Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 319: 124182, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33038653

RESUMO

This work characterizes and comparatively assess two cation exchange membranes (PSEBS SU22 and CF22 R14) and one bipolar membrane (FBM) in microbial electrolysis cells (MEC), fed either by acetate or the mixture of volatile fatty acids as substrates. The PSEBS SU22 is a new, patent-pending material, while the CF22 R14 and FBM are developmental and commercialized products. Based on the various MEC performance measures, membranes were ranked by the EXPROM-2 method to reveal which of the polymeric membranes could be more beneficial from a complex, H2 production efficiency viewpoint. It turned out that the substrate-type influenced the application potential of the membranes. Still, in total, the PSEBS SU22 was found competitive with the other alternative materials. The evaluation of MEC was also supported by analyzing anodic biofilms following electroactive bacteria's development over time.


Assuntos
Fontes de Energia Bioelétrica , Eletrodos , Eletrólise , Ácidos Graxos Voláteis , Hidrogênio , Troca Iônica
2.
Talanta ; 224: 121813, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33379038

RESUMO

The here presented work is focused on the development of a method for detection of microbial contamination of food based on uracil-selective synthetic receptors. Because uracil may serve as an indicator of bacterial contamination, its selective and on-site detection may prevent spreading of foodborne diseases. The synthetic receptors were created by molecular imprinting. Molecularly imprinted polymers for selective uracil isolation were prepared by a non-covalent imprinting method using dopamine as a functional monomer. Detection of isolated uracil was performed by capillary electrophoresis with absorption detection (λ - 260 nm). The conditions of preparation of molecularly imprinted polymers, their binding properties, adsorption kinetics and selectivity were investigated in detail. Furthermore, the prepared polymer materials were used for selective isolation and detection of uracil from complex samples as tomato products by miniaturized electrophoretic system suggesting the potential of in situ analysis of real samples.

3.
Int J Biol Macromol ; 170: 53-60, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33340626

RESUMO

Herein, we report a new simple and easy-to-use approach for the characterization of protein oligomerization based on fluorescence resonance energy transfer (FRET) and capillary electrophoresis with LED-induced detection. The FRET pair consisted of quantum dots (QDs) used as an emission tunable donor (emission wavelength of 450 nm) and a cyanine dye (Cy3), providing optimal optical properties as an acceptor. Nonoxidative dimerization of mammalian metallothionein (MT) was investigated using the donor and acceptor covalently conjugated to MT. The main functions of MTs within an organism include the transport and storage of essential metal ions and detoxification of toxic ions. Upon storage under aerobic conditions, MTs form dimers (as well as higher oligomers), which may play an essential role as mediators in oxidoreduction signaling pathways. Due to metal bridging by Cd2+ ions between molecules of metallothionein, the QDs and Cy3 were close enough, enabling a FRET signal. The FRET efficiency was calculated to be in the range of 11-77%. The formation of MT dimers in the presence of Cd2+ ions was confirmed by MALDI-MS analyses. Finally, the process of oligomerization resulting in FRET was monitored by CE, and oligomerization of MT was confirmed.

4.
Langmuir ; 36(42): 12723-12734, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33052671

RESUMO

In this article, chiral templating of a polycarbonate (PC) membrane by (-)-α-pinene using the atomic layer deposition (ALD) approach is investigated. The templating with the enantiomer of (-)-α-pinene, used as a case compound, was performed either on the original commercial PC membrane or on the PC membrane with a beforehand deposited Al2O3 layer. The efficiency of the templating was assessed by a difference in the membrane ability to adsorb/absorb (-)-α-pinene, (+)-α-pinene, and their racemic mixture, using a very sensitive gas sorption analyzer. The results clearly show that the solution-diffusion mechanism rather than the sieving mechanism applied for adsorption/absorption of (-/+)-α-pinene enantiomers, which have the same size of the molecule. The PC membrane with the predeposited Al2O3 before the (-)-α-pinene templating shows significantly higher sorption of (-)-α-pinene compared to (+)-α-pinene and racemate, which clearly demonstrates the presence of a chiral recognition effect.

5.
Bioelectrochemistry ; 133: 107479, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32086178

RESUMO

In this work, two commercialized anion-exchange membranes (AEMs), AMI-7001 and AF49R27, were applied in microbial electrolysis cells (MECs) and compared with a novel AEM (PSEBS CM DBC, functionalized with 1,4-diazabicyclo[2.2.2]octane) to produce biohydrogen. The evaluation regarding the effect of using different AEMs was carried out using simple (acetate) and complex (mixture of acetate, butyrate and propionate to mimic dark fermentation effluent) substrates. The MECs equipped with various AEMs were assessed based on their electrochemical efficiencies, H2 generation capacities and the composition of anodic biofilm communities. pH imbalances, ionic losses and cathodic overpotentials were taken into consideration together with changes to substantial AEM properties (particularly ion-exchange capacity, ionic conductivity, area- and specific resistances) before and after AEMs were applied in the process to describe their potential impact on the behavior of MECs. It was concluded that the MECs which employed the PSEBS CM DBC membrane provided the highest H2 yield and lowest internal losses compared to the two other separators. Therefore, it has the potential to improve MECs.

6.
Bioresour Technol ; 278: 279-286, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30708331

RESUMO

In this study, microbial fuel cells (MFCs) - operated with novel cation- and anion-exchange membranes, in particular AN-VPA 60 (CEM) and PSEBS DABCO (AEM) - were assessed comparatively with Nafion proton exchange membrane (PEM). The process characterization involved versatile electrochemical (polarization, electrochemical impedance spectroscopy - EIS, cyclic voltammetry - CV) and biological (microbial structure analysis) methods in order to reveal the influence of membrane-type during start-up. In fact, the use of AEM led to 2-5 times higher energy yields than CEM and PEM and the lowest MFC internal resistance (148 ±â€¯17 Ω) by the end of start-up. Regardless of the membrane-type, Geobacter was dominantly enriched on all anodes. Besides, CV and EIS measurements implied higher anode surface coverage of redox compounds for MFCs and lower membrane resistance with AEM, respectively. As a result, AEM based on PSEBS DABCO could be found as a promising material to substitute Nafion.


Assuntos
Técnicas Eletroquímicas , Fontes de Energia Bioelétrica , Técnicas Eletroquímicas/instrumentação , Eletrodos , Polímeros de Fluorcarboneto , Geobacter , Troca Iônica
7.
Electrophoresis ; 39(17): 2246-2252, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29882600

RESUMO

Upconversion nanoparticles (UCNPs) are an emerging class of optical materials with high potential in bioimaging due to practically no background signal and high penetration depth. Their excellent optical properties and easy surface functionalization make them perfect for conjugation with targeting ligands. In this work, capillary electrophoretic (CE) method with laser-induced fluorescence detection was used to investigate the behavior of carboxyl-silica-coated UCNPs. Folic acid, targeting folate receptor overexpressed by wide variety of cancer cells, was used for illustrative purposes and assessed by CE under optimized conditions. Peptide-mediated bioconjugation of antibodies to UCNPs was also investigated. Despite the numerous advantages of CE, this is the first time that CE was employed for characterization of UCNPs and their bioconjugates. The separation conditions were optimized including the background electrolyte concentration and pH. The optimized electrolyte was 20 mM borate buffer with pH 8.


Assuntos
Eletroforese Capilar/métodos , Nanoconjugados/química , Anticorpos/química , Corantes Fluorescentes/química , Ácido Fólico/química , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes , Espectrometria de Fluorescência/métodos
8.
Electrophoresis ; 37(3): 444-54, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26462605

RESUMO

Peptide-peptide interactions are crucial in the living cell as they lead to the formation of the numerous types of complexes. In this study, synthetic peptides containing 11 of cysteines (α-domain of metallothionein (MT)) and sialic acid binding region (130-loop of hemagglutinin (HA)) were employed. The aim of the experiment was studying the interactions between MT and HA-derived peptides. For this purpose, fragments were tagged with cysteines at C-terminal part to serve as ligand sites for PbS and CuS quantum dots (QDs), and therefore these conjugates can be traced and quantified during wide spectrum of methods. As a platform for interaction, γ-Fe2O3 paramagnetic particles modified with tetraethyl orthosilicate and (3-aminopropyl)triethoxysilane (hydrodynamic diameter 30-40 nm) were utilized and MT/HA interactions were examined using multi-instrumental approach including electrochemistry, electrophoretic methods, and MALDI-TOF/TOF mass spectrometry. It was found that peptides enter mutual creation of complexes, which are based on some of nonbonded interactions. The higher willingness to interact was observed in MT-derived peptides toward immobilized HA. Finally, we designed and manufactured flow-through electrochemical 3D printed device (reservoir volume 150 µL) and utilized it for automated analysis of the HA/MT metal labels. Under the optimal conditions, (deposition time and flow rate 80 s and 1.6 mL/min for CuS and 120 s and 1.6 mL/min PbS, respectively), the results of peptide-conjugated QDs were comparable with atomic absorption spectrometry.


Assuntos
Nanopartículas de Magnetita/química , Técnicas Analíticas Microfluídicas/instrumentação , Peptídeos/análise , Peptídeos/metabolismo , Impressão Tridimensional , Peptídeos/química , Ligação Proteica
9.
Electrophoresis ; 36(11-12): 1256-64, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25735231

RESUMO

Currently, metallothioneins (MTs) are extensively investigated as the molecular biomarkers and the significant positive association of the MT amount was observed in tumorous versus healthy tissue of various types of malignant tumors, including head and neck cancer. Thus, we proposed a biosensor with fluorescence detection, comprising paramagnetic nanoparticles (nanomaghemite core with gold nanoparticles containing shell) for the magnetic separation of MT, based on affinity of its sulfhydryl groups toward gold. Biosensor was crafted from PDMS combined with technology of 3D printing and contained reservoir with volume of 50 µL linked to input (sample/detection components and washing/immunobuffer) and output (waste). For the immunolabeling of immobilized MT anti-MT antibodies conjugated to CdTe quantum dots through synthetic heptapeptide were employed. After optimization of fundamental conditions of the immunolabeling (120 min, 20°C, and 1250 rpm) we performed it on a surface of paramagnetic nanoparticles in the biosensor reservoir, with evaluation of fluorescence of quantum dots (λexc 400 nm, and λem 555 nm). The developed biosensor was applied for quantification of MT in cell lines derived from spinocellular carcinoma (cell line 122P-N) and fibroblasts (122P-F) and levels of the biomarker were found to be about 90 nM in tumor cells and 37 nM in fibroblasts. The proposed system is able to work with low volumes (< 100 µL), with low acquisition costs and high portability.


Assuntos
Dimetilpolisiloxanos/química , Metalotioneína/análise , Impressão Tridimensional , Técnicas Biossensoriais , Compostos de Cádmio/química , Linhagem Celular Tumoral , Fluorescência , Ouro/química , Humanos , Magnetismo , Nanopartículas Metálicas , Neoplasias/patologia , Pontos Quânticos , Telúrio/química
10.
Sensors (Basel) ; 15(2): 2438-52, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25621613

RESUMO

Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE) modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion) for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH). It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE.

11.
Electrophoresis ; 36(3): 457-66, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25069433

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a dangerous pathogen occurring not only in hospitals but also in foodstuff. Currently, discussions on the issue of the increasing resistance, and timely and rapid diagnostic of resistance strains have become more frequent and sought. Therefore, the aim of this study was to design an effective platform for DNA isolation from different species of microorganisms as well as the amplification of mecA gene that encodes the resistance to ß-lactam antibiotic formation and is contained in MRSA. For this purpose, we fabricated 3D-printed chip that was suitable for bacterial cultivation, DNA isolation, PCR, and detection of amplified gene using gold nanoparticle (AuNP) probes as an indicator of MRSA. Confirmation of the MRSA presence in the samples was based on a specific interaction between mecA gene with the AuNP probes and a colorimetric detection, which utilized the noncross-linking aggregation phenomenon of DNA-functionalized AuNPs. To test the whole system, we analyzed several real refractive indexes, in which two of them were positively scanned to find the presence of mecA gene. The aggregation of AuNP probes were reflected by 75% decrease of absorbance (λ = 530 nm) and change in AuNPs size from 3 ± 0.05 to 4 ± 0.05 nm (n = 5). We provide the one-step identification of mecA gene using the unique platform that employs the rapid, low-cost, and easy-to-use colorimetric method for MRSA detection in various samples.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Abscesso/microbiologia , Proteínas de Bactérias/genética , DNA Bacteriano/análise , DNA Bacteriano/genética , Desenho de Equipamento , Humanos , Pessoa de Meia-Idade , Tipagem Molecular , Técnicas de Amplificação de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Proteínas de Ligação às Penicilinas , Infecções Estafilocócicas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...