Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Molecules ; 26(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34443484


The COVID-19 outbreak has rapidly spread on a global scale, affecting the economy and public health systems throughout the world. In recent years, peptide-based therapeutics have been widely studied and developed to treat infectious diseases, including viral infections. Herein, the antiviral effects of the lysine linked dimer des-Cys11, Lys12,Lys13-(pBthTX-I)2K ((pBthTX-I)2K)) and derivatives against SARS-CoV-2 are reported. The lead peptide (pBthTX-I)2K and derivatives showed attractive inhibitory activities against SARS-CoV-2 (EC50 = 28-65 µM) and mostly low cytotoxic effect (CC50 > 100 µM). To shed light on the mechanism of action underlying the peptides' antiviral activity, the Main Protease (Mpro) and Papain-Like protease (PLpro) inhibitory activities of the peptides were assessed. The synthetic peptides showed PLpro inhibition potencies (IC50s = 1.0-3.5 µM) and binding affinities (Kd = 0.9-7 µM) at the low micromolar range but poor inhibitory activity against Mpro (IC50 > 10 µM). The modeled binding mode of a representative peptide of the series indicated that the compound blocked the entry of the PLpro substrate toward the protease catalytic cleft. Our findings indicated that non-toxic dimeric peptides derived from the Bothropstoxin-I have attractive cellular and enzymatic inhibitory activities, thereby suggesting that they are promising prototypes for the discovery and development of new drugs against SARS-CoV-2 infection.

Venenos de Crotalídeos/química , Dimerização , Papaína/antagonistas & inibidores , Peptídeos/química , Peptídeos/farmacologia , SARS-CoV-2/enzimologia , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , Simulação de Acoplamento Molecular , Papaína/química , Papaína/metabolismo , Peptídeos/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Conformação Proteica , SARS-CoV-2/efeitos dos fármacos
FEBS J ; 285(3): 559-579, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29222836


Cellobiohydrolases hydrolyze cellulose, a linear polymer with glucose monomers linked exclusively by ß-1,4 glycosidic linkages. The widespread hydrogen bonding network tethers individual cellulose polymers forming crystalline cellulose, which prevent the access of hydrolytic enzymes and water molecules. The most abundant enzyme secreted by Myceliophthora thermophila M77 in response to the presence of biomass is the cellobiohydrolase MtCel7A, which is composed by a GH7-catalytic domain (CD), a linker, and a CBM1-type carbohydrate-binding module. GH7 cellobiohydrolases have been studied before, and structural models have been proposed. However, currently available GH7 crystal structures only define separate catalytic domains and/or cellulose-binding modules and do not include the full-length structures that are involved in shaping the catalytic mode of operation. In this study, we determined the 3D structure of catalytic domain using X-ray crystallography and retrieved the full-length enzyme envelope via small-angle X-ray scattering (SAXS) technique. The SAXS data reveal a tadpole-like molecular shape with a rigid linker connecting the CD and CBM. Our biochemical studies show that MtCel7A has higher catalytic efficiency and thermostability as well as lower processivity when compared to the well-studied TrCel7A from Trichoderma reesei. Based on a comparison of the crystallographic structures of CDs and their molecular dynamic simulations, we demonstrate that MtCel7A has considerably higher flexibility than TrCel7A. In particular, loops that cover the active site are more flexible and undergo higher conformational fluctuations, which might account for decreased processivity and enhanced enzymatic efficiency. Our statistical coupling analysis suggests co-evolution of amino acid clusters comprising the catalytic site of MtCel7A, which correlate with the steps in the catalytic cycle of the enzyme. DATABASE: The atomic coordinates and structural factors of MtCel7A have been deposited in the Protein Data Bank with accession number 5W11.

Celulose 1,4-beta-Celobiosidase/metabolismo , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Oligossacarídeos/metabolismo , Sordariales/enzimologia , Sítios de Ligação , Domínio Catalítico , Celulose 1,4-beta-Celobiosidase/química , Celulose 1,4-beta-Celobiosidase/genética , Cristalografia por Raios X , Bases de Dados de Proteínas , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glicosilação , Temperatura Alta/efeitos adversos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oligossacarídeos/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Maleabilidade , Conformação Proteica , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X