Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Indoor Air ; 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32115779

RESUMO

Indoor surfaces are known to support organic films, but their thickness, composition, and variability between environments remain poorly characterized. Alkenes are expected to be a significant component of these films, with the reaction with O3 being a major sink for O3 and source of airborne chemicals. Here, we present a sensitive, microscale, nanospectrophotometric method for quantifying the alkene (C=C bond) content of surface films and demonstrate its applicability in five studies relevant to indoor air chemistry. Collection efficiencies determined for a filter wipe method were ~64%, and the overall detection limit for monoalkenes was ~10 nmol m-2 . On average, painted walls and glass windows sampled across the University of Colorado Boulder campus were coated by ~4 nm thick films containing ~20% alkenes, and a simple calculation indicates that the lifetime for these alkenes due to reaction with O3 is ~1 hour, indicating that the films are highly dynamic. Measurements of alkenes in films of skin oil, pan-fried cooking oils, a terpene-containing cleaner, and on various surfaces in a closed classroom overnight (where carboxyl groups were also measured) provided insight into the effects of chemical and physical processes on film and air composition.

2.
Indoor Air ; 30(4): 745-756, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32077147

RESUMO

Partitioning to surfaces is an important sink for volatile organic compounds (VOCs) indoors, but the mechanisms are not well understood or quantified. Here, a mass spectrometer was coupled to a portable surface reactor and a flow tube to measure partitioning of VOCs into paint films coated onto glass or wallboard, and their subsequent diffusion. A model was developed to extract values of the effective absorbing organic mass concentration of the film, Cw , which is a measure of absorption capacity, and VOC diffusion coefficients, Df , from VOC time profiles measured during film passivation and depassivation. Values of Cw agreed well with the value estimated from the paint film mass and flow tube air volume, and Df values (also measured using attenuated total reflectance-Fourier transform infrared spectroscopy) correlated well with VOC vapor saturation concentrations, C*, estimated using a group contribution method. The value of these relationships for estimating key parameters that control VOC partitioning into paint and the fate of VOCs indoors was demonstrated using a house model, which indicated that >50% of VOCs with C* ≤108  µg/m3 (C* of octane, hexanone, and propanol) that contacted a paint film of typical thickness fully permeated the film regardless of emission duration.

3.
Environ Sci Technol ; 53(22): 13053-13063, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31652057

RESUMO

The chemical composition of indoor air at the University of Colorado, Boulder art museum was measured by a suite of gas- and particle-phase instruments. Over 80% of the total observed organic carbon (TOOC) mass (100 µg m-3) consisted of reduced compounds (carbon oxidation state, OSC < -0.5) with high volatility (log10 C* > 7) and low carbon number (nC < 6). The museum TOOC was compared to other indoor and outdoor locations, which increased according to the following trend: remote < rural ≤ urban < indoor ≤ megacity. The museum TOOC was comparable to a university classroom and 3× less than residential environments. Trends in the total reactive flux were remote < indoor < rural < urban < megacity. High volatile organic compound (VOC) concentrations compensated low oxidant concentrations indoors to result in an appreciable reactive flux. Total hydroxyl radical (OH), ozone (O3), nitrate radical (NO3), and chlorine atom (Cl) reactivities for each location followed a similar trend to TOOC. High human occupancy events increased all oxidant reactivities in the museum by 65-125%. The lifetimes of O3, NO3, OH, and Cl reactivities were 13 h, 15 h, 23 days, and 189 days, respectively, corresponding to over 88% of indoor VOC oxidant reactivity being consumed outdoors after ventilation.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Carbono , Monitoramento Ambiental , Humanos , Ventilação
4.
J Phys Chem A ; 123(36): 7839-7846, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31436091

RESUMO

A series of C6-C13 2-methyl-1-alkenes were reacted with OH radicals in the presence of NOx in a Teflon environmental chamber, and molar yields of the 2-ketone products were measured using gas chromatography. Yields were corrected for secondary reactions with OH radicals and for gas-wall partitioning of the 2-methyl-1-alkene and 2-ketone, with the latter correction being determined from measurements of gas-wall partitioning of 2-ketone standards. Molar yields of 2-ketones decreased with increasing 2-methyl-1-alkene carbon number from a maximum of 0.82 for C6 to a minimum of 0.34 ± 0.02 for C9-C13, which after normalization for the fraction of reaction that occurred by OH radical addition to the C═C double bond (with the rest occurring by H atom abstraction) were 0.86 and 0.39 ± 0.01. These yields were combined with branching ratios determined previously for site-specific OH radical addition to the C═C double bond and for formation of ß-hydroxynitrates to determine branching ratios for decomposition and isomerization of ß-hydroxyalkoxy radicals. Branching ratios for decomposition decreased with increasing 2-methyl-1-alkene carbon number from a maximum of 0.97 for C6 to a minimum of 0.49 ± 0.01 for C9-C13, while the corresponding values for isomerization increased from 0.03 to 0.51 ± 0.01. The results were used to estimate absolute rate constants and activation energies for decomposition and isomerization and were also combined with previously measured yields of ß-hydroxynitrates, dihydroxynitrates, trihydroxynitrates, and H atom abstraction products to obtain yields of ∼75% for the C9-C13 reaction products, with the remainder likely being mostly dihydroxycarbonyls and trihydroxycarbonyls.

5.
Environ Sci Technol ; 53(9): 4794-4802, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30990681

RESUMO

A 6-week study was conducted at the University of Colorado Art Museum, during which volatile organic compounds (VOCs), carbon dioxide (CO2), ozone (O3), nitric oxide (NO), nitrogen dioxide (NO2), other trace gases, and submicron aerosol were measured continuously. These measurements were then analyzed using a box model to quantify the rates of major processes that transformed the composition of the air. VOC emission factors were quantified for museum occupants and their activities. The deposition of VOCs to surfaces was quantified across a range of VOC saturation vapor concentrations ( C*) and Henry's Law constants ( H) and determined to be a major sink for VOCs with C* < 108 µg m-3 and H > 102 M atm-1. The reaction rates of VOCs with O3, OH radicals, and nitrate (NO3) radicals were quantified, with unsaturated and saturated VOCs having oxidation lifetimes of >5 and >15 h, making deposition to surfaces and ventilation the dominant VOC sinks in the museum. O3 loss rates were quantified inside a museum gallery, where reactions with surfaces, NO, occupants, and NO2 accounted for 62%, 31%, 5%, and 2% of the O3 sink. The measured concentrations of acetic acid, formic acid, NO2, O3, particulate matter, sulfur dioxide, and total VOCs were below the guidelines for museums.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Museus , Material Particulado , Universidades
6.
Beilstein J Nanotechnol ; 9: 1390-1398, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977673

RESUMO

A new route will be presented for an all-parallel fabrication of highly flexible, freestanding membranes with well-defined porosity. This fabrication is based on arrays of well-defined Au nanoparticles (NPs) exhibiting a high degree of hexagonal order as obtained in a first step by a proven micellar approach. These NP arrays serve as masks in a second reactive ion etching (RIE) step optimized for etching Si and some important Si compounds (silicon oxide, silicon nitride) on the nanoscale. Application to commercially available silicon nitride membranes of well-defined thickness, delivers a diaphragm with millions of nanopores of intended and controlled size, shape, and areal density with narrow distributions of these parameters. Electrophoretic transport measurements indicated a very low flow resistance of these porous membranes in ionic solutions as expected theoretically. Size-selective separation of protein molecules was demonstrated by real-time fluorescence microscopy.

7.
Nanomaterials (Basel) ; 8(4)2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29652841

RESUMO

Nanoporous membranes are of increasing interest for many applications, such as molecular filters, biosensors, nanofluidic logic and energy conversion devices. To meet high-quality standards, e.g., in molecular separation processes, membranes with well-defined pores in terms of pore diameter and chemical properties are required. However, the preparation of membranes with narrow pore diameter distributions is still challenging. In the work presented here, we demonstrate a strategy, a "pore-in-pore" approach, where the conical pores of a solid state membrane produced by a multi-step top-down lithography procedure are used as a template to insert precisely-formed biomolecular nanodiscs with exactly defined inner and outer diameters. These nanodiscs, which are the building blocks of tobacco mosaic virus-deduced particles, consist of coat proteins, which self-assemble under defined experimental conditions with a stabilizing short RNA. We demonstrate that the insertion of the nanodiscs can be driven either by diffusion due to a concentration gradient or by applying an electric field along the cross-section of the solid state membrane. It is found that the electrophoresis-driven insertion is significantly more effective than the insertion via the concentration gradient.

8.
J Phys Chem A ; 122(14): 3640-3652, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29528647

RESUMO

Substantial amounts of gas- and particle-phase organic nitrates have been reported in field studies of atmospheric chemistry conducted around the world, and it has been proposed that a significant fraction of these may be formed from the nighttime reaction of monoterpenes with NO3 radicals. In the study presented here, ß-pinene (a major global monoterpene emission) was reacted with NO3 radicals in an environmental chamber and the molecular and functional group composition of the resulting secondary organic aerosol (SOA) was determined using a variety of methods. Eight products, which comprised ∼95% of the SOA mass, were identified and quantified. More than 90% (by mass) of these consisted of acetal heterodimers and heterotrimers that were apparently formed through acid-catalyzed reactions in phase-separated particles. The molar yield of the major oligomer was 16.7%, and the yields of the other six and the single monomer ranged from 1.1% to 2.9%, for a total yield of 30.7%. From these analyses it was determined that the yields of the two major monomer building blocks were 25.9% and 23.6%, and that those of the other four ranged from 2.0% to 4.8%, for a total monomer yield of 62.4%. The measured SOA mass yield was 88.9% and the O/C, N/C, and H/C ratios, molecular weight, and density of the SOA calculated from the results of functional group analysis of the bulk SOA were 0.40, 0.11, 1.79, 217 g mol-1, and 1.21 g cm-3, respectively, similar to values estimated from results of molecular analysis. The results demonstrate the combined importance of RO2• + RO2• reactions, alkoxy radical decomposition and isomerization, and acid-catalyzed particle-phase reactions in the NO3 radical-initiated oxidation of ß-pinene and subsequent formation of SOA and should be useful for understanding reactions of other monoterpenes and for developing models for the laboratory and atmosphere.

9.
Environ Sci Technol ; 52(4): 1981-1989, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29353485

RESUMO

Catechol (1,2-benzenediol) is emitted from biomass burning and produced from a reaction of phenol with OH radicals. It has been suggested as an important secondary organic aerosol (SOA) precursor, but the mechanisms of gas-phase oxidation and SOA formation have not been investigated in detail. In this study, catechol was reacted with OH and NO3 radicals in the presence of NOx in an environmental chamber to simulate daytime and nighttime chemistry. These reactions produced SOA with exceptionally high mass yields of 1.34 ± 0.20 and 1.50 ± 0.20, respectively, reflecting the low volatility and high density of reaction products. The dominant SOA product, 4-nitrocatechol, for which an authentic standard is available, was identified through thermal desorption particle beam mass spectrometry and Fourier transform infrared spectroscopy and was quantified in filter samples by liquid chromatography using UV detection. Molar yields of 4-nitrocatechol were 0.30 ± 0.03 and 0.91 ± 0.06 for reactions with OH and NO3 radicals, and thermal desorption measurements of volatility indicate that it is semivolatile at typical atmospheric aerosol loadings, consistent with field studies that have observed it in aerosol particles. Formation of 4-nitrocatechol is initiated by abstraction of a phenolic H atom by an OH or NO3 radical to form a ß-hydroxyphenoxy/o-semiquinone radical, which then reacts with NO2 to form the final product.


Assuntos
Catecóis , Aerossóis , Biomassa
10.
J Geophys Res Atmos ; 123(18): 10620-10636, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30997298

RESUMO

During the 2013 Southern Oxidant and Aerosol Study, Fourier Transform Infrared Spectroscopy (FTIR) and Aerosol Mass Spectrometer (AMS) measurements of submicron mass were collected at Look Rock (LRK), Tennessee, and Centreville (CTR), Alabama. Carbon monoxide and submicron sulfate and organic mass concentrations were 15-60% higher at CTR than at LRK but their time series had moderate correlations (r~0.5). However, NOx had no correlation (r=0.08) between the two sites with nighttime-to-early-morning peaks 3~10 times higher at CTR than at LRK. Organic mass (OM) sources identified by FTIR Positive Matrix Factorization (PMF) had three very similar factors at both sites: Fossil Fuel Combustion (FFC) related organic aerosols, Mixed Organic Aerosols (MOA), and Biogenic Organic Aerosols (BOA). The BOA spectrum from FTIR is similar (cosine similarity > 0.6) to that of lab-generated particle mass from the photochemical oxidation of both isoprene and monoterpenes under high NOx conditions from chamber experiments. The BOA mass fraction was highest during the night at CTR but in the afternoon at LRK. AMS PMF resulted in two similar pairs of factors at both sites and a third nighttime NOx-related factor (33% of OM) at CTR but a daytime nitrate-related factor (28% of OM) at LRK. NOx was correlated with BOA and LO-OOA for NOx concentrations higher than 1 ppb at both sites, producing 0.5 ± 0.1 µg m-3 for CTR-LO-OOA and 1.0 ± 0.3 µg m-3 for CTR-BOA above 1 ppb additional biogenic OM for each 1 ppb increase of NOx.

11.
Environ Sci Technol ; 51(20): 11867-11875, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28858497

RESUMO

Secondary organic aerosols (SOA) are a major contributor to fine particulate mass and wield substantial influences on the Earth's climate and human health. Despite extensive research in recent years, many of the fundamental processes of SOA formation and evolution remain poorly understood. Most atmospheric aerosol models use gas/particle equilibrium partitioning theory as a default treatment of gas-aerosol transfer, despite questions about potentially large kinetic effects. We have conducted fundamental SOA formation experiments in a Teflon environmental chamber using a novel method. A simple chemical system produces a very fast burst of low-volatility gas-phase products, which are competitively taken up by liquid organic seed particles and Teflon chamber walls. Clear changes in the species time evolution with differing amounts of seed allow us to quantify the particle uptake processes. We reproduce gas- and aerosol-phase observations using a kinetic box model, from which we quantify the aerosol mass accommodation coefficient (α) as 0.7 on average, with values near unity especially for low volatility species. α appears to decrease as volatility increases. α has historically been a very difficult parameter to measure with reported values varying over 3 orders of magnitude. We use the experimentally constrained model to evaluate the correction factor (Φ) needed for chamber SOA mass yields due to losses of vapors to walls as a function of species volatility and particle condensational sink. Φ ranges from 1-4.


Assuntos
Aerossóis , Poluentes Atmosféricos , Gases , Humanos , Cinética , Volatilização
12.
J Phys Chem A ; 121(27): 5164-5174, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28621942

RESUMO

The albedo and microphysical properties of clouds are controlled in part by the hygroscopicity of particles serving as cloud condensation nuclei (CCN). Hygroscopicity of complex organic mixtures in the atmosphere varies widely and remains challenging to predict. Here we present new measurements characterizing the CCN activity of pure compounds in which carbon chain length and the numbers of hydroperoxy, carboxyl, and carbonyl functional groups were systematically varied to establish the contributions of these groups to organic aerosol apparent hygroscopicity. Apparent hygroscopicity decreased with carbon chain length and increased with polar functional groups in the order carboxyl > hydroperoxy > carbonyl. Activation diameters at different supersaturations deviated from the -3/2 slope in log-log space predicted by Köhler theory, suggesting that water solubility limits CCN activity of particles composed of weakly functionalized organic compounds. Results are compared to a functional group contribution model that predicts CCN activity of organic compounds. The model performed well for most compounds but underpredicted the CCN activity of hydroperoxy groups. New best-fit hydroperoxy group/water interaction parameters were derived from the available CCN data. These results may help improve estimates of the CCN activity of ambient organic aerosols from composition data.

13.
Environ Sci Technol ; 51(10): 5454-5463, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28420232

RESUMO

Gas-phase carboxylic acids are ubiquitous in ambient air, yet their indoor occurrence and abundance are poorly characterized. To fill this gap, we measured gas-phase carboxylic acids in real-time inside and outside of a university classroom using a high-resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS) equipped with an acetate ion source. A wide variety of carboxylic acids were identified indoors and outdoors, including monoacids, diacids, hydroxy acids, carbonyl acids, and aromatic acids. An empirical parametrization was derived to estimate the sensitivity (ion counts per ppt of the analytes) of the HRToF-CIMS to the acids. The campaign-average concentration of carboxylic acids measured outdoors was 1.0 ppb, with the peak concentration occurring in daytime. The average indoor concentration of carboxylic acids was 6.8 ppb, of which 87% was contributed by formic and lactic acid. While carboxylic acids measured outdoors displayed a single daytime peak, those measured indoors displayed a daytime and a nighttime peak. Besides indoor sources such as off-gassing of building materials, evidence for acid production from indoor chemical reactions with ozone was found. In addition, some carboxylic acids measured indoors correlated to CO2 in daytime, suggesting that human occupants may contribute to their abundance either through direct emissions or surface reactions.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Ácidos Carboxílicos/análise , Universidades , Poluentes Atmosféricos , Humanos , Ozônio
14.
Environ Sci Technol ; 51(5): 2519-2528, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28169528

RESUMO

Laboratory studies of atmospheric chemistry characterize the nature of atmospherically relevant processes down to the molecular level, providing fundamental information used to assess how human activities drive environmental phenomena such as climate change, urban air pollution, ecosystem health, indoor air quality, and stratospheric ozone depletion. Laboratory studies have a central role in addressing the incomplete fundamental knowledge of atmospheric chemistry. This article highlights the evolving science needs for this community and emphasizes how our knowledge is far from complete, hindering our ability to predict the future state of our atmosphere and to respond to emerging global environmental change issues. Laboratory studies provide rich opportunities to expand our understanding of the atmosphere via collaborative research with the modeling and field measurement communities, and with neighboring disciplines.


Assuntos
Mudança Climática , Ozônio/química , Poluição do Ar , Atmosfera/química , Ecossistema , Humanos
15.
J Phys Chem A ; 120(35): 6978-89, 2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27508315

RESUMO

Yields of secondary organic aerosol (SOA) were measured for OH radical-initiated reactions of the 2- through 6-dodecanone positional isomers and also n-dodecane and n-tetradecane in the presence of NOx. Yields decreased in the order n-tetradecane > dodecanone isomer average > n-dodecane, and the dodecanone isomer yields decreased as the keto group moved toward the center of the molecule, with 6-dodecanone being an exception. Trends in the yields can be explained by the effect of carbon number and keto group presence and position on product vapor pressures, and by the isomer-specific effects of the keto group on branching ratios for keto alkoxy radical isomerization, decomposition, and reaction with O2. Most importantly, results indicate that isomerization of keto alkoxy radicals via 1,5- and 1,6-H shifts are significantly hindered by the presence of a keto group whereas decomposition is enhanced. Analysis of particle composition indicates that the SOA products are similar for all isomers, and that compared to those formed from the corresponding reactions of alkanes the presence of a pre-existing keto group opens up additional heterogeneous/multiphase reaction pathways that can lead to the formation of new products. The results demonstrate that the presence of a keto group alters gas and particle phase chemistry and provide new insights into the potential effects of molecular structure on the products of the atmospheric oxidation of volatile organic compounds and subsequent formation of SOA.

16.
Beilstein J Nanotechnol ; 7: 591-604, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27335749

RESUMO

Texture formation and epitaxy of thin metal films and oriented growth of nanoparticles (NPs) on single crystal supports are of general interest for improved physical and chemical properties especially of anisotropic materials. In the case of FePt, the main focus lies on its highly anisotropic magnetic behavior and its catalytic activity, both due to the chemically ordered face-centered tetragonal (fct) L10 phase. If the c-axis of the tetragonal system can be aligned normal to the substrate plane, perpendicular magnetic recording could be achieved. Here, we study the orientation of FePt NPs and films on a-SiO2/Si(001), i.e., Si(001) with an amorphous (a-) native oxide layer on top, on MgO(001), and on sapphire(0001) substrates. For the NPs of an approximately equiatomic composition, two different sizes were chosen: "small" NPs with diameters in the range of 2-3 nm and "large" ones in the range of 5-8 nm. The 3 nm thick FePt films, deposited by pulsed laser deposition (PLD), served as reference samples. The structural properties were probed in situ, particularly texture formation and epitaxy of the specimens by reflection high-energy electron diffraction (RHEED) and, in case of 3 nm nanoparticles, additionally by high-resolution transmission electron microscopy (HRTEM) after different annealing steps between 200 and 650 °C. The L10 phase is obtained at annealing temperatures above 550 °C for films and 600 °C for nanoparticles in accordance with previous reports. On the amorphous surface of a-SiO2/Si substrates we find no preferential orientation neither for FePt films nor nanoparticles even after annealing at 630 °C. On sapphire(0001) supports, however, FePt nanoparticles exhibit a clearly preferred (111) orientation even in the as-prepared state, which can be slightly improved by annealing at 600-650 °C. This improvement depends on the size of NPs: Only the smaller NPs approach a fully developed (111) orientation. On top of MgO(001) the effect of annealing on particle orientation was found to be strongest. From a random orientation in the as-prepared state observed for both, small and large FePt NPs, annealing at 650 °C for 30 min reorients the small particles towards a cube-on-cube epitaxial orientation with a minor fraction of (111)-oriented particles. In contrast, large FePt NPs keep their as-prepared random orientation even after doubling the annealing period at 650 °C to 60 min.

17.
Beilstein J Nanotechnol ; 7: 733-50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27335762

RESUMO

We investigate the rich magnetic switching properties of nanoscale antidot lattices in the 200 nm regime. In-plane magnetized Fe, Co, and Permalloy (Py) as well as out-of-plane magnetized GdFe antidot films are prepared by a modified nanosphere lithography allowing for non-close packed voids in a magnetic film. We present a magnetometry protocol based on magneto-optical Kerr microscopy elucidating the switching modes using first-order reversal curves. The combination of various magnetometry and magnetic microscopy techniques as well as micromagnetic simulations delivers a thorough understanding of the switching modes. While part of the investigations has been published before, we summarize these results and add significant new insights in the magnetism of exchange-coupled antidot lattices.

18.
Environ Sci Technol ; 50(11): 5757-65, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27138683

RESUMO

Partitioning of gas-phase organic compounds to the walls of Teflon environmental chambers is a recently reported phenomenon than can affect the yields of reaction products and secondary organic aerosol (SOA) measured in laboratory experiments. Reported time scales for reaching gas-wall partitioning (GWP) equilibrium (τGWE) differ by up to 3 orders of magnitude, however, leading to predicted effects that vary from substantial to negligible. A new technique is demonstrated here in which semi- and low-volatility oxidized organic compounds (saturation concentration c* < 100 µg m(-3)) were photochemically generated in rapid bursts in situ in an 8 m(3) environmental chamber, and then their decay in the absence of aerosol was measured using a high-resolution chemical ionization mass spectrometer (CIMS) equipped with an "inlet-less" NO3(-) ion source. Measured τGWE were 7-13 min (rel. std. dev. 33%) for all compounds. The fraction of each compound that partitioned to the walls at equilibrium follows absorptive partitioning theory with an equivalent wall mass concentration in the range 0.3-10 mg m(-3). Measurements using a CIMS equipped with a standard ion-molecule reaction region showed large biases due to the contact of compounds with walls. On the basis of these results, a set of parameters is proposed for modeling GWP in chamber experiments.


Assuntos
Poluentes Atmosféricos , Volatilização , Aerossóis , Compostos Orgânicos/química , Politetrafluoretileno
19.
J Phys Chem A ; 120(16): 2561-8, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27043733

RESUMO

Previous studies have shown that 1,4-hydroxycarbonyls, which are often major products of the atmospheric oxidation of hydrocarbons, can undergo acid-catalyzed cyclization and dehydration in aerosol particles to form highly reactive unsaturated dihydrofurans. In this study the kinetics of dehydration of cyclic hemiacetals, the rate-limiting step in this process, was investigated in a series of environmental chamber experiments in which secondary organic aerosol (SOA) containing cyclic hemiacetals was formed from the reaction of n-pentadecane with OH radicals in dry air in the presence of HNO3. A particle beam mass spectrometer was used to monitor the formation and dehydration of cyclic hemiacetals in real time, and SOA and HNO3 were quantified in filter samples by gravimetric analysis and ion chromatography. Measured dehydration rate constants increased linearly with increasing concentration of HNO3 in the gas phase and in SOA, corresponding to catalytic rate constants of 0.27 h(-1) ppmv(-1) and 7.0 h(-1) M(-1), respectively. The measured Henry's law constant for partitioning of HNO3 into SOA was 3.7 × 10(4) M atm(-1), ∼25% of the value for dissolution into water, and the acid dissociation constant was estimated to be <8 × 10(-4), at least a factor of 10(4) less than that for HNO3 in water. The results indicate that HNO3 was only weakly dissociated in the SOA and that dehydration of cyclic hemiacetals was catalyzed by molecular HNO3 rather than by H(+). The Henry's law constant and kinetics relationships measured here can be used to improve mechanisms and models of SOA formation from the oxidation of hydrocarbons in dry air in the presence of NOx, which are conditions commonly used in laboratory studies. The fate of cyclic hemiacetals in the atmosphere, where the effects of higher relative humidity, organic/aqueous phase separation, and acid catalysis by molecular H2SO4 and/or H(+) are likely to be important, is discussed.

20.
J Phys Chem A ; 119(43): 10684-96, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26436557

RESUMO

The linear C15 alkene, 1-pentadecene, was reacted with NO3 radicals in a Teflon environmental chamber and yields of secondary organic aerosol (SOA) and particulate ß-hydroxynitrates, ß-carbonylnitrates, and organic peroxides (ß-nitrooxyhydroperoxides + dinitrooxyperoxides) were quantified using a variety of methods. Reaction occurs almost solely by addition of NO3 to the C═C double bond and measured yields of ß-hydroxynitrate isomers indicate that 92% of addition occurs at the terminal carbon. Molar yields of reaction products determined from measurements, a proposed reaction mechanism, and mass-balance considerations were 0.065 for ß-hydroxynitrates (0.060 and 0.005 for 1-nitrooxy-2-hydroxypentadecane and 1-hydroxy-2-nitrooxypentadecane isomers), 0.102 for ß-carbonylnitrates, 0.017 for organic peroxides, 0.232 for ß-nitrooxyalkoxy radical isomerization products, and 0.584 for tetradecanal and formaldehyde, the volatile C14 and C1 products of ß-nitrooxyalkoxy radical decomposition. Branching ratios for decomposition and isomerization of ß-nitrooxyalkoxy radicals were 0.716 and 0.284 and should be similar for other linear 1-alkenes ≥ C6 whose alkyl chains are long enough to allow for isomerization to occur. These branching ratios have not been measured previously, and they differ significantly from those estimated using structure-activity relationships, which predict >99% isomerization. It appears that the presence of a -ONO2 group adjacent to an alkoxy radical site greatly enhances the rate of decomposition relative to isomerization, which is otherwise negligible, and that the effect is similar to that of a -OH group. The results provide insight into the effects of molecular structure on mechanisms of oxidation of volatile organic compounds and should be useful for improving structure-activity relationships that are widely used to predict the fate of these compounds in the atmosphere and for modeling SOA formation and aging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA