene and glassy diamond nanothreads as prototype systems, we establish how structural disorder affects vibrational energy transport in low-dimensional, but disordered, materials. Modal localization analysis, molecular dynamics simulations, and a generalized model together demonstrate that the thermal transport properties of these materials exhibit both similarities and differences from disordered 3D materials. In analogy with 3D, the low-D disordered systems exhibit both propagating and diffusive vibrational modes. In contrast to 3D, however, the diffuson contribution to thermal transport in these low-D systems is shown to be negligible, which may be a result of inherent differences in the nature of random walks in lower dimensions. Despite the lack of diffusons, the suppression of thermal conductivity due to disorder in low-D systems is shown to be mild or comparable to 3D. The mild suppression originates from the presence of low-frequency vibrational modes that maintain a well-defined polarization and help preserve the thermal conductivity in the presence of disorder.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(5 Pt 2): 056316, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22181507

RESUMO

Knudsen force acting on a heated microbeam adjacent to a cold substrate in a rarefied gas is a mechanical force created by unbalanced thermal gradients. The measured force has its direction pointing towards the side with a lower thermal gradient and its magnitude vanishes in both continuum and free-molecule limits. In our previous study, negative Knudsen forces were discovered at the high Knudsen regime before diminishing in the free-molecule limit. Such a phenomenon was, however, neither observed in experiment [A. Passian et al., Phys. Rev. Lett. 90, 124503 (2003)], nor captured in the latest numerical study [J. Nabeth et al., Phys. Rev. E 83, 066306 (2011)]. In this paper, the existence of such a negative Knudsen force is further confirmed using both numerical simulation and theoretical analysis. The asymptotic order of the Knudsen force near the collisionless limit is analyzed and the analytical expression of its leading term is provided, from which approaches for the enhancement of negative Knudsen forces are proposed. The discovered phenomenon could find its applications in novel mechanisms for pressure sensing and actuation.


Assuntos
Física/métodos , Algoritmos , Simulação por Computador , Gases , Temperatura Alta , Cinética , Modelos Estatísticos , Modelos Teóricos , Método de Monte Carlo , Pressão , Propriedades de Superfície , Temperatura
11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(3 Pt 2): 036308, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21230172

RESUMO

The presented work probes the fundamentals of Knudsen forces. Using the direct simulation Monte Carlo (DSMC) method, the flows induced by temperature inhomogeneity within a representative configuration and the Knudsen force acting on a heated microbeam are captured as functions of Knudsen number in the entire flow regime. Both flow strength and Knudsen force peak in the transition regime and negative Knudsen force absent in experimental data is observed. The mechanisms of the thermally induced flows and Knudsen forces are studied. It has been found that thermal edge flow is the main driven source for the formation of the Knudsen force on microbeams and domain configuration plays an important role in the process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...