Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Phys Chem Lett ; : 5902-5907, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32633516

RESUMO

We report an on-surface synthesis of five-membered carbon ring via a [4 + 1] annulation reaction, starting from a simple terminal alkynyl bromide, 4-(bromoethynyl)biphenyl, on Ag(110). The combination of scanning tunneling microscopy (STM), synchrotron radiation photoemission spectroscopy (SRPES), and density functional theory (DFT) calculations unravel the reaction pathway and mechanism. Three basic reaction steps are involved, successively including the formation of alkynyl-Ag-alkynyl bridged organometallic dimer, the generation of alkylidene carbene intermediate, and the final [4 + 1] annulation involving a hydrogen transfer step.

2.
Chem Commun (Camb) ; 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32602478

RESUMO

We report a multi-step on-surface synthesis strategy. The first step consists in the surface-supported synthesis of metal-organic complexes, which are subsequently used to steer on-surface alkyne coupling reactions. In addition, we analyze and compare the electronic properties of the different coupling motifs obtained.

3.
Nat Nanotechnol ; 15(6): 421-423, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32313218
4.
ACS Nano ; 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32159937

RESUMO

A hallmark of quantum control is the ability to manipulate quantum emission at the nanoscale. Through scanning tunneling microscopy-induced luminescence (STML), we are able to generate plasmonic light originating from inelastic tunneling processes that occur in the vacuum between a tip and a few-nanometer-thick molecular film of C60 deposited on Ag(111). Single photon emission, not of molecular excitonic origin, occurs with a 1/e recovery time of a tenth of a nanosecond or less, as shown through Hanbury Brown and Twiss photon intensity interferometry. Tight-binding calculations of the electronic structure for the combined tip and Ag-C60 system results in good agreement with experiment. The tunneling happens through electric-field-induced split-off states below the C60 LUMO band, which leads to a Coulomb blockade effect and single photon emission. The use of split-off states is shown to be a general technique that has special relevance for narrowband materials with a large bandgap.

5.
Chem Commun (Camb) ; 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32065182

RESUMO

The self-assembly of leucoquinizarin molecules on Au(111) surfaces is shown to be characterized by the molecules mostly being in their keto-enolic tautomeric form, with evidence of their temporary switching to other tautomeric forms. This reveals a metastable chemistry of the assembled molecules, to be considered for their possible employment in the formation of more complex hetero-organic interfaces.

6.
ACS Nano ; 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32101402

RESUMO

We extensively characterize the electronic structure of ultranarrow graphene nanoribbons (GNRs) with armchair edges and zigzag termini that have five carbon atoms across their width (5-AGNRs), as synthesized on Au(111). Scanning tunneling spectroscopy measurements on the ribbons, recorded on both the metallic substrate and a decoupling NaCl layer, show well-defined dispersive bands and in-gap states. In combination with theoretical calculations, we show how these in-gap states are topological in nature and localized at the zigzag termini of the nanoribbons. In addition to rationalizing the driving force behind the topological class selection of 5-AGNRs, we also uncover the length-dependent behavior of these end states which transition from singly occupied spin-split states to a closed-shell form as the ribbons become shorter. Finally, we demonstrate the magnetic character of the end states via transport experiments in a model two-terminal device structure in which the ribbons are suspended between the scanning probe and the substrate that both act as leads.

7.
Chemphyschem ; 20(18): 2249-2250, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31509330
8.
Nanoscale ; 11(33): 15567-15575, 2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31402370

RESUMO

Over the last decades, organosulfur compounds at the interface of noble metals have proved to be extremely versatile systems for both fundamental and applied research. However, the anchoring of thiols to gold remained an object of controversy for a long time. The RS-Au-SR linkage, in particular, is a robust bonding configuration that displays interesting properties. It is generated spontaneously at room temperature and can be used for the production of extended molecular nanostructures. In this work we explore the behavior of 1,4-bis(4-mercaptophenyl)benzene (BMB) on the Au(111) surface, which results in the formation of 2D crystalline metal-organic assemblies stabilized by this type of Au-thiolate bonds. We show how to control the thiolate's stereospecific bonding motif and thereby choose whether to form ordered arrays of Au3BMB3 units with embedded triangular nanopores or linearly stacked metal-organic chains. The former turn out to be thermodynamically favored structures and display confinement of the underneath Au(111) surface state. The electronic properties of single molecules as well as of the 2D crystalline self-assemblies have been characterized both on the metal-organic backbone and inside the associated pores.

9.
Chemphyschem ; 20(18): 2305-2310, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31328365

RESUMO

Within the collection of surface-supported reactions currently accessible for the production of extended molecular nanostructures under ultra-high vacuum, Ullmann coupling has been the most successful in the controlled formation of covalent single C-C bonds. Particularly advanced control of this synthetic tool has been obtained by means of hierarchical reactivity, commonly achieved by the use of different halogen atoms that consequently display distinct activation temperatures. Here we report on the site-selective reactivity of certain carbon-halogen bonds. We use precursor molecules halogenated with bromine atoms at two non-equivalent carbon atoms and found that the Ullmann coupling occurs on Au(111) with a remarkable predilection for one of the positions. Experimental evidence is provided by means of scanning tunneling microscopy and core level photoemission spectroscopy, and a rationalized understanding of the observed preference is obtained from density functional theory calculations.

10.
Nano Lett ; 19(5): 3288-3294, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30964303

RESUMO

We report on the fabrication and transport characterization of atomically precise single-molecule devices consisting of a magnetic porphyrin covalently wired by graphene nanoribbon electrodes. The tip of a scanning tunneling microscope was utilized to contact the end of a GNR-porphyrin-GNR hybrid system and create a molecular bridge between the tip and sample for transport measurements. Electrons tunneling through the suspended molecular heterostructure excited the spin multiplet of the magnetic porphyrin. The detachment of certain spin centers from the surface shifted their spin-carrying orbitals away from an on-surface mixed-valence configuration, recovering its original spin state. The existence of spin-polarized resonances in the free-standing systems and their electrical addressability is the fundamental step in the utilization of carbon-based materials as functional molecular spintronics systems.

11.
Chem Rev ; 119(7): 4717-4776, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30875199

RESUMO

On-surface synthesis is appearing as an extremely promising research field aimed at creating new organic materials. A large number of chemical reactions have been successfully demonstrated to take place directly on surfaces through unusual reaction mechanisms. In some cases the reaction conditions can be properly tuned to steer the formation of the reaction products. It is thus possible to control the initiation step of the reaction and its degree of advancement (the kinetics, the reaction yield); the nature of the reaction products (selectivity control, particularly in the case of competing processes); as well as the structure, position, and orientation of the covalent compounds, or the quality of the as-formed networks in terms of order and extension. The aim of our review is thus to provide an extensive description of all tools and strategies reported to date and to put them into perspective. We specifically define the different approaches available and group them into a few general categories. In the last part, we demonstrate the effective maturation of the on-surface synthesis field by reporting systems that are getting closer to application-relevant levels thanks to the use of advanced control strategies.

12.
ACS Nano ; 12(10): 10537-10544, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30295463

RESUMO

Designing molecular organic semiconductors with distinct frontier orbitals is key for the development of devices with desirable properties. Generating defined organic nanostructures with atomic precision can be accomplished by on-surface synthesis. We use this "dry" chemistry to introduce topological variations in a conjugated poly( para-phenylene) chain in the form of meta-junctions. As evidenced by STM and LEED, we produce a macroscopically ordered, monolayer thin zigzag chain film on a vicinal silver crystal. These cross-conjugated nanostructures are expected to display altered electronic properties, which are now unraveled by highly complementary experimental techniques (ARPES and STS) and theoretical calculations (DFT and EPWE). We find that meta-junctions dominate the weakly dispersive band structure, while the band gap is tunable by altering the linear segment's length. These periodic topology effects induce significant loss of the electronic coupling between neighboring linear segments leading to partial electron confinement in the form of weakly coupled quantum dots. Such periodic quantum interference effects determine the overall semiconducting character and functionality of the chains.

13.
Chem Commun (Camb) ; 54(73): 10260-10263, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30152499

RESUMO

Achieving the Ag(001)-supported synthesis of heptacene from two related reactants reveals the effect of the presence of Br atoms on the reaction process. The properties of reactants, intermediates and end-products are further characterized by scanning tunneling microscopy and spectroscopy.

14.
J Phys Chem Lett ; 9(10): 2510-2517, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29688007

RESUMO

The challenge of synthesizing graphene nanoribbons (GNRs) with atomic precision is currently being pursued along a one-way road, based on the synthesis of adequate molecular precursors that react in predefined ways through self-assembly processes. The synthetic options for GNR generation would multiply by adding a new direction to this readily successful approach, especially if both of them can be combined. We show here how GNR synthesis can be guided by an adequately nanotemplated substrate instead of by the traditionally designed reactants. The structural atomic precision, unachievable to date through top-down methods, is preserved by the self-assembly process. This new strategy's proof-of-concept compares experiments using 4,4''-dibromo-para-terphenyl as a molecular precursor on flat Au(111) and stepped Au(322) substrates. As opposed to the former, the periodic steps of the latter drive the selective synthesis of 6 atom-wide armchair GNRs, whose electronic properties have been further characterized in detail by scanning tunneling spectroscopy, angle resolved photoemission, and density functional theory calculations.

15.
Sci Adv ; 4(2): eaaq0582, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29464209

RESUMO

We report on the construction and magnetic characterization of a fully functional hybrid molecular system composed of a single magnetic porphyrin molecule bonded to graphene nanoribbons with atomically precise contacts. We use on-surface synthesis to direct the hybrid creation by combining two molecular precursors on a gold surface. High-resolution imaging with a scanning tunneling microscope finds that the porphyrin core fuses into the graphene nanoribbons through the formation of new carbon rings at chemically predefined positions. These ensure the stability of the hybrid and the extension of the conjugated character of the ribbon into the molecule. By means of inelastic tunneling spectroscopy, we prove the survival of the magnetic functionality of the contacted porphyrin. The molecular spin appears unaffected by the graphenoid electrodes, and we simply observe that the magnetic anisotropy appears modified depending on the precise structure of the contacts.

16.
J Phys Chem Lett ; 9(1): 25-30, 2018 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-29220194

RESUMO

Recent advances in graphene-nanoribbon-based research have demonstrated the controlled synthesis of chiral graphene nanoribbons (chGNRs) with atomic precision using strategies of on-surface chemistry. However, their electronic characterization, including typical figures of merit like band gap or frontier band's effective mass, has not yet been reported. We provide a detailed characterization of (3,1)-chGNRs on Au(111). The structure and epitaxy, as well as the electronic band structure of the ribbons, are analyzed by means of scanning tunneling microscopy and spectroscopy, angle-resolved photoemission, and density functional theory.

17.
ACS Nano ; 11(11): 11661-11668, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29049879

RESUMO

We report the energy level alignment evolution of valence and conduction bands of armchair-oriented graphene nanoribbons (aGNR) as their band gap shrinks with increasing width. We use 4,4″-dibromo-para-terphenyl as the molecular precursor on Au(111) to form extended poly-para-phenylene nanowires, which can subsequently be fused sideways to form atomically precise aGNRs of varying widths. We measure the frontier bands by means of scanning tunneling spectroscopy, corroborating that the nanoribbon's band gap is inversely proportional to their width. Interestingly, valence bands are found to show Fermi level pinning as the band gap decreases below a threshold value around 1.7 eV. Such behavior is of critical importance to understand the properties of potential contacts in GNR-based devices. Our measurements further reveal a particularly interesting system for studying Fermi level pinning by modifying an adsorbate's band gap while maintaining an almost unchanged interface chemistry defined by substrate and adsorbate.

18.
J Am Chem Soc ; 138(34): 10963-7, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27490459

RESUMO

We investigate the thermally induced cyclization of 1,2-bis(2-phenylethynyl)benzene on Au(111) using scanning tunneling microscopy and computer simulations. Cyclization of sterically hindered enediynes is known to proceed via two competing mechanisms in solution: a classic C(1)-C(6) (Bergman) or a C(1)-C(5) cyclization pathway. On Au(111), we find that the C(1)-C(5) cyclization is suppressed and that the C(1)-C(6) cyclization yields a highly strained bicyclic olefin whose surface chemistry was hitherto unknown. The C(1)-C(6) product self-assembles into discrete noncovalently bound dimers on the surface. The reaction mechanism and driving forces behind noncovalent association are discussed in light of density functional theory calculations.

19.
ACS Nano ; 10(9): 9000-8, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27548516

RESUMO

Contributing to the need for new graphene nanoribbon (GNR) structures that can be synthesized with atomic precision, we have designed a reactant that renders chiral (3,1)-GNRs after a multistep reaction including Ullmann coupling and cyclodehydrogenation. The nanoribbon synthesis has been successfully proven on different coinage metals, and the formation process, together with the fingerprints associated with each reaction step, has been studied by combining scanning tunneling microscopy, core-level spectroscopy, and density functional calculations. In addition to the GNR's chiral edge structure, the substantial GNR lengths achieved and the low processing temperature required to complete the reaction grant this reactant extremely interesting properties for potential applications.

20.
Nat Chem ; 8(7): 678-83, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27325094

RESUMO

Chemical transformations at the interface between solid/liquid or solid/gaseous phases of matter lie at the heart of key industrial-scale manufacturing processes. A comprehensive study of the molecular energetics and conformational dynamics that underlie these transformations is often limited to ensemble-averaging analytical techniques. Here we report the detailed investigation of a surface-catalysed cross-coupling and sequential cyclization cascade of 1,2-bis(2-ethynyl phenyl)ethyne on Ag(100). Using non-contact atomic force microscopy, we imaged the single-bond-resolved chemical structure of transient metastable intermediates. Theoretical simulations indicate that the kinetic stabilization of experimentally observable intermediates is determined not only by the potential-energy landscape, but also by selective energy dissipation to the substrate and entropic changes associated with key transformations along the reaction pathway. The microscopic insights gained here pave the way for the rational design and control of complex organic reactions at the surface of heterogeneous catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA