Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 534
Filtrar
1.
Biomed Pharmacother ; 125: 109926, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028239

RESUMO

The spontaneous db/db mice were used to elucidate the biological effects and mechanisms of Rehmannia glutinosa leaves total glycoside (DHY) on kidney injury through biochemical indicators, kidney pathological section analysis, metabolic profiling, intestinal flora analysis and in vitro Human renal tubular epithelial (HK-2) cell model induced by high glucose. It was found that DHY can decrease the blood sugar level (insulin, INS; fasting blood glucose, FBG), blood lipid level (Total Cholesterol, T-CHO; Triglyceride, TG) significantly and improve kidney injury level (blood urea nitrogen, BUN; urine microalbumin, mALB; serum creatinine, Scr). It can also alleviate kidney tubular epithelial cell oedema and reduce interstitial connective tissue hyperplasia of the injury kidney induced by high glucose. 13 endogenous metabolites were identified in serum, which involved of ether lipid metabolism, sphingolipid metabolism, glyoxylic acid and dicarboxylic acid metabolism and arachidonic acid metabolism. High glucose can also lead to the disorder of intestinal flora, especially Firmicutes and Bacteroides. Meanwhile, DHY also inhibited the expression of α-SMA, TGF- ß1, Smad3 and Smad4 in the kidney tissues of db/db mice and HK-2 cells. To sum up, DHY may restore the dysfunctional intestinal flora to normal and regulate glycolipid level of db/db mice as well as TGF-ß/Smad signalling pathway regulation to improve early kidney damage caused by diabetes.

2.
Head Neck ; 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32048783

RESUMO

Epithelial-mesenchymal transition (EMT) plays a critical role in cancer progression and is primarily regulated by several EMT-inducing transcription factors (EMT-TFs), including TWIST1, TWIST2, SNAI1, SNAI2, ZEB1, and ZEB2. However, the prognostic value of EMT-TFs remains controversial in head and neck squamous cell carcinoma (HNSCC). Studies on the prognostic role of EMT-TFs in HNSCC were searched for in the Web of Science, Science Direct, Proquest, EMBASE, PubMed, and Cochrane Library. Meta-analysis was performed by using Revman 5.2 software. The pooled analysis showed that overexpression of EMT-TFs indicated a poor overall survival (OS) (HR = 1.93, 95% CI = 1.67-2.23) of HNSCC. Subgroup analysis for individual EMT-TFs revealed that overexpression of TWIST1 (HR = 1.61, 95% CI = 1.29-2.02), SNAI1 (HR = 2.17, 95% CI = 1.63-2.88), SNAI2 (HR = 1.90, 95% CI = 1.38-2.62), and ZEB1 (HR = 2.70, 95% CI = 1.61-4.53) were significantly associated with poor OS of HNSCC. These findings support the hypothesis that overexpression of EMT-TFs indicates a poor prognosis for HNSCC patients.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32035227

RESUMO

Accurate identification of compound-protein interactions (CPIs) in silico may deepen our understanding of the underlying mechanisms of drug action and thus remarkably facilitate drug discovery and development. Conventional similarity- or docking-based computational methods for predicting CPIs rarely exploit latent features from currently available large-scale unlabeled compound and protein data and often limit their usage to relatively small-scale datasets. In the present study, we proposed DeepCPI, a novel general and scalable computational framework that combines effective feature embedding (a technique of representation learning) with powerful deep learning methods to accurately predict CPIs at a large scale. DeepCPI automatically learns the implicit yet expressive low-dimensional features of compounds and proteins from a massive amount of unlabeled data. Evaluations of the measured CPIs in large-scale databases, such as ChEMBL and BindingDB, as well as of the known drug-target interactions from DrugBank, demonstrated the superior predictive performance of DeepCPI. Furthermore, several interactions among small-molecule compounds and three G protein-coupled receptor targets (glucagon-like peptide-1 receptor, glucagon receptor, and vasoactive intestinal peptide receptor) predicted using DeepCPI were experimentally validated. The present study suggests that DeepCPI is a useful and powerful tool for drug discovery and repositioning. The source code of DeepCPI can be downloaded from https://github.com/FangpingWan/DeepCPI.

4.
Diabetes Res Clin Pract ; : 108085, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32061817

RESUMO

AIMS: To assess the prevalence and risk of adverse perinatal outcomes in pregnant women with abnormal glucose metabolism. METHODS: 3269 Chinese pregnant women with singleton delivery were studied, including 787 diagnosed as gestational diabetes mellitus (GDM), 115 pregnancy with diabetes (PWD), and 2367 normal glucose tolerance (NGT). The prevalence and risk of adverse maternal and fetal outcomes were compared and assessed among the three groups, and the related risk factors of the glucose metabolism for adverse pregnancy outcomes were evaluated by binary logistic regression. RESULTS: Compared to NGT, maternal GDM and PWD faced increased risk of adverse perinatal outcomes such as pregnancy-induced hypertension (odds ratio (OR) 1.78 [95% confidence interval (CI): 1.17-2.72]; 4.31 [95% CI: 2.32-7.98]), low birth weight (OR 1.51 [95% CI: 1.01-2.28]; 4.05 [95% CI: 2.17-7.55]). And PWD group exhibited remarkably higher risk for preterm delivery (OR 2.88 [95% CI: 1.68-4.94]) and stillbirth (OR 7.78 [95% CI: 2.44-24.84]) than other two groups. The increased fasting insulin and glycated hemoglobin A1c were successively independent risk factors for maternal and neonatal adverse outcomes. CONCLUSIONS: Gestational abnormal glucose metabolism is associated with the remarkably increased risk of adverse perinatal outcomes, and PWD has higher risk of adverse perinatal outcomes than GDM.

6.
J Biophotonics ; : e201960154, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31909553

RESUMO

Full-field optical coherence tomography (FF-OCT) has been reported with its label-free subcellular imaging performance. To realize quantitive cancer detection, the support vector machine model of classifying normal and cancerous human liver tissue is proposed with en face tomographic images. Twenty samples (10 normal and 10 cancerous) were operated from humans and composed of 285 en face tomographic images. Six histogram features and one proposed fractal dimension parameter that reveal the refractive index inhomogeneities of tissue were extracted and made up the training set. The other different 16 samples (8 normal and 8 cancerous) were imaged (190 images) and employed as the test set with the same features. First, a subcellular-resolution tomographic image library for four histopathological areas in liver tissue was established. Second, the area under the receiver operating characteristics of 0.9378, 0.9858, 0.9391, 0.9517 for prediction of the cancerous hepatic cell, central vein, fibrosis, and portal vein were measured with the test set. The results indicate that the proposed classifier from FF-OCT images shows promise as a label-free assessment of quantified tumor detection, suggesting the fractal dimension-based classifier could aid clinicians in detecting tumor boundaries for resection in surgery in the future.

7.
Theranostics ; 10(2): 516-536, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31903135

RESUMO

Background: The leading cause of poor prognosis in colorectal cancer (CRC) is the presence of colorectal cancer-initiating cells (CCICs). The interplay between the tumor microenvironment (TME) and CRC cells induces reacquisition of initiating cell characteristics, but the underlying mechanisms remain elusive. Methods: Candidate molecules were screened by global differential cDNA expression profiles of CCICs, which were enriched from patient-derived tumor xenograft models. Luciferase reporters and chromatin immunoprecipitation assays were used to explore the mechanism of TME factors regulating the transcription of ANKRD22. The effects of Ankyrin repeat domain-containing protein 22 (ANKRD22) on energy metabolism were monitored by extracellular flux and 13C-based metabolic flux analysis. Mass spectrometry was used to identify the interacting partners of ANKRD22. Morphological changes of CCICs overexpressing ANKRD22 were observed by electron microscopy. The effects of ANKRD22 on mitochondrial lipid metabolism were analyzed by lipidomics. Results: We identified a novel nucleus-encoded mitochondrial membrane protein, ANKRD22, which was upregulated in CCICs. We found that ANKRD22 was induced by the p38/MAX pathway activated by different TME stimuli. As a key transcription factor, MAX promoted the transcription of ANKRD22. Expression of ANKRD22 promoted glycolysis associated with a decrease in ATP/ADP and an increase in AMP/ATP levels, which were related to its interaction with pyruvate dehydrogenase kinase isoform 1 (PDK1) and multiple subunits of ATP synthase. Further, in CCICs, ANKRD22 cooperated with the lipid transport protein, Extended Synaptotagmin-1 (E-Syt1), to transport excess lipids into mitochondria and reduced the number of mitochondria in an autophagy-independent manner, thus meeting the metabolic requirements of CCICs. Conclusion: ANKRD22 induced by TME promotes the metabolic reprogramming of CRC cells. Our study has identified ANKRD22/E-Syt1 as a potential target for eradicating CCICs.

8.
Phytomedicine ; 68: 153169, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31999976

RESUMO

BACKGROUND: Activation of NLRP3 inflammasome plays a key role in cardiac dysfunction for acute myocardial ischemia-reperfusion injury. Scutellarin (Scu) is a flavonoid purified from Erigeron breviscapus. Whether Scu has any influence on the activation of NLRP3 inflammasome in cardiomyocytes remains unknown. PURPOSE: We aimed to examine the therapeutic effect of Scu on cardiomyocyte ischemia-reperfusion (I/R) injury and its effect on NLRP3 inflammasome in rats with acute myocardial I/R injury and anoxia/reoxygenation (A/R)-induced H9c2 injuries. METHODS: Heart injuries were induced through 30 min of ischemia followed by 24 h of reperfusion. Scu was intraperitoneally administered 15 min before vascular ligation. Effects of Scu on cardiac injury were detected by echocardiograms, TTC staining, and histological and immunohistochemical analyses. The effects of Scu on biochemical parameters were analyzed. H9c2 cells were pretreated with different concentrations of Scu for 6 h before A/R exposure. Afterward, cell viability, LDH release, and Hoechst 33342 and peromide iodine double staining were determined. Western blot analyses of proteins, including those involved in autophagy, NLRP3, mTOR complex 1 (mTORC1), and Akt signaling, were conducted. RESULTS: In vivo study revealed that Scu improved diastolic dysfunction, ameliorated myocardium structure abnormality, inhibited myocyte apoptosis and inflammatory response, and promoted autophagy. Scu reduced NLRP3 inflammasome activation, inhibited mTORC1 activity, and increased Akt phosphorylation. In vitro investigation showed the same results. The Scu-mediated NLRP3 inflammasome and mTORC1 inhibition and cardioprotection were abolished through the genetic silencing of Akt by siRNA. CONCLUSIONS: The cardioprotective effect of Scu was achieved through its anti-inflammatory effect. It suppressed the activation of NLRP3 inflammasome. In addition, inflammasome restriction by Scu was dependent on Akt activation and mTORC1 inhibition.

9.
Acta Pharmacol Sin ; 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937932

RESUMO

IgD-Fc-Ig fusion protein, a new biological agent, is constructed by linking a segment of human IgD-Fc with a segment of human IgG1-Fc, which specifically blocks the IgD-IgDR pathway and selectively inhibits the abnormal proliferation, activation, and differentiation of T cells. In this study we investigated whether IgD-Fc-Ig exerted therapeutic effects in collagen-induced arthritis (CIA) rats. CIA rats were treated with IgD-Fc-Ig (1, 3, and 9 mg/kg) or injected with biological agents etanercept (3 mg/kg) once every 3 days for 40 days. In the PBMCs and spleen lymphocytes of CIA rats, both T and B cells exhibited abnormal proliferation; the percentages of CD3+ total T cells, CD3+CD4+ Th cells, CD3+CD4+CD25+-activated Th cells, Th1(CD4+IFN-γ+), and Th17(CD4+IL-17+) were significantly increased, whereas the Treg (CD4+CD25+Foxp3+) cell percentage was decreased. IgD-Fc-Ig administration dose-dependently decreased the indicators of arthritis; alleviated the histopathology of spleen and joint; reduced serum inflammatory cytokines levels; decreased the percentages of CD3+ total T cells, CD3+CD4+ Th cells, CD3+CD4+CD25+-activated Th cells, Th1 (CD4+IFN-γ+), and Th17(CD4+IL-17+); increased Treg (CD4+CD25+Foxp3+) cell percentage; and down-regulated the expression of key molecules in IgD-IgDR-Lck-NF-κB signaling (p-Lck, p-ZAP70, p-P38, p-NF-κB65). Treatment of normal T cells with IgD (9 µg/mL) in vitro promoted their proliferation. Co-treatment with IgD-Fc-Ig (0.1-10 µg/mL) dose-dependently decreased IgD-stimulated T cell subsets percentages and down-regulated the IgD-IgDR-Lck-NF-κB signaling. In summary, this study demonstrates that IgD-Fc-Ig alleviates CIA and regulates the functions of T cells through inhibiting IgD-IgDR-Lck-NF-κB signaling.

10.
Adv Mater ; : e1907941, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31997413

RESUMO

2D nanosheets have been widely explored as electrode materials owing to their extraordinarily high electrochemical activity and fast solid-state diffusion. However, the scalable electrode fabrication based on this type of material usually suffers from severe performance losses due to restricted ion-transport kinetics in a large thickness. Here, a novel strategy based on evaporation-induced assembly to enable directional ion transport via forming vertically aligned nanosheets is reported. The orientational ordering is achieved by a rapid evaporation of mixed solvents during the electrode fabrication process. Compared with conventional drop-cast electrodes, which exhibit a random arrangement of the nanosheets and obvious decrease of rate performance with increasing thickness, the electrode based on the vertically aligned nanosheets is able to retain the original high rate capability even at high mass loadings and electrode thickness. Combined electrochemical and structural characterization reveals the electrode composed of orientation-controlled nanosheets to possess lower charge-transfer resistances, leading to more complete phase transformation in the active material.

11.
J Cell Mol Med ; 24(1): 304-316, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31657132

RESUMO

The role of long non-coding RNAs (lncRNAs) in thyroid carcinoma (TC), the most frequent endocrine malignancy, has been extensively examined. This study investigated effect of interaction among lncRNA TNRC6C-AS1, serine/threonine-protein kinase 4 (STK4) and Hippo signalling pathway on TC. Initially, lncRNA TNRC6C-AS1 expression in TC tissues was detected. To explore roles of lncRNA TNRC6C-AS1, STK4 and Hippo signalling pathway in TC progression, their expressions were altered. Interaction between lncRNA TNRC6C-AS1 and STK4, STK4 promoter methylation, or Hippo signalling pathway was verified. After that, a series of experiments were employed to evaluate in vitro ability of apoptosis, proliferation and autophagy of TC cells and in vivo tumorigenicity, and tumour growth of TC cells. lncRNA TNRC6C-AS1 was highly expressed while STK4 was poorly expressed in TC tissues. LncRNA TNRC6C-AS1 promoted the STK4 methylation and down-regulated STK4 expression, which further activated the Hippo signalling pathway. STK4 silencing was observed to promote the proliferation ability of TC cells, inhibit the apoptosis and autophagy abilities, as well as enhance the tumorigenicity and tumour growth. Moreover, the in vitro proliferation ability as well as the in vivo tumorigenicity and tumour growth of TC cells were inhibited after the blockade of Hippo signalling pathway, while the apoptosis and autophagy abilities were promoted. The results demonstrate that the lncRNA TNRC6C-AS1 increases STK4 promoter methylation to down-regulate STK4 expression, thereby promoting the development of TC through activation of Hippo signalling pathway. It highlights that lncRNA TNRC6C-AS1 may be a novel therapeutic target for the treatment of TC.

12.
Environ Pollut ; 257: 113548, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31733961

RESUMO

Existing studies have typically investigated only the association between single pollutants and health outcomes. However, in the real world, people are exposed to multiple air pollutants simultaneously. The effect of air pollutants on emergency department (ED) visits has not been previously studied in the Sichuan Basin, which is one of the most polluted areas. We collected nonaccidental, respiratory and cardiovascular daily ED visits and daily concentrations of PM2.5, PMc, CO, SO2, NO2 and O3 in Chengdu, China, from 2014 to 2016. A weighted variable for the combination of multiple air pollutants was constructed to assess the joint adverse health effects. Each air pollutant was assigned a health-related weight, which indicated the pollutant's relative contribution to the joint effect. The effects on specific subpopulations (males and females; 15-65 years old and >65 years old) were also examined. With an increase of 10 µg/m3 of the combined multiple air pollutants, the daily ED visits for nonaccidental, respiratory and cardiovascular causes increased by 0.96% (95% CI: 0.51%-1.39%), 1.19% (95% CI: 0.53%, 1.85%) and 4.36% (95% CI: 1.06%, 7.76%) at lag 1, respectively. Males presented more pronounced effects, except for cardiovascular disease, than females. Elderly individuals were found to be more sensitive than young individuals. For nonaccidental and respiratory diseases, the contributions of particulate matter (PM) were dominant among the air pollutants, whereas cardiovascular disease was mainly affected by gaseous air pollutants. The combination of multiple air pollutants was significantly associated with ED visits in the Sichuan Basin, China. The joint effect of the combination of multiple air pollutants was highest for cardiovascular disease at lag 1. The relative contributions of individual pollutants varied by disease and subpopulation. These findings suggest that under different pollution scenarios, preventive strategies should target those with different diseases and different subpopulations.

13.
Environ Sci Technol ; 54(2): 1232-1241, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31838838

RESUMO

A nonradical oxidation process via metal-free peroxymonosulfate (PMS) activation has recently attracted considerable attention for organic pollutant degradation; however, the origin of singlet oxygen (1O2) generation still remains controversial. In this study, nitrogen-doped carbon nanosheets (NCN-900) derived from graphitic carbon nitride were developed for activation of PMS and elucidation of 1O2 production. With a large specific surface area (1218.7 m2 g-1) and high nitrogen content (14.5 at %), NCN-900 exhibits superior catalytic activity in PMS activation, as evidenced by complete degradation of bisphenol A within 2 min using 0.1 g L-1 NCN-900 and 2 mM PMS. Moreover, the reaction rate constant fitted by pseudo-first-order kinetics for NCN-900 reaches an impressive value of 3.1 min-1. Electron paramagnetic resonance measurements and quenching tests verified 1O2 as the primary reactive oxygen species in the NCN-900/PMS system. Based on X-ray photoelectron spectroscopy analysis and theoretical calculations, an unexpected generation pathway of 1O2 involving PMS oxidation over the electron-deficient carbon atoms neighboring graphitic N in NCN-900 was unraveled. Besides, the NCN-900/PMS system is also applicable for remediation of actual industrial wastewater. This work highlights the important role of electron-deficient carbon atoms in 1O2 generation from PMS oxidation and furnishes theoretical support for further relevant studies.

14.
Clin Res Hepatol Gastroenterol ; 44(1): 57-65, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31076363

RESUMO

AIMS: To evaluate the significance of serum ceruloplasmin (CP) to diagnosis hepatic steatosis (HS) in Chronic hepatitis B (CHB) patients. METHODS: A total of 360 CHB patients with HS (n = 136) or without HS (n = 224) were included. Relationships between CP and HS degrees were analyzed by Spearman rank correlation. HS-predictive models including CP were constructed using multivariate logistic regression analysis and compared to other HS predicting indexes. RESULTS: Serum CP were significantly higher in CHB patients with HS than in patients without HS (P < 0.001) and were positively correlated with HS degree (r = 0.487, P < 0.001). The area under the receiver-operating characteristic curves (AUCs) of using CP to predict HS (S ≥ 1), moderate and severe steatosis (S ≥ 2) and severe steatosis (S = 3) were 0.758, 0.794 and 0.883, respectively. Multivariate analysis showed that CP, age, high density lipoprotein (HDL) and hemoglobin were independent predictors of HS, and CP, body mass index and HDL were independent predictors of moderate and severe HS. Two novel indexes for predicting HS of CHB patients were generated. The AUC of HSCHB-1 (for S ≥ 1) and HSCHB-2 (for S ≥ 2) were 0.881 and 0.916 in the training group, and 0.865 and 0.841 in the validation group, respectively. HSCHB-1 was superior to HS index (P < 0.001), fatty liver disease index (P = 0.0043) and steatosis index of patients with hepatitis B virus infection (P = 0.0029) in predicting HS in CHB patients. CONCLUSIONS: HS of CHB patients was positively associated with serum CP. HSCHB-1 and HSCHB-2 with inclusion of CP are two novel models for predicting HS in CHB patients.

15.
Environ Sci Pollut Res Int ; 27(5): 4746-4755, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31845262

RESUMO

Under the extensive implementation of ultra-low emission (ULE) facilities in coal-fired power plants of China, sulfur trioxide (SO3) has received increasing attention due to its impact on human health and operation safety of power plants. However, systematic research and evaluation for controlling SO3 emission in various ULE facilities are still lacking. Here, a systematic study was conducted based on 378 in situ performance evaluation tests carried out in 148 coal-fired power plants. The results illustrate that the SO2/SO3 conversion rate of the selective catalytic reduction devices can be controlled within 1% before and after ULE retrofit. Also, the synergistic removal efficiency of SO3 in the low-low-temperature electrostatic precipitator and the wet electrostatic precipitator can be higher than 70%. The removal efficiency of SO3 in the wet limestone-gypsum flue gas desulfurization scrubber is 33-64% before ULE and 31-81% after, and the average efficiency of the double scrubbers is 8.7% higher than that of the single scrubber. Due to the different SO3 removing abilities of various technologies, the overall efficiency of SO3 removal is in the range between 27 and 95% adopting different ULE technical routes. Average concentration of SO3 emission can be decreased by 51.8% after ULE application.

17.
PeerJ ; 7: e8145, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31788368

RESUMO

Background: This study aimed to draw a series of scientific maps to quantitatively and qualitatively evaluate hot spots and trends in postmenopausal osteoporosis research using bibliometric analysis. Methods: Scientific papers published on postmenopausal osteoporosis were extracted from the Web of Science Core Collection and PubMed database. Extracted information was analyzed quantitatively with bibliometric analysis by CiteSpace, the Online Analysis Platform of Literature Metrology and Bibliographic Item Co-Occurrence Matrix Builder (BICOMB). To explore the hot spots in this field, co-word biclustering analysis was conducted by gCLUTO based on the major MeSH terms/MeSH subheading terms-source literatures matrix. Results: We identified that a total of 5,247 publications related to postmenopausal osteoporosis were published between 2013 and 2017. The overall trend decreased from 1,071 literatures in 2013 to 1,048 literatures in 2017. Osteoporosis International is the leading journal in the field of postmenopausal osteoporosis research, both in terms of impact factor score (3.819) and H-index value (157). The United States has retained a top position and has exerted a pivotal influence in this field. The University of California, San Francisco was identified as a leading institution for research collaboration, and Professors Reginster and Kanis have made great achievements in this area. Eight research hot spots were identified. Conclusions: Our study found that in the past few years, the etiology and drug treatment of postmenopausal osteoporosis have been research hot spots. They provide a basis for the study of the pathogenesis of osteoporosis and guidelines for the drug treatment of osteoporosis.

18.
ACS Nano ; 13(12): 14368-14376, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31800208

RESUMO

Water oxidation catalysts (WOCs) are essential to electrochemical hydrogen production, but (electro)chemical instability remains a critical issue for WOCs especially under acidic conditions. Here we present a hybrid organic-inorganic polymeric dual network gel (DN gel) electrocatalyst based on earth-abundant elements via in situ oxidative polymerization of polypyrrole and simultaneous cyano-polymerization for efficient acidic water oxidation. X-ray absorption and X-ray photoelectron spectra reveal a synergistic interplay between the inorganic polymer and the organic conductive polymer in producing a favorable local coordination environment, further supported by the DFT calculation. The DN gel electrocatalyst exhibits highly active and stable catalytic activity for oxygen evolution in the pH = 0 electrolyte, with no noticeable degradation after more than 3000 cycles. This work presents an alternative insight into developing highly active and robust WOCs as promising alternatives to noble metal catalysts in strong acids.

19.
Vaccines (Basel) ; 7(4)2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31801257

RESUMO

Salmonella enterica serovar Enteritidis (S. Enteritidis) is a host-ranged pathogen that can infect both animals and humans. Poultry and poultry products are the main carriers of S. Enteritidis, which can be transmitted to humans through the food chain. To eradicate the prevalence of S. Enteritidis in poultry farms, it is necessary to develop novel vaccines against the pathogen. In this study, we constructed two vaccine candidates, CZ14-1∆spiC∆nmpC and CZ14-1∆spiC∆rfaL, and evaluated their protective efficacy. Both mutant strains were much less virulent than the parental strain, as determined by the 50% lethal dose (LD50) for three-day-old specific-pathogen free (SPF) White Leghorns and Hyline White chickens. Immunization with the mutant candidates induced highly specific humoral immune responses and expression of cytokines IFN-γ, IL-1ß, and IL-6. In addition, the mutant strains were found to be persistent for almost three weeks post-infection. The survival percentages of chickens immunized with CZ14-1∆spiC∆nmpC and CZ14-1∆spiC∆rfaL reached 80% and 75%, respectively, after challenge with the parental strain. Overall, these results demonstrate that the two mutant strains can be developed as live attenuated vaccines.

20.
Funct Plant Biol ; 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31813412

RESUMO

Freeze-thaw (FT) in northern China is a common event in spring and autumn, and the release of sulfur dioxide from coal-burning in winter is apt to trigger acid precipitation. Both these stresses can aggravate the wintering ability of white clover (Trifolium repens L.). Acid precipitation and FT simulation experiments were carried out in the field and an indoor alternation refrigerator, respectively. The contents of soluble protein, soluble sugar, malondialdehyde (MDA), proline and antioxidant activity were tested under acid precipitation and FT stress. The results showed that under acid precipitation stress, the content of MDA, peroxidase and superoxide dismutase increased in both leaves and stolons, whereas soluble protein and soluble sugar content declined compared with the control groups. During the freezing period, the content of antioxidant enzyme activity, soluble protein and proline increased at first and then dropped, whereas MDA and soluble sugar content both increased. As a conclusion, the stolon of white clover is more sensitive than the leaf to short-term stress, either as the single FT stress or the combined stress of FT and acid precipitation, suggesting that maintaining more leaves can contribute to the resistance of white clover to these stresses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA