Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 828
Filtrar
1.
Talanta ; 231: 122401, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33965050

RESUMO

To facilitate in situ comparative culturing of budding yeast cells in a precisely controlled microenvironment, we developed a microfluidic single-cell array (MiSCA) with 96 traps (16 rows × 6 columns) for single-cell immobilization. Through optimization of the distances between neighboring traps and the applied flow rates by using a hydraulic equivalent circuit of the fluidic network, yeast cells were delivered to each column of the array by laminar focused flows and reliably captured at the traps by hydrodynamic forces with about 90% efficiency of cell immobilization. Immobilized cells in different columns within the same device can then be cultured in parallel while being exposed to different media and compounds delivered by laminar flows. For biological validation of the comparative cell-culturing device, we used budding yeast that can express yellow fluorescent protein upon the addition of ß-estradiol in cell-culturing medium. Experimental results show successful induction of fluorescence in cells immobilized in desired columns that have been dosed with ß-estradiol. The MiSCA system allows for performing sets of experiments and control experiments in parallel in the same device, or for executing comparative experiments under well-defined laminar-perfusion conditions with different media, as well as in situ monitoring of dynamic cellular responses upon different analytical compounds or reagents for single-cell analysis.

2.
Anal Chem ; 2021 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-33966373

RESUMO

A novel, simple, cost-effective, reliable, and practical automatic column chromatography separation device capable of simultaneously purifying samples for radiogenic and non-traditional stable isotope analysis has been developed. The device avoids the use of any pump and features eluent driving by the siphon effect (gravity) and quantitative control by infrared droplet counting. Several factors affecting the control of droplets were investigated, including types and concentrations of eluents and the height of the liquid level. Results showed that accurate dripping of the eluent could be readily achieved by controlling the number of droplets under selected conditions. The separation performance of the device was first demonstrated by the elution of Sr and Cd in synthetic matrix solutions. The recoveries of Sr and Cd samples were better than 87.6 and 95.0%, respectively, and the whole procedure blank was about 0.3 ng for Sr and 0.1 ng for Cd. Finally, the reliability of the device was further validated by the purification of Sr and Cd from different geological reference materials (NIST 2711a, Nod-A-1, BCR-2, and BHVO-2). The determined Cd and Sr isotope values agree well with their reference values within the uncertainty range. All these results clearly demonstrate the reliability and practicability of the proposed device, which provides a promising method for the automated purification of isotope samples.

3.
Environ Pollut ; 285: 117150, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33964556

RESUMO

Association between long-term exposure to multiple metals and obesity remains inconclusive, and prospective evidence on the region along the Yangtze River was limited. Thus, our study aimed to examine the association of multiple metal exposure and obesity. We measured baseline urine levels of 22 metals of 982 adults living along the Yangtze River, incidence of obesity was calculated from body mass index (BMI) and waist circumference (WC) measured at follow-up survey. Cox proportional hazards models were used to examine the hazard ratios (HR) and 95% confidence interval (CI) for the association between urinary metals and obesity, and the mixing effect of metals on obesity was estimated by using quantile g-computation. In multiple-metal models, arsenic was significantly associated with BMI/obesity, with the HR in the highest quartiles of 0.33 (95% CI: 0.16, 0.69; p-trend = 0.004). The HRs for WC/obesity of arsenic and molybdenum were 0.49 (95% CI: 0.32, 0.75 for the fourth vs. first quartile; p-trend = 0.002) and 1.83 (95% CI: 1.25, 2.70; p-trend = 0.001), respectively. Quantile g-computation mixtures approach showed a significantly negative joint effect of multiple metals on WC/obesity, with the HR of 0.26 (95% CI: 0.14, 0.47; p < 0.001) when increasing all seventeen metals by one quartile. Our study suggests that all seventeen metal mixed exposure may be negatively associated with obesity. Further cohort studies are needed to confirm these findings and clarify the underlying biological mechanisms.

4.
Yi Chuan ; 43(5): 442-458, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33972215

RESUMO

In order to develop a variety of japonica rice with good eating quality suitable for planting in Jiangsu Province, the genetic basis of high quality, disease resistance and high yield japonica rice varieties in Jiangsu Province was systematically studied. The relationship among different rice qualities of cooking, nutrition, and eating was studied by association analysis. It was clear that amylose content was the key factor affecting eating quality. The semi waxy rice with amylose content of 10%~14% has bright surface, soft texture, and elasticity, combining the softness of glutinous rice and the elasticity of japonica rice. The cold rice is not hard, and the taste is excellent. It meets the taste requirements of people in Yangtze River Delta region who like to eat soft fragrant japonica rice. The semi waxy japonica rice variety "Kantou 194" with a low expression of amylose content gene Wx mp and an amylose content of about 10% was selected as the core germplasm for improving eating quality. Pyramiding breeding of japonica rice variety with good eating quality, disease resistance and high yield was carried out by examining the development of Wx mp gene molecular markers and the use of closely linked molecular markers with disease resistance and high yield genes. A series of new japonica rice varieties with good taste such as Nanjing 46, Nanjing 5055, Nanjing 9108, and Nanjing 5718, suitable for different rice areas of Jiangsu Province, have been bred and approved by Jiangsu Provincial Variety Approval Committee. The layout of japonica rice varieties with good taste covering different rice areas in Jiangsu Province has been formed. These varieties have been planted with an accumulated area of more than 5.3 million hectares, which has effectively promoted the development of high quality rice industry in Jiangsu Province and its surrounding areas, and made important contributions to the structural adjustment of the supply side of rice industry, improving quality and efficiency, and ensuring food security.

5.
Biochem Biophys Res Commun ; 559: 129-134, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33940383

RESUMO

Tumor brain metastasis is a severe threat to patients' neurological function, in which microglia may be involved in the process of tumor cell metastasis among nerve cells. Our study focused on the interaction between microglia and breast and lung cancer cells. Changes in the proliferation and migration ability of cocultured tumor cells were examined; synchrotron radiation-based fourier transform infrared microspectroscopy (SR-FTIR) was used to detect changes in the structures and contents of biomolecules within the tumor cells. The experimental results showed that the proliferation and migration ability of tumor cells increased after coculture, and the structures and contents of biological macromolecules in tumor cells changed. The absorption peak positions of the amide Ⅱ and amide Ⅰ bands observed for the four kinds of tumor cells changed, and the absorption intensities were significantly enhanced, indicating changes in the secondary structures and contents of proteins in tumor cells, which may be the root cause of the change in tumor cell characteristics. Therefore, the metabolites of microglia may be involved in the progression of tumor cells in the nervous system. In this study, we focused on the interaction between microglia and tumor cells by using SR-FTIR and provided a new understanding of the mechanism of brain metastasis.

6.
Protein Expr Purif ; : 105893, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33933613

RESUMO

MAP30 (Momordica antiviral protein 30kD) is a single-chain Ⅰ-type ribosome inactivating protein with a variety of biological activities, including anti-tumor ability. It was reported that MAP30 would serve as a novel and relatively safe agent for prophylaxis and treatment of liver cancer. To determine whether adding two tumor targeting peptides could improve the antitumour activities of MAP30, we genetically modified MAP30 with an RGD motif and a EGFRi motif, which is a ligand with high affinity for αvß3 integrins and with high affinity for EGFR. The recombinant protein ELRL-MAP30 (rELRL-MAP30) containing a GST-tag was expressed in E. coli. The rELRL-MAP30 was highly expressed in the soluble fraction after induction with 0.15 mM IPTG for 20 h at 16°C. The purified rELRL-MAP30 appeared as a band on SDS-PAGE. It was identified by western blotting. Cytotoxicity of recombinant protein to HepG2, MDA-MB-231, HUVEC and MCF-7 cells was detected by MTT analysis. Half maximal inhibitory concentration (IC50) values were 54.64 µg/mL, 70.13 µg/mL, 146 µg/mL, 466.4 µg/mL, respectively. Proliferation inhibition assays indicated that rELRL-MAP30 could inhibit the growth of Human liver cancer cell HepG2 effectively. We found that rELRL-MAP30 significantly induced apoptosis in liver cancer cells, as evidenced by nuclear staining of DAPI. In addition, rELRL-MAP30 induced apoptosis in human liver cancer HepG2 cells by up-regulation of Bax as well as down-regulation of Bcl-2. Migration of cell line were markedly inhibited by rELRL-MAP30 in a dose-dependent manner compared to the recombinant MAP30 (rMAP30). In summary, the fusion protein displaying extremely potent cytotoxicity might be highly effective for tumor therapy.

7.
Electrophoresis ; 2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-33938013

RESUMO

High-resolution microscopic imaging may cause intensive image processing and potential impact of light irradiation on yeast replicative lifespan (RLS). Electrical impedance spectroscopy (EIS) could be alternatively used to perform high-throughput and label-free yeast RLS assays. Prior to fabricating EIS-integrated microfluidic devices for yeast RLS determination, systematic modeling and theoretical investigation are crucial for device design and optimization. Here, we report three-dimensional (3D) finite-element modeling and simulations of EIS measurement in a microfluidic single yeast in-situ impedance array (SYIIA), which is designed by patterning an electrode matrix underneath a cell-trapping array. SYIIA was instantiated and modeled as a 5×5 sensing array comprising 25 units for cell immobilization, culturing and time-lapse EIS recording. Simulations of yeast growing and budding in a sensing unit demonstrated that EIS signals enable the characterization of cell growth and daughter-cell dissections. In the 5×5 sensing array, simulation results indicated that when monitoring a target cell, daughter dissections in its surrounding traps may induce variations of the recorded EIS signals, which could cause mistakes in identifying target daughter-cell dissections. To eliminate the mis-identifications, electrode array pitch was optimized. Therefore, the results could conduct the design and optimization of microfluidic electrode-array-integrated devices for high-throughput and accurate yeast RLS assays. This article is protected by copyright. All rights reserved.

8.
Environ Res ; 197: 111082, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33812875

RESUMO

In this study, an integrated photocatalytic system consisting of a microwave discharge electrodeless lamp (MDEL) and TiO2/HZSM-5 was established to investigate the intensified degradation of dimethyl sulphide (DMS). The system targets optimisation of the reactive oxygen species (ROS) and photocatalytic degradation pathways without catalyst deactivation. TiO2/HZSM-5, containing highly dispersed TiO2 nanoparticles, was prepared through the sol-gel method. TiO2/HZSM-5 exhibits strong acidity and can adsorb DMS in multiple adsorption forms. Thus, the adsorption capacity of TiO2/HZSM-5 is 20 and 53 times higher than that of Aeroxide TiO2 (P25) in dry and highly humid air, respectively. UV-Vis analysis was performed to investigate the ROS in the gas phase. The results show that the concentrations of the ROS increased by 8% and 62.7% in dry and highly humid air, respectively. 1O2 and O (1D), as well as ·OH are the major ROS, accounting for 73.6% and 61.6% in dry and highly humid air, respectively. A total of 92.5% DMS was removed over 600 min in dry air. Microwaves have strong desorption effects on absorbed substances, promoting the degradation of DMS via ROS in the gas phase. Moreover, 1O2, O (1D), and ·OH can mineralise more DMS molecules into SO2 and SO3 through methanesulfonic acid. The highest mineralisation rate of 89.48% was obtained at 90% humidity over 600 min without catalyst deactivation. Therefore, this integrated system induced by microwave radiation can improve ROS production and prevent catalyst deactivation, providing an alternative to achieve higher photocatalytic performances in dry and highly humid air.

9.
J Agric Food Chem ; 69(17): 5067-5075, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33844905

RESUMO

Starch-derived edible food films have great potential as biodegradable food packaging materials because they reduce the overuse of traditional petroleum-based plastic. Herein, we demonstrate a direct method of mass producing a pure starch food packaging film that consisted of starch nanofibers by using a temperature-assisted electrospinning technique without addition of any nonstarch components. To overcome the major issue of ultralow hydrophobicity of starch nanofibrous film (SNF), we used a facile and low-cost solution immersion approach to create a fiber coating of stearic acid (STA) inspired by biological organisms with superhydrophobic properties, such as lotus leaves. Hierarchical flower-like micronanostructures were obtained on SNF by controlled assembly of STA onto the surface of starch nanofibers. Benefiting from the effective formation of STA self-assembled lamella, the multiscale microstructure surface features, low surface energy, and enhancing thermal stability of SNF were obtained and confirmed to result in the variety of its hydrophobicity, which can be also tailored by simple controlling of the solution concentration of STA. Importantly, the STA-self-assembled coated SNF enabled water to roll freely in all directions, which is a crucial factor for self-cleaning. Our novel strategy based on self-assembly can guide development of bioinspired hydrophobic interfaces for starch-based films for edible hydrophobic materials.

10.
Huan Jing Ke Xue ; 42(5): 2440-2448, 2021 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-33884815

RESUMO

Paddy soil often undergoes frequent dry-wet alternation. The change in water status not only affects the physical and chemical properties of the soil, but also changes the structure and diversity of the soil microbial communities, which in turn determines the rate of soil organic carbon mineralization. However, the effects of different water conditions and soil microbial biomass levels on the process of soil organic carbon mineralization and its mechanisms are still unclear. Therefore, this study took typical subtropical paddy soil as the research object, applied a laboratory incubation experiment with two water treatments of dry-wet and continuous flooding, and reduced the soil microbial biomass through chloroform fumigation, thereby obtaining high and low soil microbial biomass carbon contents, to elucidate the influencing mechanisms of microbial biomass and water conditions on organic carbon mineralization in paddy soil. The results showed that during the first 30 d of incubation, the dry-wet treatment was in a non-flooded stage and its cumulative CO2 emissions were significantly lower than those of the continuous flooded treatment. After 30 d, the dry-wet treatment entered the flooded stage. The difference in the cumulative CO2 emissions of the soils with a high microbial biomass carbon content between the dry-wet and continuous flooding treatments gradually decreased, and there was no significant difference on day 78. In the soil with a low microbial biomass carbon content, the cumulative CO2 emissions of the dry-wet treatment on day 78 was still significantly lower than that of the continuous flooded treatment. The soils with a low microbial biomass carbon content showed a faster CO2 emission rate at the beginning of the incubation period (first 20 d), which was 1.1-6.1 times greater than that of the high microbial biomass carbon soils owing to their high soil dissolved organic carbon (DOC) content, and the CO2 emission rate then gradually decreased until it was below that of the soil with a high microbial biomass carbon content. The soil organic carbon mineralization rate became stable later in the incubation period (days 45-78). The stable mineralization rate of the high microbial biomass carbon soil was 20%-30% higher than that of the low microbial biomass carbon soil. The multiple regression analysis results showed that the decrease in the soil DOC content (ΔDOC) and the increase in the Fe2+ content (ΔFe2+) significantly affected the change in cumulative CO2 emissions (ΔCO2) under continuous flooding conditions, but had no effect on ΔCO2 during the flooding stage of the dry-wet treatment. The correlation analysis showed that the daily CO2 emission rate of soils with high microbial biomass carbon was significantly positively correlated with glucosidase activity under dry-wet treatment and significantly negatively correlated with acetylglucosaminidase (NAG) and peroxidase activities under continuous flooding treatment. In the low microbial biomass carbon soils, the daily CO2 emission rate of the continuous flooding treatment was negatively correlated with the NAG activity, but showed no correlation with enzyme activities under dry-wet management. In summary, the cumulative CO2 emissions of dry-wet treatment were lower than those of continuous flooding treatment, and the difference was significant in soils with low microbial biomass carbon. The size of the soil microbial biomass determined the level of the stable soil organic carbon mineralization rate. The amount of soluble organic carbon and iron reduction affected the soil CO2 emissions under continuous flooding conditions, and the soil water conditions affected the daily CO2 emission rate and its key influencing enzymes. This study provides data and theoretical support for the carbon cycle and carbon sequestration potential in paddy soil.


Assuntos
Oryza , Solo , Biomassa , Carbono , Microbiologia do Solo , Água
11.
Chin J Integr Med ; 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33881718

RESUMO

OBJECTIVE: To evaluate the safety and effectiveness of Qishe Pill () on neck pain in real-world clinical practice. METHODS: A multi-center, prospective, observational surveillance in 8 hospitals across Shanghai was conducted. During patients receiving 4-week Qishe Pill medication, Visual Analogue Scale (VAS) and Neck Disability Index (NDI) assessments have been used to assess their pain and function, while safety monitoring have been observed after 2 and 4 weeks. RESULTS: Results from 2,023 patients (mean age 54.5 years) suggest that the drug exposure per unit of body mass was estimated at 3.41 ± 0.62 g/kg. About 8.5% (172/2,023) of all participants experienced adverse events (AEs), while 3.8% (78/2,023) of all participants experienced adverse reaction. The most common AEs were gastrointestinal events and respiratory events. The VAS score (pain) and NDI score (function) significantly decreased after 4-week treatment. An effect-quantitative analysis was also conducted to show that the normal clinical dosage may be consider as 3-4 g/kg, at which dosage the satisfactory pain-relief effect may achieve by 40-mm reduction in VAS. CONCLUSION: These findings showed that patients with cervical radiculopathy who received Qishe Pill experienced significant improvement on pain and function. (Registration No. NCT01875562).

12.
Clin Infect Dis ; 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33904899

RESUMO

BACKGROUND: To provide a better understanding of the progress on rubella control and elimination in China, a genetic analysis was conducted to examine the transmission pattern of the endemic rubella virus in China during 2010-2019. METHODS: Total 4895 strains were obtained from 29 out of the 31 provinces in mainland of China during 2010-2019. The genotyping region of the strains were amplified, determined, and assembled. Genotyping analysis and lineage division were performed by comparisons with the World Health Organization reference strains and previously reported lineage reference strains, respectively. Further phylogenetic analyses were performed to compare the genetic relationship. RESULTS: During 2010-2019, the domestic lineage 1E-L1 and multiple imported lineages of rubella viruses including 2B-L1, 1E-L2, and 2B-L2c were identified. Further analysis of the circulation trend of the different lineages indicated that two switches occurred among the lineages. The first shift was from lineage 1E-L1 to 2B-L1, which occurred around 2015-2016, followed by the lowest rubella incidence in 2017. The second shift was from lineage 2B-L1 to 1E-L2 and 2B-L2c, which occurred around 2018-2019, coinciding with rubella resurgence and the subsequent nationwide epidemic during 2018-2019. Insufficient genomic information worldwide made it impossible to trace the origin of the imported viruses in this study. CONCLUSIONS: China was moving toward rubella elimination, as evidenced by the fact that previous endemic lineages were not detected. However, rubella reemerged in 2018 and 2019 due to the newly imported rubella viruses. Therefore, to realize the rubella elimination goal, joint efforts are required for all countries worldwide.

13.
Hum Psychopharmacol ; 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33856697

RESUMO

BACKGROUND: Patients with schizophrenia have an increased prevalence of type 2 diabetes mellitus that has shown a significant association with the rs7754840 polymorphism in the gene encoding the cyclin-dependent kinase 5 (CDK5) regulatory subunit-associated protein 1-like 1 (CDKAL1). OBJECTIVE: To examine whether this polymorphism was involved in the susceptibility in first-episode drug-naive schizophrenic patients (FDSP), and further influenced their clinical symptoms. METHODS: This polymorphism was genotyped in 239 FDSP and 368 healthy controls. The clinical symptoms in FDSP were assessed using the Positive and Negative Syndrome Scale (PANSS) five-factor models. RESULTS: There was no significant difference in the allelic and genotypic frequencies of this polymorphism between two groups (both p > 0.05) after adjusting for covariates. However, the PANSS depressive score significantly differed by genotype in FDSP after adjusting for covariates (F = 5.25, p = 0.006). This significant difference also persisted after Bonferroni correction (p < 0.05). FDSP with C/C genotype had significantly higher PANSS depressive score than those with C/G genotype (p = 0.007) and those with G/G genotype (p = 0.005). Moreover, further stepwise multivariate regression analysis showed the significant association between the rs7754840 polymorphism and PANSS depressive score in FDSP (ß = -1.07, t = -2.75, p = 0.007). CONCLUSIONS: Our findings demonstrated that although the CDKAL1 rs7754840 polymorphism did not contribute to the susceptibility to FDSP, it might be implicated in depressive symptoms in this patient group.

14.
Nano Lett ; 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33848172

RESUMO

Proton exchange membranes (PEMs) with both high selectivity and high permeance are of great demand in hydrogen-based applications, especially in fuel cells. Although graphene membranes have shown high selectivity of protons over other ions and molecules, the relatively low permeance of protons through perfect pristine graphene restricts its practical applications. Inspired by the nitrogen-assisted proton transport in biological systems, we introduced N-doping to increase the proton permeance and proposed a type of N-doped graphene membranes (NGMs) for proton exchange, which have both high proton permeance and high selectivity. Compared to the state-of-the-art commercial PEMs, the NGMs show significant increases in both areal proton conductivity (2-3 orders of magnitude) and selectivity of proton to methanol (1-2 orders of magnitude). The work realized the controllable tuning of proton permeance of the graphene membrane with N-doping and developed a new type of graphene-based PEMs with high performance for practical applications.

15.
Sensors (Basel) ; 21(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802744

RESUMO

This study provides an evaluation of multiple sensors by examining their precision and ability to capture topographic complexity. Five different small unmanned aerial systems (sUAS) were evaluated, each with a different camera, Global Navigation Satellite System (GNSS), and Inertial Measurement Unit (IMU). A lidar was also used on the largest sUAS and as a mobile scanning system. The quality of each of the seven platforms were compared to actual surface measurements gathered with real-time kinematic (RTK)-GNSS and terrestrial laser scanning. Rigorous field and photogrammetric assessment workflows were designed around a combination of structure-from-motion to align images, Monte Carlo simulations to calculate spatially variable error, object-based image analysis to create objects, and MC32-PM algorithm to calculate vertical differences between two dense point clouds. The precision of the sensors ranged 0.115 m (minimum of 0.11 m for MaRS with Sony A7iii camera and maximum of 0.225 m for Mavic2 Pro). In a heterogenous test location with varying slope and high terrain roughness, only three of the seven mobile platforms performed well (MaRS, Inspire 2, and Phantom 4 Pro). All mobile sensors performed better for the homogenous test location, but the sUAS lidar and mobile lidar contained the most noise. The findings presented herein provide insights into cost-benefit of purchasing various sUAS and sensors and their ability to capture high-definition topography.

16.
J Nanosci Nanotechnol ; 21(10): 5143-5149, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33875099

RESUMO

This paper reports on a nanocomposite synthesized by sol-gel procedure comprising graphene sheets with hollow spheres of titanium dioxide (G/HS-TiO2) with varying weight percentages of graphene for the purpose of humidity sensors. The surface morphology of the nanocomposite was characterized using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). The structural properties were examined using X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The response to 12-80% RH at room temperature exhibited sensitivity (S = 135). However, the relative humidity range of 12-90% at room temperature exhibited higher sensitivity (S = 557). Sensors fabricated using the proposed nanocomposite exhibited high sensitivity to humidity, high stability, rapid response times, and rapid recovery times with hysteresis error of less than 1.79%. These results demonstrate the outstanding potential of his material for the monitoring of atmospheric humidity. This study also sought to elucidate the mechanisms underlying humidity sensing performance.

17.
Travel Med Infect Dis ; 41: 102044, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33838318

RESUMO

BACKGROUND: Imported COVID-19 cases, if unchecked, can jeopardize the effort of domestic containment. We aim to find out what sustainable border control options for different entities (e.g., countries, states) exist during the reopening phases, given their own choice of domestic control measures. METHODS: We propose a SUIHR model, which has built-in imported risk and (1-tier) contact tracing to study the cross-border spreading and control of COVID-19. Under plausible parameter assumptions, we examine the effectiveness of border control policies, in combination with internal measures, to confine the virus and avoid reverting back to more restrictive life styles again. RESULTS: When the basic reproduction number R0 of COVID-19 exceeds 2.5, even 100% effective contact tracing alone is not enough to contain the spreading. For an entity that has completely eliminated the virus domestically, and resumes "normal", without mandatory institutional quarantine, even very strict border control measures combined with effective contact tracing can only delay another outbreak by 6 months. For entities employing a confining domestic control policy, non-increasing net imported cases is sufficient to remain open. CONCLUSIONS: Extremely strict border control in entities, where domestic spreading is currently eliminated (e.g., China), is justifiable. However such harsh measure are not necessary for other places. Entities successfully confining the virus by internal measures can open up to similar entities without additional border controls so long as the imported risk stays non-increasing. Opening the borders to entities lacking sufficient internal control of the virus should be exercised in combination with pre-departure screening and tests upon arrival.

18.
Artigo em Inglês | MEDLINE | ID: mdl-33755557

RESUMO

This paper proposes a new generative adversarial network for pose transfer, i.e., transferring the pose of a given person to a target pose. We design a progressive generator which comprises a sequence of transfer blocks. Each block performs an intermediate transfer step by modeling the relationship between the condition and the target poses with attention mechanism. Two types of blocks are introduced, namely Pose-Attentional Transfer Block (PATB) and Aligned Pose-Attentional Transfer Block (APATB). Compared with previous works, our model generates more photorealistic person images that retain better appearance consistency and shape consistency compared with input images. We verify the efficacy of the model on the Market-1501 and DeepFashion datasets, using quantitative and qualitative measures. Furthermore, we show that our method can be used for data augmentation for the person re-identification task, alleviating the issue of data insufficiency.Code and pretrained models are available at: https://github.com/tengteng95/Pose-Transfer.git.

19.
J Nanosci Nanotechnol ; 21(9): 4846-4851, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33691876

RESUMO

Birnessite-MnO2 nanoflakes were synthesized via an aqueous oxidation method at 90 °C using Mn(CH3COO)2, NaOH, and KMnO4. The samples' morphology, crystalline structure, and optical property were determined by field emission scanning electron microscopy, X-ray powder diffraction and UV-Vis spectrophotometry. The birnessite-MnO2 nanoflakes were converted to KxMn8O16 and Mn suboxides following a decrease in the concentration of KMnO4 in the reaction. The amount of NaOH in the reaction determined the type of precursor. Without NaOH, the precursor was converted from Mn(OH)2 to Mn2+ (from Mn(CH3COO)2), thereby enabling the synthesis of birnessite-MnO2 nanoflowers. The formation mechanism of birnessite-MnO2 nanoflowers and nanoflakes was clarified via the corresponding simulated crystal structures. Evaluation of the synthesized samples confirmed that the birnessite-MnO2 nanoflakes and nanoflowers exhibited excellent degradation properties.

20.
Genomics ; 113(3): 1281-1290, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33705889

RESUMO

Heterosis, an important biological phenomenon wherein F1 hybrids exhibit better performance than any of their parents, has been widely applied; however, its underlying mechanism remains largely unknown. Here, we studied and compared the dynamic transcriptional profiles of super-hybrid rice LY2186 and its parents at 17 time points during 2 day/night cycles and identified 1552 rhythmic differentially expressed genes (RDGs). Cluster and functional enrichment analyses revealed that the day- and night-phased RDGs were mainly enriched in the photosynthesis and stress response categories, respectively. Regulatory network analysis indicated that circadian-related RDGs are core components in both the day and night phases and extensively regulate downstream genes involved in photosynthesis, starch synthesis, plant hormone signal transduction, and other pathways. Furthermore, among the 282 RDGs mapped onto the quantitative tract loci of small intervals (≤100 genes), 72.3% were significantly enriched in the yield, vigor, and anatomy categories. These findings provide valuable information for exploring heterosis mechanisms further and guiding breeding practices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...