Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plant Dis ; 105(11): 3353-3367, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33543991

RESUMO

Fusarium wilt (FW), caused by Fusarium oxysporum f. sp. vasinfectum (Atk.) W.C. Snyder & H.N. Hans (FOV), is one of the most destructive diseases of cotton (Gossypium spp.) worldwide. FOV race 4 (FOV4) is a highly virulent nominal race of this pathogen and a significant threat to cotton production in the western and southwestern USA and, potentially, the entire Cotton Belt. A field survey to identify FOV4 was performed in three southern counties of New Mexico in 619 cotton fields from 2018 to 2020. From 132 samples of cotton plants that exhibited wilt symptoms, Fusarium spp. were the most frequently isolated group of fungal species, with an isolation frequency of 57.4%. Eighty-four Fusarium spp. isolates were subsequently characterized by a DNA sequence analysis of three genes, EF-1α, PHO, and BT, encoding for translation elongation factor, phosphate permease, and ß-tubulin, respectively. Forty-two isolates from 10 cotton fields were identified as FOV4 and confirmed with a positive 500-bp fragment diagnostic for FOV4. Twenty-six (62%) of the 42 FOV4 isolates were T type and the remainder (38%) were null type with and without a Tfo1 insertion in PHO, respectively. Each FOV4-infested field contained the same FOV4 genotype. Ten representative FOV4 isolates (one each from the 10 FOV4-infested fields) were evaluated for their pathogenicity on resistant Pima PHY 841 RF and susceptible Upland PHY 725 RF at 7, 14, 21, and 28 days after inoculation under temperature-controlled conditions at 21 to 22°C. Based on the disease severity rating, mortality rate, and area under the disease progress curve value, all 10 isolates were pathogenic to both cotton cultivars and differed in virulence; four isolates of the T genotype as a whole were more virulent than the six isolates of the N genotype. PHY 841 RF had significantly higher levels of resistance than PHY 725 RF to all FOV4 isolates. The results provide the first comprehensive account of the occurrence, distribution, and virulence of FOV4 in cotton production in New Mexico and will be useful for developing an effective strategy to manage FW in the state of New Mexico and the entire western and southwestern Cotton Belt.


Assuntos
Fusarium , Fusarium/genética , Gossypium , New Mexico , Doenças das Plantas , Plântula
2.
Plant Dis ; 103(7): 1595-1604, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31059384

RESUMO

Alternaria leaf spot (caused by Alternaria spp.) is one of the most common foliar diseases of cotton (Gossypium spp.) and occurs in most cotton-growing regions of the world. In surveys of commercial cotton fields, Alternaria leaf spot has increased in prevalence and incidence in southern New Mexico due to favorable environmental conditions in recent years. Incidence, severity, and etiology of leaf spot of cotton in southern New Mexico were determined. Fourteen cotton fields with plants exhibiting leaf spot symptoms were evaluated in October and November 2016, when plants were at late growth stage. Disease incidence was 100% in 13 of the fields, and averaged 70% in the 14th field. Average disease severity index for all fields ranged from 21.5 to 87.0. For identification of the causal agent, 14 isolates (one from each field) were characterized based on morphological features and PCR using universal primers ITS4/ITS5 and primers targeting the plasma membrane ATPase gene. Colonies of all 14 isolates were olive green with distinct white margins and relatively small spores when compared with reference isolates of large-spored species. All 14 isolates were identified as A. alternata. The fungus grew on potato dextrose agar from 5 to 35°C, and optimum growth occurred at temperatures between 20 and 30°C. Cotton plants inoculated with selected isolates of A. alternata displayed symptoms similar to those observed under field conditions. This is the first report of A. alternata as a causal agent of Alternaria leaf spot on cotton in southern New Mexico.


Assuntos
Alternaria , Gossypium , Alternaria/genética , Alternaria/fisiologia , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Gossypium/microbiologia , New Mexico , Doenças das Plantas/microbiologia
3.
Braz. J. Microbiol. ; 49(2): 258-268, Apr.-June 2018. ilus, graf
Artigo em Inglês | VETINDEX | ID: vti-738161

RESUMO

Cellulosimicrobium cellulans CWS2, a novel strain capable of utilizing benzo(a)pyrene (BaP) as the sole carbon and energy source under nitrate-reducing conditions, was isolated from PAH-contaminated soil. Temperature and pH significantly affected BaP biodegradation, and the strain exhibited enhanced biodegradation ability at temperatures above 30 °C and between pH 7 and 10. The highest BaP removal rate (78.8%) was observed in 13 days when the initial BaP concentration was 10 mg/L, and the strain degraded BaP at constant rate even at a higher concentration (50 mg/L). Metal exposure experimental results illustrated that Cd(II) was the only metal ion that significantly inhibited biodegradation of BaP. The addition of 0.5 and 1.0 g/L glucose enhanced BaP biodegradation, while the addition of low-molecular-weight organic acids with stronger acidity reduced BaP removal rates during co-metabolic biodegradation. The addition of phenanthrene and pyrene, which were degraded to some extent by the strain, showed no distinct effect on BaP biodegradation. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that the five rings of BaP opened, producing compounds with one to four rings which were more bioavailable. Thus, the strain exhibited strong BaP degradation capability and has great potential in the remediation of BaP-/PAH-contaminated environments.(AU)

4.
Braz. j. microbiol ; Braz. j. microbiol;49(2): 258-268, Apr.-June 2018. graf
Artigo em Inglês | LILACS | ID: biblio-889233

RESUMO

Abstract Cellulosimicrobium cellulans CWS2, a novel strain capable of utilizing benzo(a)pyrene (BaP) as the sole carbon and energy source under nitrate-reducing conditions, was isolated from PAH-contaminated soil. Temperature and pH significantly affected BaP biodegradation, and the strain exhibited enhanced biodegradation ability at temperatures above 30 °C and between pH 7 and 10. The highest BaP removal rate (78.8%) was observed in 13 days when the initial BaP concentration was 10 mg/L, and the strain degraded BaP at constant rate even at a higher concentration (50 mg/L). Metal exposure experimental results illustrated that Cd(II) was the only metal ion that significantly inhibited biodegradation of BaP. The addition of 0.5 and 1.0 g/L glucose enhanced BaP biodegradation, while the addition of low-molecular-weight organic acids with stronger acidity reduced BaP removal rates during co-metabolic biodegradation. The addition of phenanthrene and pyrene, which were degraded to some extent by the strain, showed no distinct effect on BaP biodegradation. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that the five rings of BaP opened, producing compounds with one to four rings which were more bioavailable. Thus, the strain exhibited strong BaP degradation capability and has great potential in the remediation of BaP-/PAH-contaminated environments.


Assuntos
Microbiologia do Solo , Poluentes do Solo/metabolismo , Benzo(a)pireno/metabolismo , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Temperatura , Cádmio/metabolismo , Carbono/metabolismo , Ácidos Carboxílicos/metabolismo , Biotransformação , Actinobacteria/classificação , Meios de Cultura/química , Inibidores Enzimáticos/metabolismo , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Anaerobiose , Cromatografia Gasosa-Espectrometria de Massas
5.
Braz J Microbiol ; 49(2): 258-268, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29102294

RESUMO

Cellulosimicrobium cellulans CWS2, a novel strain capable of utilizing benzo(a)pyrene (BaP) as the sole carbon and energy source under nitrate-reducing conditions, was isolated from PAH-contaminated soil. Temperature and pH significantly affected BaP biodegradation, and the strain exhibited enhanced biodegradation ability at temperatures above 30°C and between pH 7 and 10. The highest BaP removal rate (78.8%) was observed in 13 days when the initial BaP concentration was 10mg/L, and the strain degraded BaP at constant rate even at a higher concentration (50mg/L). Metal exposure experimental results illustrated that Cd(II) was the only metal ion that significantly inhibited biodegradation of BaP. The addition of 0.5 and 1.0g/L glucose enhanced BaP biodegradation, while the addition of low-molecular-weight organic acids with stronger acidity reduced BaP removal rates during co-metabolic biodegradation. The addition of phenanthrene and pyrene, which were degraded to some extent by the strain, showed no distinct effect on BaP biodegradation. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that the five rings of BaP opened, producing compounds with one to four rings which were more bioavailable. Thus, the strain exhibited strong BaP degradation capability and has great potential in the remediation of BaP-/PAH-contaminated environments.


Assuntos
Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Benzo(a)pireno/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Actinobacteria/classificação , Anaerobiose , Biotransformação , Cádmio/metabolismo , Carbono/metabolismo , Ácidos Carboxílicos/metabolismo , Meios de Cultura/química , Inibidores Enzimáticos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Temperatura
6.
Artigo em Inglês | VETINDEX | ID: vti-739162

RESUMO

Abstract Cellulosimicrobium cellulans CWS2, a novel strain capable of utilizing benzo(a)pyrene (BaP) as the sole carbon and energy source under nitrate-reducing conditions, was isolated from PAH-contaminated soil. Temperature and pH significantly affected BaP biodegradation, and the strain exhibited enhanced biodegradation ability at temperatures above 30 °C and between pH 7 and 10. The highest BaP removal rate (78.8%) was observed in 13 days when the initial BaP concentration was 10 mg/L, and the strain degraded BaP at constant rate even at a higher concentration (50 mg/L). Metal exposure experimental results illustrated that Cd(II) was the only metal ion that significantly inhibited biodegradation of BaP. The addition of 0.5 and 1.0 g/L glucose enhanced BaP biodegradation, while the addition of low-molecular-weight organic acids with stronger acidity reduced BaP removal rates during co-metabolic biodegradation. The addition of phenanthrene and pyrene, which were degraded to some extent by the strain, showed no distinct effect on BaP biodegradation. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that the five rings of BaP opened, producing compounds with one to four rings which were more bioavailable. Thus, the strain exhibited strong BaP degradation capability and has great potential in the remediation of BaP-/PAH-contaminated environments.

7.
Diabetes ; 63(1): 75-88, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24009260

RESUMO

Insulin regulates heart metabolism through the regulation of insulin-stimulated glucose uptake. Studies have indicated that insulin can also regulate mitochondrial function. Relevant to this idea, mitochondrial function is impaired in diabetic individuals. Furthermore, the expression of Opa-1 and mitofusins, proteins of the mitochondrial fusion machinery, is dramatically altered in obese and insulin-resistant patients. Given the role of insulin in the control of cardiac energetics, the goal of this study was to investigate whether insulin affects mitochondrial dynamics in cardiomyocytes. Confocal microscopy and the mitochondrial dye MitoTracker Green were used to obtain three-dimensional images of the mitochondrial network in cardiomyocytes and L6 skeletal muscle cells in culture. Three hours of insulin treatment increased Opa-1 protein levels, promoted mitochondrial fusion, increased mitochondrial membrane potential, and elevated both intracellular ATP levels and oxygen consumption in cardiomyocytes in vitro and in vivo. Consequently, the silencing of Opa-1 or Mfn2 prevented all the metabolic effects triggered by insulin. We also provide evidence indicating that insulin increases mitochondrial function in cardiomyocytes through the Akt-mTOR-NFκB signaling pathway. These data demonstrate for the first time in our knowledge that insulin acutely regulates mitochondrial metabolism in cardiomyocytes through a mechanism that depends on increased mitochondrial fusion, Opa-1, and the Akt-mTOR-NFκB pathway.


Assuntos
Insulina/farmacologia , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Miócitos Cardíacos/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Células Cultivadas , GTP Fosfo-Hidrolases/metabolismo , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
9.
Clin Transl Oncol ; 14(2): 116-24, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22301400

RESUMO

INTRODUCTION: Epigenetic modifications play an important role in multistage carcinogenesis. The role of the three functional DNA methyltransferases (DNMTs) in pancreatic carcinogenesis has not been fully understood. The main goal of this study was to examine DNMT expression in different stages of pancreatic ductal adenocarcinoma (PDAC), and evaluate their prognostic significance in PDAC. MATERIALS AND METHODS: A large number of premalignant and malignant pancreatic lesions were obtained by manual microdissection. Quantitative real-time RT-PCR was used to detect DNMTs mRNA expression. Nonparametric test, logrank test and Cox regression analysis were used to evaluate the clinical significance of DNMT expression. RESULTS: The mRNA expression of the three DNMTs increased with the development of pancreatic cancer from normal duct to pancreatic intraductal neoplasia and further to PDAC, and were statistically correlated with each other. Expression of the three DNMTs was statistically correlated with TNM staging and history of chronic pancreatitis. DNMT3A and DNMT3B, but not DNMT1 expression, was statistically correlated with tumour size. Patients with higher levels of DNMT1, DNMT3A and/or DNMT3B expression had an overall lower survival than those with lower levels of expression. Univariate analysis showed that high expression levels of DNMTs, alcohol consumption, tumour differentiation and TNM staging were statistically significant risk factors. Multivariate analysis showed that high level of DNMT3B expression and tumour differentiation were statistically significant independent poor prognostic factors. CONCLUSIONS: These results suggested that pancreatic carcinogenesis involves an increased mRNA expression of three DNMTs, and they may become valuable diagnostic and prognostic markers as well as potential therapeutic targets for pancreatic cancer.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , DNA (Citosina-5-)-Metiltransferases/genética , Neoplasias Pancreáticas/genética , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , DNA (Citosina-5-)-Metiltransferase 1 , DNA Metiltransferase 3A , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Pâncreas/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Taxa de Sobrevida , Resultado do Tratamento , DNA Metiltransferase 3B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA