Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 799: 149381, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34358747

RESUMO

Explaining the reasons for the high honey bee (Apis mellifera) colony loss rate in recent years has become a top global research priority in apicultural and agricultural sciences. Although there are indications of the role played by beekeeping management practices on honey bee health, very little information is currently available. Our study aimed to characterize the beekeeping management practices carried out in Belgium, and to determine the relationship between beekeeping management practices and colony losses. Variables obtained from face-to-face questioning of a representative randomized and stratified sample of Belgian beekeepers (n = 186) were integrated into a logistic regression model (univariate and multivariate) and correlated to the declared colony loss rates to identify risk and protective indicators. We used a classification tree analysis to validate the results. We present evidence of a relationship between poor beekeeping management practices and colony losses. The main factors protecting honey bee colonies are the aptitude of the beekeeper to change his management practices, the hive type, the equipment origin and hygiene, wintering in proper conditions (the use of divider boards, i.e. board blocks or space fillers off part of the hive body), the colony strength estimation before wintering, winter monitoring, and last but not least, appropriate integrated pest management. Proper estimation of the Varroa infestation level should be performed prior to treatment. The consequences of poor beekeeping practices on honey bee health can be addressed by proper training of beekeepers. An online tool was developed and published for beekeepers allowing them to evaluate the effect of their management practices on colony health.

2.
Viruses ; 13(6)2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199957

RESUMO

Viruses, and in particular the deformed wing virus (DWV), are considered as one of the main antagonists of honey bee health. The 'suppressed in ovo virus infection' trait (SOV) described for the first time that control of a virus infection can be achieved from genetically inherited traits and that the virus state of the eggs is indicative for this. This research aims to explore the effect of the SOV trait on DWV infections in queens descending from both SOV-positive (QDS+) and SOV-negative (QDS-) queens. Twenty QDS+ and QDS- were reared from each time four queens in the same starter-finisher colony. From each queen the head, thorax, ovaries, spermatheca, guts and eviscerated abdomen were dissected and screened for the presence of the DWV-A and DWV-B genotype using qRT-PCR. Queens descending from SOV-positive queens showed significant lower infection loads for DWV-A and DWV-B as well as a lower number of infected tissues for DWV-A. Surprisingly, differences were less expressed in the reproductive tissues, the ovaries and spermatheca. These results confirm that selection on the SOV trait is associated with increased virus resistance across viral genotypes and that this selection drives DWV towards an increased tissue specificity for the reproductive tissues. Further research is needed to explore the mechanisms underlying the interaction between the antiviral response and DWV.


Assuntos
Doenças dos Animais/virologia , Abelhas/virologia , Cruzamento , Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Infecções por Vírus de RNA/veterinária , Vírus de RNA/fisiologia , Doenças dos Animais/genética , Animais , Carga Viral
3.
BMC Vet Res ; 17(1): 179, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931072

RESUMO

BACKGROUND: The varroa mite is one of the main causes of honey bee mortality. An important mechanism by which honey bees increase their resistance against this mite is the expression of suppressed mite reproduction. This trait describes the physiological inability of mites to produce viable offspring and was found associated with eight genomic variants in previous research. RESULTS: This paper presents the development and validation of high-throughput qPCR assays with dual-labeled probes for discriminating these eight single-nucleotide variants. Amplicon sequences used for assay validation revealed additional variants in the primer/probe binding sites in four out of the eight assays. As for two of these the additional variants interfered with the genotyping outcome supplementary primers and/or probes were developed. Inclusion of these primers and probes in the assay mixes allowed for the correct genotyping of all eight variants of interest within our bee population. CONCLUSION: These outcomes underline the importance of checking for interfering variants in designing qPCR assays. Ultimately, the availability of this assay allows genotyping for the suppressed mite reproduction trait and paves the way for marker assisted selection in breeding programs.


Assuntos
Abelhas/genética , Abelhas/parasitologia , Interações Hospedeiro-Parasita/genética , Animais , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase em Tempo Real , Reprodução/fisiologia , Varroidae
4.
Sci Total Environ ; 772: 145533, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33770874

RESUMO

Twenty-two pesticides and veterinary drugs of which residues were detected in beeswax in Europe were selected according to different criteria. The risk to honey bee health posed by the presence of these residues in wax was assessed based on three exposure scenarios. The first one corresponds to the exposure of larvae following their close contact with wax constituting the cells in which they develop. The second one corresponds to the exposure of larvae following consumption of the larval food that was contaminated from contact with contaminated wax. The third one corresponds to the exposure of adult honey bees following wax chewing when building cells and based on a theoretical worst-case scenario (= intake of contaminants from wax). Following these three scenarios, maximum concentrations which should not be exceeded in beeswax in order to protect honey bee health were calculated for each selected substance. Based on these values, provisional action limits were proposed. Beeswax exceeding these limits should not be put on the market.


Assuntos
Resíduos de Praguicidas , Praguicidas , Drogas Veterinárias , Animais , Abelhas , Europa (Continente) , Resíduos de Praguicidas/análise , Praguicidas/análise , Drogas Veterinárias/análise , Ceras
5.
Sci Rep ; 11(1): 3755, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33580131

RESUMO

Wild bees are in decline on a local to global scale. The presence of managed honey bees can lead to competition for resources with wild bee species, which has not been investigated so far for human-modified landscapes. In this study we assess if managed honey bee hive density influence nest development (biomass) of bumble bees, an important trait affecting fitness. We hypothesize that domesticated honey bees can negatively affect Bombus terrestris nest development in human-modified landscapes. In Flanders, Belgium, where such landscapes are dominantly present, we selected 11 locations with landscape metrics ranging from urban to agricultural. The bee hive locations were mapped and each location contained one apiary dense (AD) and one apiary sparse (AS) study site (mean density of 7.6 ± 5.7 managed honey bee hives per km2 in AD sites). We assessed the effect of apiary density on the reproduction of reared B. terrestris nests. Reared B. terrestris nests had more biomass increase over 8 weeks in apiary sparse (AS) sites compared to nests located in apiary dense (AD) sites. This effect was mainly visible in urban locations, where nest in AS sites have 99.25 ± 60.99 g more biomass increase compared to nest in urban AD sites. Additionally, we found that managed bumble bee nests had higher biomass increase in urban locations. We conclude that the density of bee hives is a factor to consider in regard to interspecific competition between domesticated honey bees and bumble bees.

6.
Transbound Emerg Dis ; 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33544964

RESUMO

Understanding amateur beekeepers' perception of risks affecting bee health and mortality is essential to analyse the reasons for adopting or rejecting good management practices. A perception survey on how beekeepers perceive and manage factors related to climate change, Varroa infestation, management practices, and pesticide exposure was designed and launched online. This unpreceded sociological survey involved 355 beekeepers spread all over Belgium. A two-sample t test with unequal variances comparing beekeepers with colony loss rates below or exceeding the acceptable level, that is <10% and ≥10%, indicates that beekeepers (N = 213) with colony loss rates <10% generally have greater average levels of perceived risks and the benefits of action that lead to increased motivation to act in better ways. The results of this survey highlight the importance of looking beyond socio-economic determinants in any risk mitigation strategy associated with bee mortality when dealing with amateur beekeepers.

7.
Viruses ; 12(11)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121140

RESUMO

Metagenomics studies have accelerated the discovery of novel or divergent viruses of the honey bee. However, most of these studies predominantly focused on RNA viruses, and many suffer from the relatively low abundance of viral nucleic acids in the samples (i.e., compared to that of the host). Here, we explored the virome of the Ethiopian honey bee, Apis mellifera simensis, using an unbiased metagenomic approach in which the next-generation sequencing step was preceded by an enrichment protocol for viral particles. Our study revealed five well-known bee viruses and 25 atypical virus species, most of which have never been found in A. mellifera before. The viruses belong to Iflaviridae, Dicistroviridae, Secoviridae, Partitiviridae, Parvoviridae, Potyviridae, and taxonomically unclassified families. Fifteen of these atypical viruses were most likely plant-specific, and the remaining ten were presumed to be insect-specific. Apis mellifera filamentous virus (AmFV) was found in one sampling site out of 10. Two samples contained high read counts of a virus similar to Diatraea saccharales densovirus (DsDNV), which is a virus that causes high mortality in the sugarcane borer. AmFV and the DsDNV-like virus were the only DNA viruses found. Three viruses that primarily infect Drosophila spp. were also discovered: La Jolla virus (LJV), Kilifi virus (KiV), and Thika virus. Our study suggests that phoretic varroa mites are involved in the transmission of LJV and KiV and that both viruses replicate in mites and adult bees. We also found an overwhelming dominance of the deformed wing virus type B variant, which fits well with the apparently harmless infestation by Varroa destructor. It was suggested that Ethiopian bees have developed tolerance against virus infections as the result of natural selection.


Assuntos
Abelhas/virologia , Metagenômica/métodos , Virologia/métodos , Viroses/veterinária , Vírus/classificação , Animais , Etiópia , Sequenciamento de Nucleotídeos em Larga Escala , Metagenoma , Filogenia , Varroidae/virologia , Viroma , Viroses/transmissão , Vírus/isolamento & purificação
8.
Sci Rep ; 10(1): 14310, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32868870

RESUMO

Honey bees are under pressure due to abnormal high colony death rates, especially during the winter. The infestation by the Varroa destructor mite and the viruses that this ectoparasite transmits are generally considered as the bees' most important biological threats. Almost all efforts to remedy this dual infection have so far focused on the control of the Varroa mite alone and not on the viruses it transmits. In the present study, the sanitary control of breeding queens was conducted on eggs taken from drone brood for 4 consecutive years (2015-2018). The screening was performed on the sideline of an ongoing breeding program, which allowed us to estimate the heritabilities of the virus status of the eggs. We used the term 'suppressed in ovo virus infection' (SOV) for this novel trait and found moderate heritabilities for the presence of several viruses simultaneously and for the presence of single viral species. Colonies that expressed the SOV trait seemed to be more resilient to virus infections as a whole with fewer and less severe Deformed wing virus infections in most developmental stages, especially in the male caste. The implementation of this novel trait into breeding programs is recommended.


Assuntos
Abelhas/genética , Abelhas/imunologia , Animais , Abelhas/parasitologia , Abelhas/virologia , Resistência à Doença/genética , Feminino , Masculino , Característica Quantitativa Herdável , Varroidae/virologia
9.
Viruses ; 12(8)2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823841

RESUMO

The health of honey bees is threatened by multiple factors, including viruses and parasites. We screened 557 honey bee (Apis mellifera) colonies from 155 beekeepers distributed all over Belgium to determine the prevalence of seven widespread viruses and two parasites (Varroa sp. and Nosema sp.). Deformed wing virus B (DWV-B), black queen cell virus (BQCV), and sacbrood virus (SBV) were highly prevalent and detected by real-time RT-PCR in more than 95% of the colonies. Acute bee paralysis virus (ABPV), chronic bee paralysis virus (CBPV) and deformed wing virus A (DWV-A) were prevalent to a lower extent (between 18 and 29%). Most viruses were only present at low or moderate viral loads. Nevertheless, about 50% of the colonies harbored at least one virus at high viral load (>107 genome copies/bee). Varroa mites and Nosema sp. were found in 81.5% and 59.7% of the honey bee colonies, respectively, and all Nosema were identified as Nosema ceranae by real time PCR. Interestingly, we found a significant correlation between the number of Varroa mites and DWV-B viral load. To determine the combined effect of these and other factors on honey bee health in Belgium, a follow up of colonies over multiple years is necessary.


Assuntos
Abelhas/virologia , Vírus de Insetos/classificação , Viroses/veterinária , Animais , Abelhas/parasitologia , Bélgica/epidemiologia , Dicistroviridae/genética , Dicistroviridae/isolamento & purificação , Vírus de Insetos/isolamento & purificação , Nosema/genética , Nosema/isolamento & purificação , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Varroidae/fisiologia , Carga Viral , Viroses/epidemiologia
10.
Sci Total Environ ; 745: 141036, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32758732

RESUMO

Pesticide and veterinary drug residues are one of the stress factors affecting bee health and mortality. To investigate the occurrence, the concentration and the toxicity risk to bees of pesticide residues in four different types of beeswax (brood comb wax, recycled comb wax, honey comb wax, and cappings wax), 182 samples were collected from apiaries located all over the Belgian territories, during spring 2016 and analysed by LC-MS/MS and GC-MS/MS for the presence of 294 chemical residues. The toxicity risk to bees expressed as the Hazard Quotient (HQ) was calculated for each wax sample, according to two scenarios with different tau-fluvalinate LD50 values. Residues showing the highest prevalence were correlated to bee mortality in a multivariate logistic regression model and a risk-based model was used to predict colony bee mortality. Altogether, 54 different pesticide and veterinary drug residues were found in the four types of beeswax. The residues with a higher likelihood to be retained in beeswax are applied in-hive or with a high lipophilic nature. The multivariate logistic regression model showed a statistically significant influence of chlorfenvinphos on bee mortality. All our results indicated that cappings wax was substantially less contaminated. This national survey on beeswax contamination provides guidelines on the re-use of beeswax by beekeepers and shows the necessity to introduce maximum residue levels for global trade in beeswax. An online tool was developed to enable beekeepers and wax traders to estimate the risk to honey bee health associated with contaminated wax.


Assuntos
Resíduos de Praguicidas/análise , Resíduos de Praguicidas/toxicidade , Praguicidas/análise , Drogas Veterinárias , Animais , Abelhas , Bélgica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ceras
11.
Proc Natl Acad Sci U S A ; 117(19): 10511-10519, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32341166

RESUMO

Honey bees (Apis mellifera) produce an enormous economic value through their pollination activities and play a central role in the biodiversity of entire ecosystems. Recent efforts have revealed the substantial influence that the gut microbiota exert on bee development, food digestion, and homeostasis in general. In this study, deep sequencing was used to characterize prokaryotic viral communities associated with honey bees, which was a blind spot in research up until now. The vast majority of the prokaryotic viral populations are novel at the genus level, and most of the encoded proteins comprise unknown functions. Nevertheless, genomes of bacteriophages were predicted to infect nearly every major bee-gut bacterium, and functional annotation and auxiliary metabolic gene discovery imply the potential to influence microbial metabolism. Furthermore, undiscovered genes involved in the synthesis of secondary metabolic biosynthetic gene clusters reflect a wealth of previously untapped enzymatic resources hidden in the bee bacteriophage community.


Assuntos
Bacteriófagos/genética , Abelhas/metabolismo , Abelhas/virologia , Animais , Bactérias/genética , Bacteriófagos/metabolismo , Abelhas/genética , Biodiversidade , Ecossistema , Microbioma Gastrointestinal/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , Filogenia , Polinização/genética , Simbiose/genética
12.
Eur J Protistol ; 73: 125688, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32143143

RESUMO

The molecular divergence, morphology and pathology of a cryptic gregarine that is related to the bee parasite Apicystis bombi Lipa and Triggiani, 1996 is described. The 18S ribosomal DNA gene sequence of the new gregarine was equally dissimilar to that of A. bombi and the closest related genus Mattesia Naville, 1930, although phylogenetic analysis supported a closer relation to A. bombi. Pronounced divergence with A. bombi was found in the ITS1 sequence (69.6% similarity) and seven protein-coding genes (nucleotide 78.05% and protein 90.2% similarity). The new gregarine was isolated from a Bombus pascuorum Scopoli, 1763 female and caused heavy hypertrophism of the fat body tissue in its host. In addition, infected cells of the hypopharyngeal gland tissue, an important excretory organ of the host, were observed. Mature oocysts were navicular in shape and contained four sporozoites, similar to A. bombi oocysts. Given these characteristics, we proposed the name Apicystis cryptica sp. n. Detections so far indicated that distribution and host species occupation of Apicystis spp. overlap at least in Europe, and that historical detections could not discriminate between them. Specific molecular assays were developed that can be implemented in future pathogen screens that aim to discriminate Apicystis spp. in bees.


Assuntos
Apicomplexa/classificação , Abelhas/parasitologia , Animais , Apicomplexa/citologia , Apicomplexa/genética , DNA de Protozoário/genética , Europa (Continente) , Corpo Adiposo/parasitologia , Oocistos/citologia , Especificidade da Espécie
13.
Sci Total Environ ; 704: 135312, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31780165

RESUMO

In order to assess bee and human exposure to residues of glyphosate-based herbicide (GBH) and its main degradation products aminomethylphosphonic acid (AMPA) and to characterise the risk posed by these substances, we analysed 3 different bee matrices; beebread (N = 81), wax (N = 100) and 10-paired samples of wax/honey collected in 2016/2017 from 379 Belgian apiaries. A high-performance liquid chromatography-electrospray ionisation tandem mass spectrometry (HPLC-ESI-MS-MS) was used as analytical method. Limit of quantification and detection (LOQ and LOD) for GBH residues and AMPA in the 3 matrices was respectively of 10 ng g-1 and 1 ng g-1. In beebread, 81.5% of the samples showed a residue concentration > LOQ and 9.9% of the samples a residue concentration < LOQ (detection without quantification); no significant difference in detection rate was found between the north and the south of the country. Glyphosate was detected in beeswax less frequently than in beebread (i.e. 26% >LOQ versus 81.5% >LOQ). The maximum GBH residues and AMPA concentration found in beebread (respectively 700 ng g-1 and 250 ng g-1) led to sub-lethal exposure to bees. The Hazard Quotient (HQ) for beebread and beeswax (7 and 3.2, respectively) were far below the "safety" oral and contact thresholds for bees. For human health, the highest exposure to GBH residues in pollen corresponded to 0.312% and 0.187% of the ADI and of the ARfD respectively and, to 0.002% and to 0.001% for beeswax. No transfer of glyphosate from wax to honey was detected. Considering our results and the available regulatory data on the glyphosate molecule considered solely, not including the adjuvants in GBH formulation, the consumption of these three contaminated matrices would not be a food safety issue. Nonetheless, caution should be taken in the interpretation of the results as new studies indicate possible glyphosate/GBH residues toxicity below regulatory limits and at chronic sub-lethal doses.


Assuntos
Exposição Dietética/estatística & dados numéricos , Monitoramento Ambiental , Glicina/análogos & derivados , Mel/análise , Resíduos de Praguicidas/análise , Própole/química , Ceras/química , Contaminação de Alimentos , Glicina/análise , Herbicidas
14.
PLoS One ; 14(9): e0223236, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31557264

RESUMO

Worldwide, the ecto-parasitic mite Varroa destructor has been assigned as an important driver of honey bee (Apis mellifera) colony losses. Unlike the subspecies of European origin, the honey bees in some African countries such as Uganda and Ethiopia may not be as threatened or suffer less from mite-infestations. However, only little is known about the factors or traits that enable them to co-exist with the mite without beekeepers' intervention. Hence, this study was designed to investigate these factors or traits that limit the Varroa mite population in Ethiopian honey bees (Apis mellifera simensis). The study was conducted in the primary honey producing region of Ethiopia, i.e. Tigray. Mite infestation levels were shown to be lower in traditional hives (when compared to framed hives) and when colonies were started up from swarm catching (when compared to colony splitting). However, the influence of the comb cell size on mite infestation was not observed. With respect to the bee biology, the hygienic behavior was shown to be high (pin-test: 92.2% removal in 24 hours) and was negatively correlated with phoretic mite counts (Pearson; r = -0.79; P < 0.01) and mite infestation levels in brood (Pearson; r = -0.46; P < 0.001). Efforts to estimate the Varroa mite reproductive capacity were seriously hampered by an extremely low brood infestation level. From the 133 founder mites found (in 6727 capped brood cells) only 18.80% were capable of producing a reproductive progeny. Failure to produce adult male progeny was unexpectedly high (79.70%). We have suggested a few adaptations to the test protocols allowing to estimate the protective traits of honey bee colonies under very low Varroa pressure. Apart from that, this study demonstrates that the honey bees from Ethiopia are suitable targets to further decipher the genetic predisposition of resistance against V. destructor. It is still unclear to what extent simensis differs from the more common scutellata subspecies.


Assuntos
Abelhas/parasitologia , Resistência à Doença/genética , Infestações por Ácaros/veterinária , Varroidae/fisiologia , Animais , Abelhas/genética , Etiópia , Interações Hospedeiro-Parasita/genética , Infestações por Ácaros/epidemiologia , Infestações por Ácaros/parasitologia , Crescimento Demográfico , Reprodução/fisiologia
15.
Sci Total Environ ; 687: 712-719, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31412474

RESUMO

To assess the health risk posed by flumethrin residues in beeswax to honeybees and honey consumers, 124 wax samples randomly distributed in Belgium were analysed for flumethrin residues using liquid chromatography/tandem mass spectrometry. The risk posed by flumethrin residues in beeswax to honeybee health was assessed through the calculation of a non-pondered and a pondered Hazard Quotient by the prevalence rate of flumethrin considering an oral or topical exposure. No statistical difference was found when comparing both the average flumethrin residues concentrations and contact and oral pondered hazard quotients between apiaries with lower and equal or higher than 10% of colony loss. Flumethrin residues estimated daily intake by Belgian consumers through honey and wax ingestion was estimated via a deterministic (worst-case scenario) and a probabilistic approach. The probabilistic approach was not possible for beeswax consumption due to the lack of individual consumption data. The highest estimated exposure was <0.1% of the theoretical maximum daily intake for both approaches, meaning no risk for human health.


Assuntos
Exposição Dietética/análise , Resíduos de Praguicidas/análise , Piretrinas/análise , Ceras/química , Animais , Abelhas , Bélgica , Exposição Dietética/estatística & dados numéricos , Humanos
16.
Sci Rep ; 9(1): 7794, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127129

RESUMO

Host-parasite co-evolution history is lacking when parasites switch to novel hosts. This was the case for Western honey bees (Apis mellifera) when the ectoparasitic mite, Varroa destructor, switched hosts from Eastern honey bees (Apis cerana). This mite has since become the most severe biological threat to A. mellifera worldwide. However, some A. mellifera populations are known to survive infestations, largely by suppressing mite population growth. One known mechanism is suppressed mite reproduction (SMR), but the underlying genetics are poorly understood. Here, we take advantage of haploid drones, originating from one queen from the Netherlands that developed Varroa-resistance, whole exome sequencing and elastic-net regression to identify genetic variants associated with SMR in resistant honeybees. An eight variants model predicted 88% of the phenotypes correctly and identified six risk and two protective variants. Reproducing and non-reproducing mites could not be distinguished using DNA microsatellites, which is in agreement with the hypothesis that it is not the parasite but the host that adapted itself. Our results suggest that the brood pheromone-dependent mite oogenesis is disrupted in resistant hosts. The identified genetic markers have a considerable potential to contribute to a sustainable global apiculture.


Assuntos
Abelhas/parasitologia , Infestações por Ácaros/veterinária , Varroidae/fisiologia , Animais , Abelhas/genética , Abelhas/fisiologia , Feminino , Frequência do Gene , Variação Genética , Interações Hospedeiro-Parasita , Masculino , Infestações por Ácaros/genética , Infestações por Ácaros/parasitologia , Reprodução , Varroidae/genética , Sequenciamento Completo do Exoma
17.
Toxicon ; 150: 198-206, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29842867

RESUMO

Honeybee (Apis mellifera) venom (HBV) represents an ideal model to study the role of particular venom components in allergic reactions in sensitized individuals as well as in the eusociality of Hymenoptera species. The aim of this study was to further characterize the HBV components C1q-like protein (C1q) and PDGF/VEGF-like factor 1 (PVF1). C1q and PVF1 were produced as recombinant proteins in insect cells. Their allergenic properties were examined by determining the level of specific IgE antibodies in the sera of HBV-allergic patients (n = 26) as well as by their capacity to activate patients' basophils (n = 11). Moreover, the transcript heterogeneity of PVF1 was analyzed. It could be demonstrated that at least three PVF1 variants are present in the venom gland, which all result from alternative splicing of one transcript. Additionally, recombinant C1q and PVF1 from Spodoptera frugiperda insect cells exhibited specific IgE reactivity with approximately 38.5% of sera of HBV-allergic patients. Interestingly, both proteins were unable to activate basophils of the patients, questioning their role in the context of clinically relevant sensitization. Recombinant C1q and PVF1 can build the basis for a deeper understanding of the molecular mechanisms of Hymenoptera venoms. Moreover, the conflicting results between IgE sensitization and lack of basophil activation, might in the future contribute to the identification of factors that determine the allergenic potential of proteins.


Assuntos
Venenos de Abelha/química , Abelhas/fisiologia , Hipersensibilidade , Proteínas de Insetos/química , Proteínas de Insetos/toxicidade , Alérgenos/química , Alérgenos/toxicidade , Animais , Baculoviridae , Clonagem Molecular , Regulação da Expressão Gênica , Humanos , Mordeduras e Picadas de Insetos , Células Sf9
18.
Front Microbiol ; 9: 177, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29491849

RESUMO

Bees are associated with a remarkable diversity of microorganisms, including unicellular parasites, bacteria, fungi, and viruses. The application of next-generation sequencing approaches enables the identification of this rich species composition as well as the discovery of previously unknown associations. Using high-throughput polyadenylated ribonucleic acid (RNA) sequencing, we investigated the metatranscriptome of eight wild bee species (Andrena cineraria, Andrena fulva, Andrena haemorrhoa, Bombus terrestris, Bombus cryptarum, Bombus pascuorum, Osmia bicornis, and Osmia cornuta) sampled from four different localities in Belgium. Across the RNA sequencing libraries, 88-99% of the taxonomically informative reads were of the host transcriptome. Four viruses with homology to insect pathogens were found including two RNA viruses (belonging to the families Iflaviridae and Tymoviridae that harbor already viruses of honey bees), a double stranded DNA virus (family Nudiviridae) and a single stranded DNA virus (family Parvoviridae). In addition, we found genomic sequences of 11 unclassified arthropod viruses (related to negeviruses, sobemoviruses, totiviruses, rhabdoviruses, and mononegaviruses), seven plant pathogenic viruses, and one fungal virus. Interestingly, nege-like viruses appear to be widespread, host-specific, and capable of attaining high copy numbers inside bees. Next to viruses, three novel parasite associations were discovered in wild bees, including Crithidia pragensis and a tubulinosematid and a neogregarine parasite. Yeasts of the genus Metschnikowia were identified in solitary bees. This study gives a glimpse of the microorganisms and viruses associated with social and solitary wild bees and demonstrates that their diversity exceeds by far the subset of species first discovered in honey bees.

19.
Eur J Protistol ; 61(Pt A): 13-19, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28826077

RESUMO

The microsporidium Nosema neumanni n. sp., a new parasite of the honeybee Apis mellifera is described based on its ultra-structural and molecular characteristics. Structures resembling microsporidian spores were found by microscopic examination of honeybees from Uganda. Molecular confirmation failed when PCR primers specific for Nosema apis and Nosema ceranae were used, but was successful with primers covering the whole family of Nosematidae. We performed transmission electron microscopy and found typical microsporidian spores which were smaller (length: 2.36±0.14µm and width: 1.78±0.06µm; n=6) and had fewer polar filament coils (10-12) when compared to those of known species infecting honeybees. The entire 16S SSU rRNA region was amplified, cloned and sequenced and was found to be unique with the highest resemblance (97% identity) to N. apis. The incidence of N. neumanni n. sp. in Ugandan honeybees was found to be much higher than of the two other Nosema species.


Assuntos
Abelhas/parasitologia , Nosema/classificação , Animais , Microscopia Eletrônica de Transmissão , Nosema/genética , Nosema/ultraestrutura , RNA Ribossômico 16S/genética , Especificidade da Espécie , Uganda
20.
J Virol Methods ; 248: 217-225, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28757385

RESUMO

The Chronic bee paralysis virus (CBPV) is the aetiological agent of chronic bee paralysis, a contagious disease associated with nervous disorders in adult honeybees leading to massive mortalities in front of the hives. Some of the clinical signs frequently reported, such as trembling, may be confused with intoxication syndromes. Therefore, laboratory diagnosis using real-time PCR to quantify CBPV loads is used to confirm disease. Clinical signs of chronic paralysis are usually associated with viral loads higher than 108 copies of CBPV genome copies per bee (8 log10 CBPV/bee). This threshold is used by the European Union Reference Laboratory for Bee Health to diagnose the disease. In 2015, the accuracy of measurements of three CBPV loads (5, 8 and 9 log10 CBPV/bee) was assessed through an inter-laboratory study. Twenty-one participants, including 16 European National Reference Laboratories, received 13 homogenates of CBPV-infected bees adjusted to the three loads. Participants were requested to use the method usually employed for routine diagnosis. The quantitative results (n=270) were analysed according to international standards NF ISO 13528 (2015) and NF ISO 5725-2 (1994). The standard deviations of measurement reproducibility (SR) were 0.83, 1.06 and 1.16 at viral loads 5, 8 and 9 log10 CBPV/bee, respectively. The inter-laboratory confidence of viral quantification (+/- 1.96SR) at the diagnostic threshold (8 log10 CBPV/bee) was+/- 2.08 log10 CBPV/bee. These results highlight the need to take into account the confidence of measurements in epidemiological studies using results from different laboratories. Considering this confidence, viral loads over 6 log10 CBPV/bee may be considered to indicate probable cases of chronic paralysis.


Assuntos
Abelhas/virologia , Genoma Viral , Vírus de Insetos/genética , Vírus de Insetos/fisiologia , Vírus de RNA/genética , Vírus de RNA/fisiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Laboratórios , RNA Viral/genética , Reprodutibilidade dos Testes , Carga Viral/genética , Carga Viral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...