Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Environ Int ; 158: 106911, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34619532

RESUMO

Synthetic musks (SMs) are odor additives commonly used in the personal care products. Their wide existence in the environment and the recently reported adverse impact on the production and activity of progesterone and estrogen have raised pregnancy red flags and even lead to a pregnancy loss. Apart from the suggestion of limiting SM contact and exposure, effective abortion risk control measures for SMs remain to be blank. Facing the above challenges, this study tried to establish a new theoretical circumvention strategy to reduce the abortion risk of SMs to pregnant women by designing the supplementary diet plan and environmentally friendly SMs derivatives using molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) models. According to the supplementary diet plan, the diet combination of vitamin E, vitamin B2, niacin, vitamin A, and vitamin B6 were confirmed to not only provide essential nutrients for human health, but also reduce the abortion risk in pregnant women in daily life. The multi-activity (binding ability of SMs with progesterone-estrogen) 3D-QSAR model was constructed to screen SMs derivatives. The LibDock score, a parameter reflecting the binding ability between SMs' Derivative-24 with progesterone-estrogen, decreased as much as 137.67% compared with its precursor galaxolide (HHCB). The 3D-QSAR models assisted screening indicated that Derivative-24 had lower environmental impacts (i.e., bioconcentration and mobility) and improved functional properties (odor stability, musky scent, and odor intensity). The integration of the optimum candidate, Derivative-24, with optimum three supplementary diet plans exhibited a much lower abortion risk than HHCB, demonstrating the effectiveness of the proposed theoretical circumvention strategy as a comprehensive abortion risk control measure. It also shed light on the design of new pharmaceutical and personal care products using advanced computing tools.

2.
J Hazard Mater ; 416: 126116, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492911

RESUMO

Galaxolide (HHCB), one of the most widely used synthetic musks in personal care products (PCPs), has been recognized as an emerging contaminant with potential human health concerns. To overcome such adverse effects, a systematic molecular design, screening and performance evaluation approach was developed to generate functionally improved and environmentally friendly HHCB derivatives. Among the 90 designed HHCB derivatives, 15 were screened with improved functional properties (i.e., odor stability and intensity) and less environmental impacts (i.e., lower bio-toxicity, bio-accumulation ability, and mobility) using 3D-QSAR models and density functional theory methods. Their human health risks were then assessed by toxicokinetic analysis, which narrowed the candidates to four. Derivative 7, the designed molecule with the least dermal adsorption potential, was evaluated for its interaction with other PCPs additives (i.e., anti-photosensitivity materials and moisturizer) and such impacts on human health risks using molecular docking and molecular dynamic simulation. The environmental fate of Derivative 7 after transformation (i.e., photodegradation, biotransformation, and chlorination) was also discussed. Biotransformation and chlorination were recognized as optimum options for Derivative 7 mitigation. This study provided the theoretical basis for the design of functionally improved and environmentally friendly HHCB alternatives and advanced the understanding of their environmental behaviors and health risks.


Assuntos
Cosméticos , Relação Quantitativa Estrutura-Atividade , Benzopiranos , Biotransformação , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
3.
J Hazard Mater ; 416: 126122, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492916

RESUMO

Biosurfactant-based dispersants (BBDs) may be more effective, cost-efficient and environmentally friendly than dispersants currently used for oil spill response. An improved understanding of BBD performance is needed to advance their development and commercial use. In this study, the ability of four BBDs, i.e. sufactins, trehalose lipids, rhamnolipids and exmulsins, alone and as various combinations to disperse Arabian light crude oil and weathered Alaska North Slope crude oil was compared to a widely used commercial oil dispersant (Corexit 9500A). Surfactin and trehalose lipids, which have balanced surface activity/emulsification ability, showed dispersion efficacy comparable to Corexit 9500A. Rhamnolipids (primarily a surface-active agent) and exmulsins (primarily an emulsifier) when used alone had significantly lower efficacy. However, blends of these surfactants had excellent dispersion performance because of synergistic effects. Balanced surface activity and emulsification ability may be key to formulate effective BBDs. Of the BBDs evaluated, surfactins with an effective dispersant-to-oil ratio as low as 1:62.3 and trehalose lipids with high oil affinity, biodegradation rate, and low toxicity characteristics show the most promise for commercial development.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Biodegradação Ambiental , Petróleo/toxicidade , Poluição por Petróleo/análise , Tensoativos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
4.
Proc Natl Acad Sci U S A ; 118(37)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34507987

RESUMO

The formation of the branched actin networks is essential for cell polarity, but it remains unclear how the debranching activity of actin filaments contributes to this process. Here, we showed that an evolutionarily conserved coronin family protein, the Caenorhabditis elegans POD-1, debranched the Arp2/3-nucleated actin filaments in vitro. By fluorescence live imaging analysis of the endogenous POD-1 protein, we found that POD-1 colocalized with Arp2/3 at the leading edge of the migrating C. elegans neuroblasts. Conditional mutations of POD-1 in neuroblasts caused aberrant actin assembly, disrupted cell polarity, and impaired cell migration. In C. elegans one-cell-stage embryos, POD-1 and Arp2/3, moved together during cell polarity establishment, and inhibition of POD-1 blocked Arp2/3 motility and affected the polarized cortical flow, leading to symmetric segregation of cell fate determinants. Together, these results indicate that F-actin debranching organizes actin network and cell polarity in migrating neuroblasts and asymmetrically dividing embryos.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34435499

RESUMO

Electrostrictive polymers having a large strain are desirable for actuation, sensing, and energy harvesting in wearable electronics and soft robotics. However, a high electric field (>100 MV/m) is usually required for current electrostrictive polymers. To realize large electrostriction at reduced electric fields, the fundamental electrostriction mechanism needs to be better understood. In response to this need, the structure and electrostrictive properties of relaxor ferroelectric (RFE) poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene) [P(VDF-TrFE-CTFE)] random terpolymers films with different thermal annealing histories were studied in this work. First, the semicrystalline structure of the P(VDF-TrFE-CTFE) terpolymer films was studied by combined small-angle X-ray scattering and wide-angle X-ray diffraction analyses. A three-phase model was employed, namely, crystals and oriented and isotropic amorphous fractions (OAF and IAF). The bulky CTFE units generated taut-tie molecules (TTM) in the crystalline lamella, dividing it into many nanosized crystals (∼1.3 nm thick). It is this unique crystalline structure with nanocrystals and mobile TTM/OAF that enabled the RFE behavior for the P(VDF-TrFE)-based terpolymers. Through electrostriction measurements and nonlinear dielectric analysis, an inverse correlation was observed between the ferroelectric nonlinearity and the electrostrictive coefficient under a high poling electric field (>100 MV/m). This suggested that higher electrostriction performance could be achieved by decreasing the ferroelectric nonlinearity of the RFE terpolymer. Indeed, above the Curie temperature, the paraelectric terpolymer films achieved a high electrostrictive performance with the transverse strain being ∼5% at 200 MV/m. This was attributed to the strong electrostatic repulsion among electric field-induced ferroelectric nanodomains. The finding from this work provides a viable way to design new electrostrictive polymers with higher performance at low driving fields.

6.
Science ; 373(6558): 984-991, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34446600

RESUMO

Protein kinase activity must be precisely regulated, but how a cell governs hyperactive kinases remains unclear. In this study, we generated a constitutively active mitogen-activated protein kinase DYF-5 (DYF-5CA) in Caenorhabditis elegans that disrupted sensory cilia. Genetic suppressor screens identified that mutations of ADR-2, an RNA adenosine deaminase, rescued ciliary phenotypes of dyf-5CA We found that dyf-5CA animals abnormally transcribed antisense RNAs that pair with dyf-5CA messenger RNA (mRNA) to form double-stranded RNA, recruiting ADR-2 to edit the region ectopically. RNA editing impaired dyf-5CA mRNA splicing, and the resultant intron retentions blocked DYF-5CA protein translation and activated nonsense-mediated dyf-5CA mRNA decay. The kinase RNA editing requires kinase hyperactivity. The similar RNA editing-dependent feedback regulation restricted the other ciliary kinases NEKL-4/NEK10 and DYF-18/CCRK, which suggests a widespread mechanism that underlies kinase regulation.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Cílios/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Edição de RNA , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Cílios/enzimologia , Ativação Enzimática , Fenótipo , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , Estabilidade de RNA , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA de Helmintos/genética , RNA de Helmintos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Transcrição Genética
7.
Bioresour Technol ; 339: 125602, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34311406

RESUMO

The importance of lipopeptide micelles in environmental applications has been highlighted. These vessels exhibit various sizes, shapes, and surface properties under different environmental conditions. An in-depth understanding of the tunable assembling behavior of biosurfactant micelles is of great importance for their applications. However, a systematic review of such behaviors with assorted micro/nano micellar structures under given environmental conditions, particularly under low temperature and high salinity, remains untapped. Such impacts on their environmental applications have yet to be summarized. This review tried to fill the knowledge gaps by providing a comprehensive summary of the recent knowledge advancement in genetically regulated lipopeptides production, micelles associated decontamination mechanisms in low temperature and high salinity environments, and up-to-date environmental applications. This work is expected to deliver valuable insights to guide lipopeptide design and discovery. The mechanisms concluded in this study could inspire the forthcoming research efforts in the advanced environmental application of lipopeptide micelles.


Assuntos
Lipopeptídeos , Micelas , Biodegradação Ambiental , Salinidade , Tensoativos
8.
Bioresour Technol ; 337: 125404, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34139564

RESUMO

Heavy crude oil (HCO) pollution has gained global attention, but traditional bioremediating practices demonstrate limited effectiveness. This study developed magnetic nanoparticles decorated bacteria (MNPB) using an oil-degrading and biosurfactant-producing Rhodococcus erythropolis species and identified a novel access-dispersion-recovery strategy for enhanced HCO pollution mitigation. The strategy entails (1) magnetic navigation of the MNPB towards HCO layer, (2) enhanced oil dispersion and formation of suspended oil-bacteria aggregates, and (3) magnetic recovery of these aggregates. The UV-spectrophotometer analysis showed that this strategy can enable up to 62% removal of HCO. The GC-MS analysis demonstrated that the MNPB enhanced the degradation of low-molecular-weight aromatics comparing with the pure bacteria, and the recovery process further removed oil-bacteria aggregates and entrained high-molecular-weight aromatics. The feasibility of using MNPB to mitigate HCO pollution could shed light on the emerging bioremediation applications.


Assuntos
Nanopartículas de Magnetita , Poluição por Petróleo , Petróleo , Rhodococcus , Biodegradação Ambiental
9.
Inorg Chem ; 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33570384

RESUMO

Pillar[n]arene-based supramolecular polymers have attracted great interest because of their tunable morphologies and external stimuli responsiveness. However, most of the investigations of supramolecular polymers previously reported were focused on their formation and transformation, and investigations on their applications are rare. Herein, we designed and prepared hybrid polymeric materials by incorporating Pd nanoparticles into a supramolecular polymer, constructed from a pillar[5]arene dimer and a three-arm guest. The obtained hybrid polymer was fully characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, scanning electron microscopy-energy-dispersive X-ray mapping, and X-ray diffraction technologies. Importantly, the hybrid supramolecular polymeric materials exhibited desirable catalytic activity for reductions of toxic nitroaromatics and C-C bond-forming Suzuki-Miyaura reaction in aqueous solution.

10.
Artigo em Inglês | MEDLINE | ID: mdl-32719786

RESUMO

There is a growing acceptance worldwide for the application of dispersants as a marine oil spill response strategy. The development of more effective dispersants with less toxicity and higher biodegradability would be a step forward in improving public acceptance and regulatory approvals for their use. By applying advances in environmental biotechnology, a bio-dispersant agent with a lipopeptide biosurfactant produced by Bacillus subtilis N3-1P as the key component was formulated in this study. The economic feasibility of producing biosurfactant (a high-added-value bioproduct) from fish waste-based peptone as a nutrient substrate was evaluated. Protein hydrolyzate was prepared from cod liver and head wastes obtained from fish processing facilities. Hydrolysis conditions (i.e., time, temperature, pH and enzyme to substrate level) for preparing protein hydrolyzates were optimized by response surface methodology using a factorial design. The critical micelle dilution (CMD) value for biosurfactant produced from the fish liver and head waste generated peptones was 54.72 and 47.59 CMD, respectively. Biosurfactant product generated by fish liver peptone had a low critical micelle concentration of 0.18 g L-1 and could reduce the surface tension of distilled water to 27.9 mN/m. Structure characterization proved that the generated biosurfactant product belongs to the lipopeptide class. An alternative to the key surfactant dioctyl sulfosuccinate sodium (DOSS) used in Corexit 9500 has been proposed based on a binary mixture of lipopeptides and DOSS that exhibited synergistic effects. Using the standard baffled flask test, a high dispersion efficiency of 76.8% for Alaska North Slope oil was achieved at a biodispersant composition of 80/20 (v/v) of lipopeptides/DOSS. The results show that fish waste can be utilized to produce a more effective, environmentally acceptable and cost-efficient biodispersant that can be applied to oil spills in the marine environment.

11.
J Cell Sci ; 133(15)2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32620698

RESUMO

Perturbation of spectrin-based membrane mechanics causes hereditary elliptocytosis and spinocerebellar ataxia, but the underlying cellular basis of pathogenesis remains unclear. Here, we introduced conserved disease-associated spectrin mutations into the Caenorhabditis elegans genome and studied the contribution of spectrin to neuronal migration and dendrite formation in developing larvae. The loss of spectrin resulted in ectopic actin polymerization outside of the existing front and secondary membrane protrusions, leading to defective neuronal positioning and dendrite morphology in adult animals. Spectrin accumulated in the lateral region and rear of migrating neuroblasts and redistributes from the soma into the newly formed dendrites, indicating that the spectrin-based membrane skeleton is asymmetric and remodels to regulate actin assembly and cell shape during development. We affinity-purified spectrin from C. elegans and showed that its binding partner ankyrin functions with spectrin. Asymmetry and remodeling of the membrane skeleton might enable spatiotemporal modulation of membrane mechanics for distinct developmental events.


Assuntos
Caenorhabditis elegans , Espectrina , Animais , Anquirinas , Caenorhabditis elegans/genética , Neurogênese , Esqueleto , Espectrina/genética
12.
Proc Natl Acad Sci U S A ; 117(25): 14270-14279, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513699

RESUMO

Directional cell migration involves signaling cascades that stimulate actin assembly at the leading edge, and additional pathways must inhibit actin polymerization at the rear. During neuroblast migration in Caenorhabditis elegans, the transmembrane protein MIG-13/Lrp12 acts through the Arp2/3 nucleation-promoting factors WAVE and WASP to guide the anterior migration. Here we show that a tyrosine kinase, SRC-1, directly phosphorylates MIG-13 and promotes its activity on actin assembly at the leading edge. In GFP knockin animals, SRC-1 and MIG-13 distribute along the entire plasma membrane of migrating cells. We reveal that a receptor-like tyrosine phosphatase, PTP-3, maintains the F-actin polarity during neuroblast migration. Recombinant PTP-3 dephosphorylates SRC-1-dependent MIG-13 phosphorylation in vitro. Importantly, the endogenous PTP-3 accumulates at the rear of the migrating neuroblast, and its extracellular domain is essential for directional cell migration. We provide evidence that the asymmetrically localized tyrosine phosphatase PTP-3 spatially restricts MIG-13/Lrp12 receptor activity in migrating cells.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Movimento Celular/fisiologia , Neurônios/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Animais , Animais Geneticamente Modificados , Polaridade Celular/fisiologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Proteínas de Membrana/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Transdução de Sinais
13.
Sci Total Environ ; 727: 138723, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32334234

RESUMO

Salinity variability strongly affects the behaviors of oil degrading bacteria for spilled oil biodegradation in the marine environment. However, limited studies explored the strategies of microbes on salinity-mediated crude oil biodegradation. In this study, a halotolerant bio-emulsifier producer, Exiguobacterium sp. N41P, was examined as a model strain for Alaska North Slope (ANS) crude oil (0.5%, v/v) biodegradation. Results indicated that Exiguobacterium sp. N41P could tolerant a wide range of salinity (0-120 g/L NaCl) and achieve the highest degradation efficiency under the salinity of 15 g/L NaCl due to the highest biofilm formation ability. Moreover, increased salinity induced decreased cell surface hydrophobicity and a migration of microbial growth from oil phase to aqueous phase, leading to limited bio-emulsifier productivity and depressed degradation of insoluble long-chain n-alkanes while enhancing the degradation of relative soluble naphthalene. Research findings illustrated the microbial eco-physiological mechanism for spilled oil biodegradation under diverse salinities and advanced the understanding of sophisticated marine crude oil biodegradation process.


Assuntos
Poluição por Petróleo , Petróleo , Alaska , Biodegradação Ambiental , Salinidade
14.
Materials (Basel) ; 12(15)2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31344891

RESUMO

In this study, the in-situ compatibilization reaction between recycled acrylonitrile-butadiene-styrene copolymer (rABS) and functional styrene-ethylene-butylene-styrene block maleic anhydride (SEBS-g-MAH) was confirmed, which contributed to the toughening phenomenon of rABS, especially the notched impact strength. As mechanical test that manifested, the rABS/SEBS-g-MAH blends are stronger and more ductile than the rABS/SEBS blends. Prominently, the former has great advantage over the latter in terms of improving the impact performance. Scanning electron microscope (SEM) images showed that the compatible segments that were generated by reaction not only improve the interface adhesion of rABS/SEBS-g-MAH blends but also promote the evolution of co-continuous structures, which can be evidently observed after etching. Furthermore, the SEM micrographs of tensile fracture surfaces indicated that the formation of the co-continuous phase and the improvement of interface adhesion are the most profound reasons for the excellent tensile properties of the rABS/SEBS-g-MAH blends. The impact fracture surface revealed that two-phase interface affects crack propagation and shear yielding absorbs more impact energy than simple interface debonding does at higher deformation rates. Meanwhile, rheological analysis demonstrated that the complex viscosity of the rABS/SEBS-g-MAH (80/20 wt%) blend with a co-continuous structure exhibits a maximum positive deviation at low frequencies from the theoretical value calculated using the rule of logarithmic sum, which indicated a connection between co-continuous structure and complex viscosity. In addition, the storage modulus vs. loss modulus curves of the blends revealed that the viscoelastic behavior of rABS/SEBS-g-MAH blends is very similar to that of rABS.

15.
Nat Commun ; 10(1): 829, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783101

RESUMO

Phosphatidylinositol phosphates (PIPs) and cholesterol are known to regulate the function of late endosomes and lysosomes (LELs), and ORP1L specifically localizes to LELs. Here, we show in vitro that ORP1 is a PI(4,5)P2- or PI(3,4)P2-dependent cholesterol transporter, but cannot transport any PIPs. In cells, both ORP1L and PI(3,4)P2 are required for the efficient removal of cholesterol from LELs. Structures of the lipid-binding domain of ORP1 (ORP1-ORD) in complex with cholesterol or PI(4,5)P2 display open conformations essential for ORP function. PI(4,5)P2/PI(3,4)P2 can facilitate ORP1-mediated cholesterol transport by promoting membrane targeting and cholesterol extraction. Thus, our work unveils a distinct mechanism by which PIPs may allosterically enhance OSBP/ORPs-mediated transport of major lipid species such as cholesterol.


Assuntos
Colesterol/metabolismo , Fosfatidilinositóis/metabolismo , Receptores de Esteroides/química , Receptores de Esteroides/metabolismo , Regulação Alostérica , Sítios de Ligação , Transporte Biológico , Membrana Celular/metabolismo , Cristalografia por Raios X , Endossomos/metabolismo , Células HEK293 , Humanos , Lisossomos/metabolismo , Mutação , Receptores de Esteroides/genética , Esteróis/metabolismo
16.
Water Res ; 149: 292-301, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30465987

RESUMO

Oily wastewater is a large waste stream produced by a number of industries. This wastewater often forms stable oil-in-water (O/W) emulsion. These emulsions require demulsification in order to effectively treat the water prior to release. Although biological demulsification of O/W emulsion has advantages over traditional approaches, its development is at a preliminary stage with few demulsifying bacteria reported and a need for effective screening methods for such bacteria. In this study, thirty-seven marine O/W emulsion demulsifying bacterial strains belonging to 5 genera and 15 species were reported. Cell hydrophobicity and interfacial activity played key roles in the emulsion breaking. One of the highly effective demulsifying bacteria, Halomonas venusta strain N3-2A was identified and characterized. Both its extracellular biosurfactant and cell surface contributed to demulsification resulting in breaking of 92.5% of the emulsion within 24 h. A high throughput and effective screening strategy targeting O/W emulsion breaking bacteria using oil spreading test coupled with cell hydrophobicity test was proposed. In addition, the 37 demulsifying bacteria showed a certain degree of species/genus specific patterns of surface activity and cell hydrophobicity. The reported bacteria and the screening strategy have promising potential for the biological demulsification of O/W emulsions and oily wastewater treatment.


Assuntos
Óleos , Águas Residuárias , Bactérias , Emulsões , Água
17.
Materials (Basel) ; 11(12)2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30513576

RESUMO

In this study, biodegradable poly(butylene succinate)/poly(lactic acid) (PBS/PLA) in-situ submicrofibrillar composites with various PLA content were successfully produced by a triple-screw extruder followed by a hot stretching-cold drawing-compression molding process. This study aimed to investigate the effects of dispersed PLA submicro-fibrils on the thermal, mechanical and rheological properties of PBS/PLA composites. Morphological observations demonstrated that the PLA phases are fibrillated to submicro-fibrils in the PBS/PLA composites, and all the PLA submicro-fibrils produced seem to have a uniform diameter of about 200nm. As rheological measurements revealed, at low frequencies, the storage modulus (G') of PBS/PLA composites has been increased by more than four orders of magnitude with the inclusion of high concentrations (15 wt % and 20 wt %) of PLA submicro-fibrils, which indicates a significant improvement in the elastic responses of PBS melt. Dynamic Mechanical Analysis (DMA) results showed that the glass transition temperature (Tg) of PBS phase slightly shifted to the higher temperature after the inclusion of PLA. DSC experiments proved that fiber morphology of PLA has obvious heterogeneous nucleation effect on the crystallization of PBS. The tensile properties of the PBS/PLA in-situ submicrofibrillar composites are also improved compared to neat PBS.

18.
Adv Mar Biol ; 81: 213-280, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30471657

RESUMO

Synthetic musks (SMs) are promising fragrance additives used in personal care products (PCPs). The widespread presence of SMs in environmental media remains a serious risk because of their harmful effects. Recently, the environmental hazards of SMs have been widely reported in various environmental samples including those from coastal and marine regions. This paper provides a systematic review of SMs, including their classification, synthetic routes, analysis and occurrence in environmental samples, fate and toxicity in the environment, as well as the associated risk assessment and pollution control. Research gaps and future opportunities were also identified with the hope of raising interest in this topic.


Assuntos
Cosméticos/química , Monitoramento Ambiental , Perfumes/síntese química , Perfumes/toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Animais , Perfumes/química
19.
Adv Mar Biol ; 81: 23-58, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30471658

RESUMO

This review discusses the occurrence, impact, analysis and treatment of metformin and guanylurea in coastal aquatic environments of Canada, USA and Europe. Metformin, a biguanide in chemical classification, is widely used as one of the most effective first-line oral drugs for type 2 diabetes. It is difficult to be metabolized by the human body and exists in both urine and faeces samples in these regions. Guanylurea is metformin's biotransformation product. Consequently, significant concentrations of metformin and guanylurea have been reported in wastewater treatment plants (WWTPs) and coastal aquatic environments. The maximum concentrations of metformin and guanylurea in surface water samples were as high as 59,000 and 4502ngL-1, respectively. Metformin can be absorbed in non-target organisms by plants and in Atlantic salmon (Salmo salar). Guanylurea has a confirmed mitotic activity in plant cells. Analysis methods of metformin are currently developed based on high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS). The removal of metformin from aquatic environments in the target regions is summarized. The review helps to fill a knowledge gap and provides insights for regulatory considerations. The potential options for managing these emerging pollutants are outlined too.


Assuntos
Metformina/química , Ureia/química , Poluentes Químicos da Água/química , Canadá/epidemiologia , Diabetes Mellitus/epidemiologia , Europa (Continente)/epidemiologia , Humanos , Estados Unidos/epidemiologia , Ureia/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...