Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
2.
J Mater Chem B ; 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36748242

RESUMO

Prussian blue (PB) is composed of the coordination network of Fe2+-CN-Fe3+ mixed valence state as a classic metal complex, which includes a C atom and Fe2+ (low spin), N atom and Fe3+ (high spin). PB and its analogues (PBA) have excellent biosafety, good magnetic properties, outstanding photothermal properties and the ability to mimic enzymatic behaviors due to their stable structure, tunable size, controllable morphology, abundant modification methods and excellent physicochemical properties. They have received increasing research interest and have shown promising applications in the biomedical field. Here, progress in the preparation of PB-based nanomaterials for biomedical applications is summarized and discussed. The preparation strategies, traditional synthesis and emerging preparation methods of PB are summarized systematically in this review. The design and preparation of PBA, PB(PBA)-based hollow structures and PB(PBA)-based composites are also included. While introducing the preparation status, some PB-based nanomaterials that have performed well in specific biomedical fields are emphasized. More importantly, the key factors and future development of PB for the clinical translation as multifunctional nanomaterials are also discussed. This review provides a reference for the design and biomedical application of PB-based nanomaterials.

3.
Healthcare (Basel) ; 11(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36766970

RESUMO

Mobile healthcare applications are of significant potential value in the development of the aged-care industry due to their great convenience, high efficiency, and low cost. Since the cognition and utilization rates of mobile healthcare applications for the elderly are still low, this study explored the factors that affect the elderly's adoption of mobile healthcare applications. This study conducted a questionnaire survey on the elderly in China and received 365 valuable responses. This study combined the technology acceptance model, protection motivation theory, and perceived risk theory to build a research model of factors affecting the use of mobile healthcare applications by the elderly. The data were analyzed using a structural equation model. The results were as follows: according to the empirical research, (1) perceived usefulness and perceived ease of use positively affect the use attitude of the elderly; perceived usefulness and user attitude positively affect the behavior intention of the elderly; perceived ease of use positively affects perceived usefulness; (2) perceived severity has a significant positive correlation with use attitude; perceived susceptibility and attitude to use have no significant impact; (3) perceived risk is negatively correlated with the use attitude and behavioral intention. The above-mentioned factors should be taken into consideration during the development of mobile healthcare applications for the aged to upgrade the overall service quality of mobile healthcare applications, thus enhancing the operational level of mobile healthcare applications and the health literacy of the aged.

4.
Adv Sci (Weinh) ; : e2206264, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782337

RESUMO

Engineered cardiac tissues (ECTs) derived from human induced pluripotent stem cells (hiPSCs) are viable alternatives for cardiac repair, patient-specific disease modeling, and drug discovery. However, the immature state of ECTs limits their clinical utility. The microenvironment fabricated using 3D scaffolds can affect cell fate, and is crucial for the maturation of ECTs. Herein, the authors demonstrate an electric-field-driven (EFD) printed 3D highly ordered microstructure with cell feature size to promote the maturation of ECTs. The simulation and experimental results demonstrate that the EFD jet microscale 3D printing overcomes the jet repulsion without any prior requirements for both conductive and insulating substrates. Furthermore, the 3D highly ordered microstructures with a fiber diameter of 10-20 µm and spacing of 60-80 µm have been fabricated by maintaining a vertical jet, achieving the largest ratio of fiber diameter/spacing of 0.29. The hiPSCs-derived cardiomyocytes formed ordered ECTs with their sarcomere growth along the fiber and developed synchronous functional ECTs inside the 3D-printed scaffold with matured calcium handling compared to the 2D coverslip. Therefore, the EFD jet 3D microscale printing process facilitates the fabrication of scaffolds providing a suitable microenvironment to promote the maturation of ECTs, thereby showing great potential for cardiac tissue engineering.

5.
Plant Biotechnol J ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36705337

RESUMO

Tiller number per plant-a cardinal component of ideal plant architecture-affects grain yield potential. Thus, alleles positively affecting tillering must be mined to promote genetic improvement. Here, we report a Tiller Number 1 (TN1) protein harbouring a bromo-adjacent homology domain and RNA recognition motifs, identified through genome-wide association study of tiller numbers. Natural variation in TN1 affects its interaction with TIF1 (TN1 interaction factor 1) to affect DWARF14 expression and negatively regulate tiller number in rice. Further analysis of variations in TN1 among indica genotypes according to geographical distribution revealed that low-tillering varieties with TN1-hapL are concentrated in Southeast Asia and East Asia, whereas high-tillering varieties with TN1-hapH are concentrated in South Asia. Taken together, these results indicate that TN1 is a tillering regulatory factor whose alleles present apparent preferential utilization across geographical regions. Our findings advance the molecular understanding of tiller development.

6.
Opt Express ; 31(1): 107-115, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36606945

RESUMO

Transient absorption spectroscopy is a powerful tool to monitor the out-of-equilibrium optical response of photoexcited semiconductors. When this method is applied to two-dimensional semiconductors deposited on different substrates, the excited state optical properties are inferred from the pump-induced changes in the transmission/reflection of the probe, i.e., ΔT/T or ΔR/R. Transient optical spectra are often interpreted as the manifestation of the intrinsic optical response of the monolayer, including effects such as the reduction of the exciton oscillator strength, electron-phonon coupling or many-body interactions like bandgap renormalization, trion or biexciton formation. Here we scrutinize the assumption that one can determine the non-equilibrium optical response of the TMD without accounting for the substrate used in the experiment. We systematically investigate the effect of the substrate on the broadband transient optical response of monolayer MoS2 (1L-MoS2) by measuring ΔT/T and ΔR/R with different excitation photon energies. Employing the boundary conditions given by the Fresnel equations, we analyze the transient transmission/reflection spectra across the main excitonic resonances of 1L-MoS2. We show that pure interference effects induced by the different substrates explain the substantial differences (i.e., intensity, peak energy and exciton linewidth) observed in the transient spectra of the same monolayer. We thus demonstrate that the substrate strongly affects the magnitude of the exciton energy shift and the change of the oscillator strength in the transient optical spectra. By highlighting the key role played by the substrate, our results set the stage for a unified interpretation of the transient response of optoelectronic devices based on a broad class of TMDs.

7.
Nature ; 613(7942): 71-76, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36600065

RESUMO

The two natural allotropes of carbon, diamond and graphite, are extended networks of sp3-hybridized and sp2-hybridized atoms, respectively1. By mixing different hybridizations and geometries of carbon, one could conceptually construct countless synthetic allotropes. Here we introduce graphullerene, a two-dimensional crystalline polymer of C60 that bridges the gulf between molecular and extended carbon materials. Its constituent fullerene subunits arrange hexagonally in a covalently interconnected molecular sheet. We report charge-neutral, purely carbon-based macroscopic crystals that are large enough to be mechanically exfoliated to produce molecularly thin flakes with clean interfaces-a critical requirement for the creation of heterostructures and optoelectronic devices2. The synthesis entails growing single crystals of layered polymeric (Mg4C60)∞ by chemical vapour transport and subsequently removing the magnesium with dilute acid. We explore the thermal conductivity of this material and find it to be much higher than that of molecular C60, which is a consequence of the in-plane covalent bonding. Furthermore, imaging few-layer graphullerene flakes using transmission electron microscopy and near-field nano-photoluminescence spectroscopy reveals the existence of moiré-like superlattices3. More broadly, the synthesis of extended carbon structures by polymerization of molecular precursors charts a clear path to the systematic design of materials for the construction of two-dimensional heterostructures with tunable optoelectronic properties.

8.
Nat Nanotechnol ; 18(1): 23-28, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36577852

RESUMO

The interaction between distinct excitations in solids is of both fundamental interest and technological importance. One such interaction is the coupling between an exciton, a Coulomb bound electron-hole pair, and a magnon, a collective spin excitation. The recent emergence of van der Waals magnetic semiconductors1 provides a platform to explore these exciton-magnon interactions and their fundamental properties, such as strong correlation2, as well as their photospintronic and quantum transduction3 applications. Here we demonstrate the precise control of coherent exciton-magnon interactions in the layered magnetic semiconductor CrSBr. We varied the direction of an applied magnetic field relative to the crystal axes, and thus the rotational symmetry of the magnetic system4. Thereby, we tuned not only the exciton coupling to the bright magnon, but also to an optically dark mode via magnon-magnon hybridization. We further modulated the exciton-magnon coupling and the associated magnon dispersion curves through the application of uniaxial strain. At a critical strain, a dispersionless dark magnon band emerged. Our results demonstrate an unprecedented level of control of the opto-mechanical-magnonic coupling, and a step towards the predictable and controllable implementation of hybrid quantum magnonics5-11.

9.
Genome Biol ; 23(1): 264, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550554

RESUMO

BACKGROUND: Heterosis is widely used in agriculture. However, its molecular mechanisms are still unclear in plants. Here, we develop, sequence, and record the phenotypes of 418 hybrids from crosses between two testers and 265 rice varieties from a mini-core collection. RESULTS: Phenotypic analysis shows that heterosis is dependent on genetic backgrounds and environments. By genome-wide association study of 418 hybrids and their parents, we find that nonadditive QTLs are the main genetic contributors to heterosis. We show that nonadditive QTLs are more sensitive to the genetic background and environment than additive ones. Further simulations and experimental analysis support a novel mechanism, homo-insufficiency under insufficient background (HoIIB), underlying heterosis. We propose heterosis in most cases is not due to heterozygote advantage but homozygote disadvantage under the insufficient genetic background. CONCLUSION: The HoIIB model elucidates that genetic background insufficiency is the intrinsic mechanism of background dependence, and also the core mechanism of nonadditive effects and heterosis. This model can explain most known hypotheses and phenomena about heterosis, and thus provides a novel theory for hybrid rice breeding in future.


Assuntos
Vigor Híbrido , Oryza , Oryza/genética , Estudo de Associação Genômica Ampla , Transcriptoma , Melhoramento Vegetal , Genômica
10.
Foods ; 11(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36496689

RESUMO

Ethylene response factors (ERFs) are one of largest plant-specific transcription factor families involved in fruit ripening. However, the regulatory mechanism by which ERFs modulate fruit yellowing and softening remains unknown in banana. We previously found that the transcription of MaERF012 was closely related to 'Fenjiao' banana fruit ripening. Herein, we found that MaERF012 was differentially expressed in the fruit pulp and peel and was closely related to fruit ripening. MaERF012 activated the promoter activity of one chlorophyll degradation gene (MaSGR1), two starch degradation genes (MaGWD1 and MaAMY3), and three cell wall degradation genes (MaPL8, MaEXP-A8, and MaXYL23-like), which were tested by EMSA, Y1H, and DLR. Transient overexpression of MaERF012 accelerates fruit ripening by promoting fruit yellowing and softening by up-regulating the transcription of chlorophyll, starch, and cell wall degradation genes. Over-expression of MaERF012 alters the transcriptome profiles of the fruit peel and pulp, and the differentially expressed genes were mainly enriched in starch and sucrose metabolism, plant hormone signal transduction, biosynthesis of secondary metabolism, and fructose and mannose metabolism. Overall, the data showed that MaERF012 acts as a transcriptional activator by regulating fruit ripening by activating the transcription of chlorophyll, starch, and cell wall degradation genes.

11.
Sci Total Environ ; 859(Pt 1): 160135, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36375547

RESUMO

Rapid global industrialization has resulted in widespread cadmium contamination in agricultural soils and products. A considerable proportion of rice consumers are exposed to Cd levels above the provisional safe intake limit, raising widespread environmental concerns on risk management. Therefore, a generalized approach is urgently needed to enable correct evaluation and early warning of cadmium contaminants in rice products. Combining big data and computer science together, this study developed a system named "SMART Cd Early Warning", which integrated 4 modules including genotype-to-phenotype (G2P) modelling, high-throughput sequencing, G2P prediction and rice Cd contamination risk assessment, for rice cadmium accumulation early warning. This system can rapidly assess the risk of rice cadmium accumulation by genotyping leaves at seeding stage. The parameters including statistical methods, population size, training population-testing population ratio, SNP density were assessed to ensure G2P model exhibited superior performance in terms of prediction precision (up to 0.76 ± 0.003) and computing efficiency (within 2 h). In field trials of cadmium-contaminated farmlands in Wenling and Fuyang city, Zhejiang Province, "SMART Cd Early Warning" exhibited superior capability for identification risk rice varieties, suggesting a potential of "SMART Cd Early-Warning system" in OsGCd risk assessment and early warning in the age of smart.

12.
Antioxidants (Basel) ; 11(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36290729

RESUMO

Deoxynivalenol (DON), as a secondary metabolite of fungi, is continually detected in livestock feed and has a high risk to animals and humans. Moreover, pigs are very sensitive to DON. Recently, the role of histone modification has drawn people's attention; however, few studies have elucidated how histone modification participates in the cytotoxicity or genotoxicity induced by mycotoxins. In this study, we used intestinal porcine epithelial cells (IPEC-J2 cells) as a model to DON exposure in vitro. Mixed lineage leukemia 1 (MLL1) regulates gene expression by exerting the role of methyltransferase. Our studies demonstrated that H3K4me3 enrichment was enhanced and MLL1 was highly upregulated upon 1 µg/mL DON exposure in IPEC-J2 cells. We found that the silencing of MLL1 resulted in increasing the apoptosis rate, arresting the cell cycle, and activating the mitogen-activated protein kinases (MAPKs) pathway. An RNA-sequencing analysis proved that differentially expressed genes (DEGs) were enriched in the cell cycle, apoptosis, and tumor necrosis factor (TNF) signaling pathway between the knockdown of MLL1 and negative control groups, which were associated with cytotoxicity induced by DON. In summary, these current results might provide new insight into how MLL1 regulates cytotoxic effects induced by DON via an epigenetic mechanism.

13.
J Phys Chem A ; 126(42): 7559-7565, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36240052

RESUMO

Singlet fission occurs only in a limited number of molecules, and expanding the molecular toolbox is necessary for progress. Here, we apply the molecular contortion strategy to tune singlet and triplet energies and observe changes in the excited-state dynamics that are consistent with singlet fission playing a role in thin films of contorted perylene. Perylene is a prototypical molecular chromophore, which does not undergo singlet fission in its planar form from its S1 state. The tuning of the energetics that control singlet fission through molecular contortion can be applied to a large repertoire of established molecular chromophores.

14.
Front Microbiol ; 13: 1031388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312927

RESUMO

Trichophyton is the most pathogenic type of fungal skin infection. It often invades and grows in a keratin-rich matrix, and lesions include human skin, hair, and fingernails (toenails). We designed LAMP primers for Trichophyton and developed a LAMP-Microfluidic chip detection system for Trichophyton. This system detects six common species of Trichophyton in the genus Trichophyton, including Trichophyton rubrum, Trichophyton mentagrophyte, Trichophyton violaceum, Trichophyton tonsurans, Trichophyton verrucosum, and Trichophyton schoenleinii. The specificity reached 100%, and the sensitivity could reach about 1 × 102 copies/µl. The entire detection process can be completed within 60 min and does not cross-react with other dermatophytes. The established LAMP-Microfluidic chip detection system has the advantages of simple operation, high specificity, and high sensitivity, and has the potential for clinical application.

15.
J Phys Chem Lett ; 13(42): 9903-9909, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36256582

RESUMO

In this work, we observe plasmon-induced hot electron extraction in a heterojunction between indium tin oxide nanocrystals and monolayer molybdenum disulfide. We study the sample with ultrafast differential transmission, exciting the sample at 1750 nm where the intense localized plasmon surface resonance of the indium tin oxide nanocrystals is and where the monolayer molybdenum disulfide does not absorb light. With the excitation at 1750 nm, we observe the excitonic features of molybdenum disulfide in the visible range, close to the exciton of molybdenum disulfide. Such a phenomenon can be ascribed to a charge transfer between indium tin oxide nanocrystals and monolayer molybdenum disulfide upon plasmon excitation. These results are a first step toward the implementation of near-infrared plasmonic materials for photoconversion.

16.
Nano Lett ; 22(18): 7401-7407, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36122409

RESUMO

The optical properties of transition-metal dichalcogenides have previously been modified at the nanoscale by using mechanical and electrical nanostructuring. However, a clear experimental picture relating the local electronic structure with emission properties in such structures has so far been lacking. Here, we use a combination of scanning tunneling microscopy (STM) and near-field photoluminescence (nano-PL) to probe the electronic and optical properties of single nanobubbles in bilayer heterostructures of WSe2 on MoSe2. We show from tunneling spectroscopy that there are electronic states deeply localized in the gap at the edge of such bubbles, which are independent of the presence of chemical defects in the layers. We also show a significant change in the local band gap on the bubble, with a continuous evolution to the edge of the bubble over a length scale of ∼20 nm. Nano-PL measurements observe a continuous redshift of the interlayer exciton on entering the bubble, in agreement with the band-to-band transitions measured by STM. We use self-consistent Schrödinger-Poisson simulations to capture the essence of the experimental results and find that strong doping in the bubble region is a key ingredient to achieving the observed localized states, together with mechanical strain.

18.
Nature ; 609(7926): 282-286, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36071189

RESUMO

The recent discoveries of two-dimensional (2D) magnets1-6 and their stacking into van der Waals structures7-11 have expanded the horizon of 2D phenomena. One exciting application is to exploit coherent magnons12 as energy-efficient information carriers in spintronics and magnonics13,14 or as interconnects in hybrid quantum systems15-17. A particular opportunity arises when a 2D magnet is also a semiconductor, as reported recently for CrSBr (refs. 18-20) and NiPS3 (refs. 21-23) that feature both tightly bound excitons with a large oscillator strength and potentially long-lived coherent magnons owing to the bandgap and spatial confinement. Although magnons and excitons are energetically mismatched by orders of magnitude, their coupling can lead to efficient optical access to spin information. Here we report strong magnon-exciton coupling in the 2D A-type antiferromagnetic semiconductor CrSBr. Coherent magnons launched by above-gap excitation modulate the exciton energies. Time-resolved exciton sensing reveals magnons that can coherently travel beyond seven micrometres, with a coherence time of above five nanoseconds. We observe these exciton-coupled coherent magnons in both even and odd numbers of layers, with and without compensated magnetization, down to the bilayer limit. Given the versatility of van der Waals heterostructures, these coherent 2D magnons may be a basis for optically accessible spintronics, magnonics and quantum interconnects.

19.
Front Genet ; 13: 960007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147492

RESUMO

Lodging is one of the major abiotic stresses, affecting the total crop yield and quality. The improved lodging resistance and its component traits potentially reduce the yield losses. The section modulus (SM), bending moment at breaking (M), pushing resistance (PR), and coefficient of lodging resistance (cLr) are the key elements to estimate the lodging resistance. Understanding the genetic architecture of lodging resistance-related traits will help to improve the culm strength and overall yield potential. In this study, a natural population of 795 globally diverse genotypes was further divided into two (indica and japonica) subpopulations and was used to evaluate the lodging resistance and culm strength-related traits. Significant diversity was observed among the studied traits. We carried out the genome-wide association evaluation of four lodging resistance traits with 3.3 million deep resolution single-nucleotide polymorphic (SNP) markers. The general linear model (GLM) and compressed mixed linear model (MLM) were used for the whole population and two subpopulation genome-wide association studies (GWAS), and a 1000-time permutation test was performed to remove the false positives. A total of 375 nonredundant QTLs were observed for four culm strength traits on 12 chromosomes of the rice genome. Then, 33 pleiotropic loci governing more than one trait were mined. A total of 4031 annotated genes were detected within the candidate genomic region of 33 pleiotropic loci. The functional annotations and metabolic pathway enrichment analysis showed cellular localization and transmembrane transport as the top gene ontological terms. The in silico and in vitro expression analyses were conducted to validate the three candidate genes in a pleiotropic QTL on chromosome 7. It validated OsFBA2 as a candidate gene to contribute to lodging resistance in rice. The haplotype analysis for the candidate gene revealed a significant functional variation in the promoter region. Validation and introgression of alleles that are beneficial to induce culm strength may be used in rice breeding for lodging resistance.

20.
J Adv Res ; 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35988902

RESUMO

INTRODUCTION: Rice, Oryza sativa L. (Os), is one of the oldest domesticated cereals that has also gone through extensive improvement in modern breeding. OBJECTIVES: How rice was domesticated and impacted by modern breeding. METHODS: We performed comprehensive analyses of genomic sequences of 504 accessions of Os and 456 accessions of O. rufipogon/O. nivara (Or). RESULTS: The natural selection on Or before domestication and the natural and artificial selection during domestication together shaped the well-differentiated genomes of two subspecies, geng(j) (japonica) and xian(i) (indica), while breeding has made apparent genomic imprints between landrace and modern varieties of each subspecies, and also between primary modern and advanced modern varieties of xian(i). Selection during domestication and breeding left genome-wide selective signals covering âˆ¼ 22.8 % and âˆ¼ 8.6 % of the Os genome, significantly reduced within-population genomic diversity by âˆ¼ 22 % in xian(i) and âˆ¼ 53 % in geng(j) plus more pronounced subspecific differentiation. Only âˆ¼ 10 % reduction in the total genomic diversity was observed between the Os and Or populations, indicating domestication did not suffer severe genetic bottleneck. CONCLUSION: Our results revealed clear differentiation of the Or accessions into three large populations, two of which correspond to the well-differentiated Os subspecies, geng(j) and xian(i). Improved productivity and common changes in the same suit of adaptive traits in xian(i) and geng(j) during domestication and breeding resulted apparently from compensatory and convergent selections for different genes/alleles acting in the common KEGG terms and/or same gene families, and thus maintaining or even increasing the within population diversity and subspecific differentiation of Os, while more genes/alleles of novel function were selected during domestication than modern breeding. Our results supported the multiple independent domestication of Os in Asia and suggest the more efficient utilization of the rich diversity within Os by exploiting inter-subspecific and among population diversity in future rice improvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...