Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445327


The fight against cancer is one of the main challenges for medical research. Recently, nanotechnology has made significant progress, providing possibilities for developing innovative nanomaterials to overcome the common limitations of current therapies. In this context, silver nanoparticles (AgNPs) represent a promising nano-tool able to offer interesting applications for cancer research. Following this path, we combined the silver proprieties with Artemisia arborescens characteristics, producing novel nanoparticles called Artemisia-AgNPs. A "green" synthesis method was performed to produce Artemisia-AgNPs, using Artemisia arborescens extracts. This kind of photosynthesis is an eco-friendly, inexpensive, and fast approach. Moreover, the bioorganic molecules of plant extracts improved the biocompatibility and efficacy of Artemisia-AgNPs. The Artemisia-AgNPs were fully characterized and tested to compare their effects on various cancer cell lines, in particular HeLa and MCF-7. Artemisia-AgNPs treatment showed dose-dependent growth inhibition of cancer cells. Moreover, we evaluated their impact on the cell cycle, observing a G1 arrest mediated by Artemisia-AgNPs treatment. Using a clonogenic assay after treatment, we observed a complete lack of cell colonies, which demonstrated cell reproducibility death. To have a broader overview on gene expression impact, we performed RNA-sequencing, which demonstrated the potential of Artemisia-AgNPs as a suitable candidate tool in cancer research.

Antineoplásicos , Apoptose/efeitos dos fármacos , Artemisia/química , Nanopartículas Metálicas , Prata , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/genética , Artemisia/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Química Verde , Células HeLa , Humanos , Células MCF-7 , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Células PC-3 , Extratos Vegetais/química , Prata/química , Prata/uso terapêutico
Clin Epigenetics ; 13(1): 156, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372908


Skeletal muscle formation represents a complex of highly organized and specialized systems that are still not fully understood. Epigenetic systems underline embryonic development, maintenance of stemness, and progression of differentiation. Polycomb group proteins play the role of gene silencing of stemness markers that regulate muscle differentiation. Enhancer of Zeste EZH2 is the catalytic subunit of the complex that is able to trimethylate lysine 27 of histone H3 and induce silencing of the involved genes. In embryonal Rhabdomyosarcoma and several other tumors, EZH2 is often deregulated and, in some cases, is associated with tumor malignancy. This review explores the molecular processes underlying the failure of muscle differentiation with a focus on the PRC2 complex. These considerations could open new studies aimed at the development of new cutting-edge therapeutic strategies in the onset of Rhabdomyosarcoma.