Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Genet ; 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31600839

RESUMO

Aymé-Gripp syndrome (AYGRPS) is a recognizable condition caused by a restricted spectrum of dominantly acting missense mutations affecting the transcription factor MAF. Major clinical features of AYGRPS include congenital cataracts, sensorineural hearing loss, intellectual disability, and a distinctive flat facial appearance. Skeletal abnormalities have also been observed in affected individuals, even though, these features have not been assessed systematically. Expanding the series with four additional patients, here we provide a more accurate delineation of the molecular aspects and clinical phenotype, particularly focusing on the skeletal features characterizing this disorder. Beside previously reported malar flattening and joint limitations, we document that carpal/tarsal and long bone defects, and hip dysplasia occur in affected subjects more frequently than formerly appreciated. This article is protected by copyright. All rights reserved.

2.
Prenat Diagn ; 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31498910

RESUMO

OBJECTIVE: 17q12 microdeletions containing HNF1B and intragenic variants within this gene are associated with variable developmental, endocrine and renal anomalies, often already noted prenatally as hyperechogenic/cystic kidneys. Here, we describe pre- and postnatal phenotypes of seven individuals with HNF1B aberrations and compare their clinical and genetic data to previous studies. METHODS: Prenatal sequencing and postnatal chromosomal microarray analysis was performed in seven individuals with renal and/or neurodevelopmental phenotypes. We evaluated HNF1B-related clinical features from 82 studies and reclassified 192 reported intragenic HNF1B variants. RESULTS: In a prenatal case, we identified a novel in-frame deletion p.(Gly239del) within the HNF1B DNA binding domain, a mutational hotspot as demonstrated by spatial clustering analysis and high computational prediction scores. The six postnatally diagnosed individuals harbored 17q12 microdeletions. Literature screening revealed variable reporting of HNF1B-associated clinical traits. Overall, both mutation groups showed a high phenotypic heterogeneity. The reclassification of all previously reported intragenic HNF1B variants provided an up-to-date overview of the mutational spectrum. CONCLUSIONS: We highlight the value of prenatal HNF1B screening in renal developmental diseases. Standardized clinical reporting and systematic classification of HNF1B variants is necessary for a more accurate risk quantification of pre- and postnatal clinical features, improving genetic counseling and prenatal decision-making.

3.
J Med Genet ; 56(10): 701-710, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31451536

RESUMO

BACKGROUND: The 15q11.2 deletion is frequently identified in the neurodevelopmental clinic. Case-control studies have associated the 15q11.2 deletion with neurodevelopmental disorders, and clinical case series have attempted to delineate a microdeletion syndrome with considerable phenotypic variability. The literature on this deletion is extensive and confusing, which is a challenge for genetic counselling. The aim of this study was to estimate the effect size of the 15q11.2 deletion and quantify its contribution to neurodevelopmental disorders. METHODS: We performed meta-analyses on new and previously published case-control studies and used statistical models trained in unselected populations with cognitive assessments. We used new (n=241) and previously published (n=150) data from a clinically referred group of deletion carriers. 15q11.2 duplications (new n=179 and previously published n=35) were used as a neutral control variant. RESULTS: The deletion decreases IQ by 4.3 points. The estimated ORs and respective frequencies in deletion carriers for intellectual disabilities, schizophrenia and epilepsy are 1.7 (3.4%), 1.5 (2%) and 3.1 (2.1%), respectively. There is no increased risk for heart malformations and autism. In the clinically referred group, the frequency and nature of symptoms in deletions are not different from those observed in carriers of the 15q11.2 duplication suggesting that most of the reported symptoms are due to ascertainment bias. CONCLUSIONS: We recommend that the deletion should be classified as 'pathogenic of mild effect size'. Since it explains only a small proportion of the phenotypic variance in carriers, it is not worth discussing in the developmental clinic or in a prenatal setting.

4.
Ann Clin Transl Neurol ; 6(7): 1263-1272, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31353855

RESUMO

OBJECTIVE: To analyze clinical phenotypes associated with KCNC1 variants other than the Progressive Myoclonus Epilepsy-causing variant p.Arg320His, determine the electrophysiological functional impact of identified variants and explore genotype-phenotype-physiological correlations. METHODS: Ten cases with putative pathogenic variants in KCNC1 were studied. Variants had been identified via whole-exome sequencing or gene panel testing. Clinical phenotypic data were analyzed. To determine functional impact of variants detected in the Kv 3.1 channel encoded by KCNC1, Xenopus laevis oocyte expression system and automated two-electrode voltage clamping were used. RESULTS: Six unrelated patients had a Developmental and Epileptic Encephalopathy and a recurrent de novo variant p.Ala421Val (c.1262C > T). Functional analysis of p.Ala421Val revealed loss of function through a significant reduction in whole-cell current, but no dominant-negative effect. Three patients had a contrasting phenotype of Developmental Encephalopathy without seizures and different KCNC1 variants, all of which caused loss of function with reduced whole-cell currents. Evaluation of the variant p.Ala513Val (c.1538C > T) in the tenth case, suggested it was a variant of uncertain significance. INTERPRETATION: These are the first reported cases of Developmental and Epileptic Encephalopathy due to KCNC1 mutation. The spectrum of phenotypes associated with KCNC1 is now broadened to include not only a Progressive Myoclonus Epilepsy, but an infantile onset Developmental and Epileptic Encephalopathy, as well as Developmental Encephalopathy without seizures. Loss of function is a key feature, but definitive electrophysiological separation of these phenotypes has not yet emerged.

5.
Biol Psychiatry ; 86(4): 294-305, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31272685

RESUMO

BACKGROUND: Although habituation is one of the most ancient and fundamental forms of learning, its regulators and its relevance for human disease are poorly understood. METHODS: We manipulated the orthologs of 286 genes implicated in intellectual disability (ID) with or without comorbid autism spectrum disorder (ASD) specifically in Drosophila neurons, and we tested these models in light-off jump habituation. We dissected neuronal substrates underlying the identified habituation deficits and integrated genotype-phenotype annotations, gene ontologies, and interaction networks to determine the clinical features and molecular processes that are associated with habituation deficits. RESULTS: We identified >100 genes required for habituation learning. For 93 of these genes, a role in habituation learning was previously unknown. These genes characterize ID disorders with macrocephaly and/or overgrowth and comorbid ASD. Moreover, individuals with ASD from the Simons Simplex Collection carrying damaging de novo mutations in these genes exhibit increased aberrant behaviors associated with inappropriate, stereotypic speech. At the molecular level, ID genes required for normal habituation are enriched in synaptic function and converge on Ras/mitogen-activated protein kinase (Ras/MAPK) signaling. Both increased Ras/MAPK signaling in gamma-aminobutyric acidergic (GABAergic) neurons and decreased Ras/MAPK signaling in cholinergic neurons specifically inhibit the adaptive habituation response. CONCLUSIONS: Our work supports the relevance of habituation learning to ASD, identifies an unprecedented number of novel habituation players, supports an emerging role for inhibitory neurons in habituation, and reveals an opposing, circuit-level-based mechanism for Ras/MAPK signaling. These findings establish habituation as a possible, widely applicable functional readout and target for pharmacologic intervention in ID/ASD.

7.
Dis Model Mech ; 12(5)2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31088981

RESUMO

Intellectual disability (ID) and autism spectrum disorders (ASD) are frequently co-occurring neurodevelopmental disorders and affect 2-3% of the population. Rapid advances in exome and genome sequencing have increased the number of known implicated genes by threefold, to more than a thousand. The main challenges in the field are now to understand the various pathomechanisms associated with this bewildering number of genetic disorders, to identify new genes and to establish causality of variants in still-undiagnosed cases, and to work towards causal treatment options that so far are available only for a few metabolic conditions. To meet these challenges, the research community needs highly efficient model systems. With an increasing number of relevant assays and rapidly developing novel methodologies, the fruit fly Drosophila melanogaster is ideally positioned to change gear in ID and ASD research. The aim of this Review is to summarize some of the exciting work that already has drawn attention to Drosophila as a model for these disorders. We highlight well-established ID- and ASD-relevant fly phenotypes at the (sub)cellular, brain and behavioral levels, and discuss strategies of how this extraordinarily efficient and versatile model can contribute to 'next generation' medical genomics and to a better understanding of these disorders.

8.
BMC Cancer ; 19(1): 435, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31077186

RESUMO

BACKGROUND: Several subunits of the SWI/SNF chromatin remodeling complex are implicated in both cancer and neurodevelopmental disorders (NDD). Though there is no clinical evidence for an increased tumor risk in individuals with NDDs due to germline mutations in most of these genes so far, this has been repeatedly proposed and discussed. A young woman with NDD due to a de novo mutation in ARID1B now presented with a large renal (> 19 cm in diameter) and multiple hepatic angiomyolipomas (AMLs) but no other signs of tuberous sclerosis complex. METHODS: We analyzed tumor and healthy tissue samples with exome and panel sequencing. RESULTS: Additionally to the previously known, germline ARID1B variant we identified a post-zygotic truncating TSC2 variant in both renal and hepatic AMLs but not in any of the healthy tissues. We did not detect any further, obvious tumor driver events. The identification of a passenger variant in SIPA1L3 in both AMLs points to a common clonal origin. Metastasis of the renal AML into the liver is unlikely on the basis of discordant histopathological features. Our findings therefore point to very low-grade mosaicism for the TSC2 variant, possibly in a yet unknown mesenchymal precursor cell that expanded clonally during tumor development. A possible contribution of the germline ARID1B variant to the tumorigenesis remains unclear but cannot be excluded given the absence of any other evident tumor drivers in the AMLs. CONCLUSION: This unique case highlights the blurred line between tumor genetics and post-zygotic events that can complicate exact molecular diagnoses in patients with rare manifestations. It also demonstrates the relevance of multiple disorders in a single individual, the challenges of detecting low-grade mosaicisms, and the importance of proper diagnosis for treatment and surveillance.


Assuntos
Angiomiolipoma/genética , Deficiência Intelectual/complicações , Neoplasias Renais/genética , Neoplasias Hepáticas/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteínas de Ligação a DNA/genética , Feminino , Mutação em Linhagem Germinativa , Humanos , Deficiência Intelectual/genética , Mosaicismo , Fatores de Transcrição/genética , Sequenciamento Completo do Exoma , Adulto Jovem
9.
Acta Neuropathol ; 137(4): 657-673, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30830316

RESUMO

The TCF4 gene encodes for the basic helix-loop-helix transcription factor 4 (TCF4), which plays an important role in the development of the central nervous system (CNS). Haploinsufficiency of TCF4 was found to cause Pitt-Hopkins syndrome (PTHS), a severe neurodevelopmental disorder. Recently, the screening of a large cohort of medulloblastoma (MB), a highly aggressive embryonal brain tumor, revealed almost 20% of adult patients with MB of the Sonic hedgehog (SHH) subtype carrying somatic TCF4 mutations. Interestingly, many of these mutations have previously been detected as germline mutations in patients with PTHS. We show here that overexpression of wild-type TCF4 in vitro significantly suppresses cell proliferation in MB cells, whereas mutant TCF4 proteins do not to the same extent. Furthermore, RNA sequencing revealed significant upregulation of multiple well-known tumor suppressors upon expression of wild-type TCF4. In vivo, a prenatal knockout of Tcf4 in mice caused a significant increase in apoptosis accompanied by a decreased proliferation and failed migration of cerebellar granule neuron precursor cells (CGNP), which are thought to be the cells of origin for SHH MB. In contrast, postnatal in vitro and in vivo knockouts of Tcf4 with and without an additional constitutive activation of the SHH pathway led to significantly increased proliferation of CGNP or MB cells. Finally, publicly available data from human MB show that relatively low expression levels of TCF4 significantly correlate with a worse clinical outcome. These results not only point to time-specific roles of Tcf4 during cerebellar development but also suggest a functional linkage between TCF4 mutations and the formation of SHH MB, proposing that TCF4 acts as a tumor suppressor during postnatal stages of cerebellar development.

10.
Eur J Hum Genet ; 27(7): 1061-1071, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30809043

RESUMO

Height is a heritable and highly heterogeneous trait. Short stature affects 3% of the population and in most cases is genetic in origin. After excluding known causes, 67% of affected individuals remain without diagnosis. To identify novel candidate genes for short stature, we performed exome sequencing in 254 unrelated families with short stature of unknown cause and identified variants in 63 candidate genes in 92 (36%) independent families. Based on systematic characterization of variants and functional analysis including expression in chondrocytes, we classified 13 genes as strong candidates. Whereas variants in at least two families were detected for all 13 candidates, two genes had variants in 6 (UBR4) and 8 (LAMA5) families, respectively. To facilitate their characterization, we established a clustered network of 1025 known growth and short stature genes, which yielded 29 significantly enriched clusters, including skeletal system development, appendage development, metabolic processes, and ciliopathy. Eleven of the candidate genes mapped to 21 of these clusters, including CPZ, EDEM3, FBRS, IFT81, KCND1, PLXNA3, RASA3, SLC7A8, UBR4, USP45, and ZFHX3. Fifty additional growth-related candidates we identified await confirmation in other affected families. Our study identifies Mendelian forms of growth retardation as an important component of idiopathic short stature.

12.
Clin Genet ; 95(4): 462-478, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30677142

RESUMO

Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder characterized by intellectual disability, specific facial features, and marked autonomic nervous system dysfunction, especially with disturbances of regulating respiration and intestinal mobility. It is caused by variants in the transcription factor TCF4. Heterogeneity in the clinical and molecular diagnostic criteria and care practices has prompted a group of international experts to establish guidelines for diagnostics and care. For issues, for which there was limited information available in international literature, we collaborated with national support groups and the participants of a syndrome specific international conference to obtain further information. Here, we discuss the resultant consensus, including the clinical definition of PTHS and a molecular diagnostic pathway. Recommendations for managing particular health problems such as dysregulated respiration are provided. We emphasize the need for integration of care for physical and behavioral issues. The recommendations as presented here will need to be evaluated for improvements to allow for continued optimization of diagnostics and care.

13.
Am J Med Genet A ; 2018 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-30450806

RESUMO

Mutations in BCOR cause X-linked dominant and X-linked recessive forms of syndromic microphthalmia. By exome sequencing, we identified the recurrent BCOR mutation p.Pro85Leu in two brothers and their unaffected mother. While the older brother's phenotype completely fits the described phenotypic spectrum of X-linked recessive BCOR-associated Lenz microphthalmia syndrome, the younger brother showed developmental delay, microcephaly, and skeletal anomalies, but not the key feature of microphthalmia. In contrast to the previously published families, our findings demonstrate a large variability of BCOR-associated, syndromic phenotypes, indicating incomplete penetrance of p.Pro85Leu with regards to microphthalmia in males.

14.
Nat Commun ; 9(1): 4619, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30397230

RESUMO

Chromatin remodeling is of crucial importance during brain development. Pathogenic alterations of several chromatin remodeling ATPases have been implicated in neurodevelopmental disorders. We describe an index case with a de novo missense mutation in CHD3, identified during whole genome sequencing of a cohort of children with rare speech disorders. To gain a comprehensive view of features associated with disruption of this gene, we use a genotype-driven approach, collecting and characterizing 35 individuals with de novo CHD3 mutations and overlapping phenotypes. Most mutations cluster within the ATPase/helicase domain of the encoded protein. Modeling their impact on the three-dimensional structure demonstrates disturbance of critical binding and interaction motifs. Experimental assays with six of the identified mutations show that a subset directly affects ATPase activity, and all but one yield alterations in chromatin remodeling. We implicate de novo CHD3 mutations in a syndrome characterized by intellectual disability, macrocephaly, and impaired speech and language.

15.
Am J Hum Genet ; 103(2): 305-316, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30057029

RESUMO

Next-generation sequencing combined with international data sharing has enormously facilitated identification of new disease-associated genes and mutations. This is particularly true for genetically extremely heterogeneous entities such as neurodevelopmental disorders (NDDs). Through exome sequencing and world-wide collaborations, we identified and assembled 20 individuals with de novo variants in FBXO11. They present with mild to severe developmental delay associated with a range of features including short (4/20) or tall (2/20) stature, obesity (5/20), microcephaly (4/19) or macrocephaly (2/19), behavioral problems (17/20), seizures (5/20), cleft lip or palate or bifid uvula (3/20), and minor skeletal anomalies. FBXO11 encodes a member of the F-Box protein family, constituting a subunit of an E3-ubiquitin ligase complex. This complex is involved in ubiquitination and proteasomal degradation and thus in controlling critical biological processes by regulating protein turnover. The identified de novo aberrations comprise two large deletions, ten likely gene disrupting variants, and eight missense variants distributed throughout FBXO11. Structural modeling for missense variants located in the CASH or the Zinc-finger UBR domains suggests destabilization of the protein. This, in combination with the observed spectrum and localization of identified variants and the lack of apparent genotype-phenotype correlations, is compatible with loss of function or haploinsufficiency as an underlying mechanism. We implicate de novo missense and likely gene disrupting variants in FBXO11 in a neurodevelopmental disorder with variable intellectual disability and various other features.

16.
Genet Med ; 20(6): 630-638, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29758562

RESUMO

PurposeShort stature is a common condition of great concern to patients and their families. Mostly genetic in origin, the underlying cause often remains elusive due to clinical and genetic heterogeneity.MethodsWe systematically phenotyped 565 patients where common nongenetic causes of short stature were excluded, selected 200 representative patients for whole-exome sequencing, and analyzed the identified variants for pathogenicity and the affected genes regarding their functional relevance for growth.ResultsBy standard targeted diagnostic and phenotype assessment, we identified a known disease cause in only 13.6% of the 565 patients. Whole-exome sequencing in 200 patients identified additional mutations in known short-stature genes in 16.5% of these patients who manifested only part of the symptomatology. In 15.5% of the 200 patients our findings were of significant clinical relevance. Heterozygous carriers of recessive skeletal dysplasia alleles represented 3.5% of the cases.ConclusionA combined approach of systematic phenotyping, targeted genetic testing, and whole-exome sequencing allows the identification of the underlying cause of short stature in at least 33% of cases, enabling physicians to improve diagnosis, treatment, and genetic counseling. Exome sequencing significantly increases the diagnostic yield and consequently care in patients with short stature.


Assuntos
Estatura/genética , Feminino , Testes Genéticos , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mutação , Linhagem , Fenótipo , Análise de Sequência de DNA/métodos , Sequenciamento Completo do Exoma/métodos
17.
Mol Autism ; 9: 20, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29588831

RESUMO

Background: Haploinsufficiency of the class I bHLH transcription factor TCF4 causes Pitt-Hopkins syndrome (PTHS), a severe neurodevelopmental disorder, while common variants in the TCF4 gene have been identified as susceptibility factors for schizophrenia. It remains largely unknown, which brain regions are dependent on TCF4 for their development and function. Methods: We systematically analyzed the expression pattern of TCF4 in the developing and adult mouse brain. We used immunofluorescent staining to identify candidate regions whose development and function depend on TCF4. In addition, we determined TCF4 expression in the developing rhesus monkey brain and in the developing and adult human brain through analysis of transcriptomic datasets and compared the expression pattern between species. Finally, we morphometrically and histologically analyzed selected brain structures in Tcf4-haploinsufficient mice and compared our morphometric findings to neuroanatomical findings in PTHS patients. Results: TCF4 is broadly expressed in cortical and subcortical structures in the developing and adult mouse brain. The TCF4 expression pattern was highly similar between humans, rhesus monkeys, and mice. Moreover, Tcf4 haploinsufficiency in mice replicated structural brain anomalies observed in PTHS patients. Conclusion: Our data suggests that TCF4 is involved in the development and function of multiple brain regions and indicates that its regulation is evolutionary conserved. Moreover, our data validate Tcf4-haploinsufficient mice as a model to study the neurodevelopmental basis of PTHS.


Assuntos
Córtex Cerebral/metabolismo , Haploinsuficiência , Hipocampo/metabolismo , Hiperventilação/genética , Deficiência Intelectual/genética , Esquizofrenia/genética , Fator de Transcrição 4/genética , Animais , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Criança , Facies , Feminino , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Neurônios/metabolismo , Neurônios/fisiologia , Fator de Transcrição 4/metabolismo
18.
Genet Med ; 20(10): 1175-1185, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29469822

RESUMO

PURPOSE: To characterize the molecular genetics of autosomal recessive Noonan syndrome. METHODS: Families underwent phenotyping for features of Noonan syndrome in children and their parents. Two multiplex families underwent linkage analysis. Exome, genome, or multigene panel sequencing was used to identify variants. The molecular consequences of observed splice variants were evaluated by reverse-transcription polymerase chain reaction. RESULTS: Twelve families with a total of 23 affected children with features of Noonan syndrome were evaluated. The phenotypic range included mildly affected patients, but it was lethal in some, with cardiac disease and leukemia. All of the parents were unaffected. Linkage analysis using a recessive model supported a candidate region in chromosome 22q11, which includes LZTR1, previously shown to harbor mutations in patients with Noonan syndrome inherited in a dominant pattern. Sequencing analyses of 21 live-born patients and a stillbirth identified biallelic pathogenic variants in LZTR1, including putative loss-of-function, missense, and canonical and noncanonical splicing variants in the affected children, with heterozygous, clinically unaffected parents and heterozygous or normal genotypes in unaffected siblings. CONCLUSION: These clinical and genetic data confirm the existence of a form of Noonan syndrome that is inherited in an autosomal recessive pattern and identify biallelic mutations in LZTR1.

19.
Eur J Med Genet ; 61(7): 363-368, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29407414

RESUMO

3MC syndrome is a rare autosomal recessive disorder with characteristic craniofacial dysmorphism and multiple anomalies. It is caused by biallelic mutations in one of three genes, MASP1, COLEC11 and COLEC10, all encoding factors of the lectin complement pathway. In MASP1, either truncating mutations or missense variants in exon 12 encoding the C-terminal serine protease domain specific for isoform MASP-3 are causative. By trio exome sequencing we now identified a novel, homozygous 2kb deletion, partially affecting exon 12 in an adult female with the typical facial gestalt of 3MC syndrome and hearing loss, but without the main feature cleft lip/palate, and without intellectual disability, or short stature. We therefore expand the MASP1 associated mutational and clinical spectrum and describe the development of her clinical presentation over a period of 21 years. As the homozygous deletion in our patient was only found by thorough and visual evaluation of the whole exome sequencing data, such deletions might escape detection in some routine diagnostic workflows and might explain a few of the so far molecularly unconfirmed cases of 3MC syndrome.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Craniofaciais/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Adulto , Face/anormalidades , Feminino , Deleção de Genes , Humanos , Síndrome , Sequenciamento Completo do Exoma , Adulto Jovem
20.
Am J Hum Genet ; 102(1): 44-57, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29276004

RESUMO

Although the role of typical Rho GTPases and other Rho-linked proteins in synaptic plasticity and cognitive function and dysfunction is widely acknowledged, the role of atypical Rho GTPases (such as RHOBTB2) in neurodevelopment has barely been characterized. We have now identified de novo missense variants clustering in the BTB-domain-encoding region of RHOBTB2 in ten individuals with a similar phenotype, including early-onset epilepsy, severe intellectual disability, postnatal microcephaly, and movement disorders. Three of the variants were recurrent. Upon transfection of HEK293 cells, we found that mutant RHOBTB2 was more abundant than the wild-type, most likely because of impaired degradation in the proteasome. Similarly, elevated amounts of the Drosophila ortholog RhoBTB in vivo were associated with seizure susceptibility and severe locomotor defects. Knockdown of RhoBTB in the Drosophila dendritic arborization neurons resulted in a decreased number of dendrites, thus suggesting a role of RhoBTB in dendritic development. We have established missense variants in the BTB-domain-encoding region of RHOBTB2 as causative for a developmental and epileptic encephalopathy and have elucidated the role of atypical Rho GTPase RhoBTB in Drosophila neurological function and possibly dendrite development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA