Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 56(41): 12658-12662, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28671739

RESUMO

The alloying behavior between FAPbI3 and CsSnI3 perovskites is studied carefully for the first time, which has led to the realization of single-phase hybrid perovskites of (FAPbI3 )1-x (CsSnI3 )x (0

2.
Angew Chem Int Ed Engl ; 56(26): 7674-7678, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28524450

RESUMO

Methylammonium-mediated phase-evolution behavior of FA1-x MAx PbI3 mixed-organic-cation perovskite (MOCP) is studied. It is found that by simply enriching the MOCP precursor solutions with excess methylammonium cations, the MOCPs form via a dynamic composition-tuning process that is key to obtaining MOCP thin films with superior properties. This simple chemical approach addresses several key challenges, such as control over phase purity, uniformity, grain size, composition, etc., associated with the solution-growth of MOCP thin films with targeted compositions.

3.
Angew Chem Int Ed Engl ; 55(47): 14723-14727, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27766739

RESUMO

Methylamine-induced thin-film transformation at room-temperature is discovered, where a porous, rough, polycrystalline NH4 PbI3 non-perovskite thin film converts stepwise into a dense, ultrasmooth, textured CH3 NH3 PbI3 perovskite thin film. Owing to the beneficial phase/structural development of the thin film, its photovoltaic properties undergo dramatic enhancement during this NH4 PbI3 -to-CH3 NH3 PbI3 transformation process. The chemical origins of this transformation are studied at various length scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA