Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(1): 320-324, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31529574

RESUMO

We report palladium-catalyzed cross-coupling reactions of chiral secondary non-stabilized dialkylzinc reagents, prepared from readily available chiral secondary alkyl iodides, with alkenyl and aryl halides. This method provides α-chiral alkenes and arenes with very high retention of configuration (dr up to 98:2) and satisfactory overall yields (up to 76 % for 3 reaction steps). The configurational stability of these chiral non-stabilized dialkylzinc reagents was determined and exceeded several hours at 25 °C. DFT calculations were performed to rationalize the stereoretention during the catalytic cycle. Furthermore, the cross-coupling reaction was applied in an efficient total synthesis of the sesquiterpenes (S)- and (R)-curcumene with control of the absolute stereochemistry.

2.
J Phys Chem A ; 122(45): 8828-8839, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30354136

RESUMO

High degrees of delithiation of layered transition metal oxide cathode active materials (NCMs and HE-NCM) for lithium-ion batteries (LIBs) was shown to lead to the release of singlet oxygen, which is accompanied by enhanced electrolyte decomposition. Here, we study the reactivity of chemically produced singlet oxygen with the commonly used cyclic and linear carbonate solvents for LIB electrolytes. On-line gassing analysis of the decomposition of ethylene carbonate (EC) and dimethyl carbonate (DMC) reveals different stability toward the chemical attack of singlet oxygen, which is produced in situ by photoexcitation of the Rose Bengal dye. Ab initio calculations and on-the-fly simulations reveal a possible reaction mechanism, confirming the experimental findings. In the case of EC, hydrogen peroxide and vinylene carbonate (VC) are found to be the products of the first reaction step of EC with singlet oxygen in the reaction cascade of the EC chemical decomposition. In contrast to EC, simulations suggested DMC to be stable in the presence of singlet oxygen, which was also confirmed experimentally. Hydrogen peroxide is detrimental for cycling of a battery. For all known cathode active materials, the potential where singlet oxygen is released is found to be already high enough to electrochemically oxidize hydrogen peroxide. The formed protons and/or water both react with the typically used LiPF6 salt to HF that then leads to transition metal dissolution from the cathode active materials. This study shows how important the chemical stability toward singlet oxygen is for today's battery systems and that a trade-off will have to be found between chemical and electrochemical stability of the solvent to be used.

3.
J Am Chem Soc ; 140(39): 12538-12544, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30204442

RESUMO

The ultraviolet-induced photochemistry of five-membered heterocyclic rings often involves ring opening as a prominent excited-state relaxation pathway. The identification of this particular photoinduced mechanism, however, presents a challenge for many experimental methods. We show that femtosecond X-ray transient absorption spectroscopy at the carbon K-edge (∼284 eV) provides core-to-valence spectral fingerprints that enable the unambiguous identification of ring-opened isomers of organic heterocycles. The unique differences in the electronic structure between a carbon atom bonded to the oxygen in the ring versus a carbon atom set free of the oxygen in the ring-opened product are readily apparent in the X-ray spectra. Ultrafast ring opening via C-O bond fission occurs within ∼350 fs in 266-nm photoexcited furfural, as evidenced by fingerprint core (carbon 1s) electronic transitions into a nonbonding orbital of the open-chain carbene intermediate at 283.3 eV. The lack of recovery of the 1sπ* ground-state depletion in furfural at 286.4 eV indicates that internal conversion to the ground state is a minor channel. These experimental results, augmented by recent advances in the generation of isolated attosecond pulses at the carbon K-edge, will pave the way for probing ring-opened conical intersection dynamics in the future.

4.
Acc Chem Res ; 51(9): 2279-2286, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30152675

RESUMO

In 1998, the first successful quantum control experiment with application to a molecular framework was conducted with a shaped laser pulse, optimizing the branching ratio between different organometallic reaction channels. This work induced a vast activity in quantum control during the next 10 years, and different optimization aims were achieved in the gas phase, liquid phase, and even in biologically relevant molecules like light-harvesting complexes. Accompanying and preceding this development were important advances in theoretical quantum control simulations. They predicted several control scenarios and explained how and why quantum control experiments work. After many successful proofs of concept in molecular science, the big challenge is to expand its huge conceptual potential of directly being able to steer nuclear and/or electronic motion to more applied implementations. In this Account, based on several recent advances, we give a personal evaluation of where the field of molecular quantum control is at the moment and especially where we think promising applications can be in the near future. One of these paths leads to synthetic chemistry. The synthesis of novel pharmaceutical compounds or natural products often involves many synthetic steps, each one devouring resources and lowering the product yield. Shaped laser pulses can possibly act as photonic reagents and shorten the synthetic route toward the desired product. Chemical synthesis usually takes place in solution, and by including explicit solvent molecules in our quantum control simulations, we were able to identify their highly inhomogeneous influence on chemical reactions and how this affects potential quantum control. More important, we demonstrated for a synthetically relevant example that these complications can be overcome in theory, and laser pulses can be optimized to initiate the desired carbon-carbon bond formation. Putting this into context with the recently emerging concept of flow chemistry, which brings several practical advantages to the application of laser pulses, we want to encourage experimental groups to exploit this concept. Another path was opened by several additions to the commonly used laser pulse optimization algorithm (optimal control theory, OCT), several of which were developed in our group. The OCT algorithm as such is a purely mathematical optimization procedure, with no direct relation to experimental requirements. This means that usually the electric fields obtained out of OCT optimizations do not resemble laser pulses that can be achieved experimentally. However, the previously mentioned additions are aimed at closing the gap toward the experiment. In a recent quantum control study of our group, these algorithmic developments came to fruition. We were able to suggest a shaped laser pulse which can induce a long-living wave packet in the excited state of uracil. This might pave the way for novel experiments dedicated to investigating the formation of biological photodamage in DNA and RNA. The pulse we suggest is surprisingly simple because of the extended OCT algorithm and fulfills all criteria to be experimentally accessible.


Assuntos
Técnicas de Química Sintética/tendências , Teoria Quântica , Análise Espectral/tendências , Algoritmos , Técnicas de Química Sintética/métodos , Lasers , Luz , Análise Espectral/métodos , Vibração
5.
Phys Chem Chem Phys ; 20(35): 22753-22761, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30140797

RESUMO

Carbocations and carboradicals are key intermediates in organic chemistry. Typically UV laser excitation is used to induce homolytical or heterolytical bond cleavage in suitable precursor molecules. Of special interest hereby are diphenylmethyl compounds (Ph2CH-X) with X = Cl, Br as a leaving group as they form diphenylmethyl radicals (Ph2CH˙) and cations (Ph2CH+) within a femtosecond time scale in polar solvents. In this work, we build on our methodology developed for the chlorine case and investigate the photodissociation reaction of Ph2CH-Br by state-of-the-art theoretical methods. On the one hand, we employ specially adapted reactive coordinates for a grid-based wave packet dynamics in reduced dimensionality using the Wilson G-matrix ansatz for the kinetic part of the Hamiltonian. On the other hand, we use full-dimensional semiclassical on-the-fly dynamics with Tully's fewest switches surface hopping routine for comparison. We apply both methods to explain remarkable differences in experimental transient absorption measurements for Cl or Br as the leaving group. The wave packet motion, visible only for the bromine leaving group, can be related to the crucial role of the central carbon atom, which undergoes rehybridization from sp3 to sp2 during the photoinduced bond cleavage. Comparable features are the two consecutive conical intersections near the Franck-Condon region controlling the product splitting to Ph2CH˙/Br˙ and Ph2CH+/Br- as well as the difference in delay time for the respective product formation.

6.
J Chem Theory Comput ; 14(9): 4530-4540, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30091911

RESUMO

We present a nonadiabatic dynamics study concerning the subpicosecond relaxation of excited states in dimeric and trimeric thiophene chains. The influence of the triplet states in the overall process is, for the first time, taken into account by explicitly including spin-orbit couplings and hence allowing intersystem crossing phenomena. We observe the fundamental role of the triplet state manifold in driving the full relaxation process. In particular we evidence the effect of both, inter-ring rotation and ring-opening, in the process, as compared to the monomer, where the ring-opening process appears as the dominant one. In addition, the evolution of the open structures allows for trans to cis isomerization in the dimer and trimer. The overall relaxation process slows down with chain elongation. The complex decay mechanism characterized by the presence of different competing channels, due to the presence of a quasi degenerate manifold, is explained allowing the rationalization of oligothiophenes photophysics.

7.
J Am Chem Soc ; 140(28): 8714-8720, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29943578

RESUMO

UV light can induce chemical reactions in nucleic acids and thereby damage the genetic code. Like all of the five primary nucleobases, the isolated RNA base uracil exhibits ultrafast, nonradiative relaxation after photoexcitation, which helps to avoid photodamage most of the time. Nevertheless, within RNA and DNA strands, commonly occurring photolesions have been reported and are often ascribed to long-lived and delocalized excited states. Our quantum dynamical study now shows that excited-state longevity can also occur on a single nucleobase, without the need for delocalization. We include the effects of an atomistic RNA surrounding in wave packet simulations and explore the photorelaxation of uracil in its native biological environment. This reveals that steric hindrance through embedding in an RNA strand can inhibit the ultrafast relaxation mechanism of uracil, promoting excited-state longevity and potential photodamage. This process is nearly independent from the specific combination of neighboring bases.


Assuntos
RNA/química , Uracila/química , Modelos Moleculares , Conformação de Ácido Nucleico/efeitos da radiação , Fotólise/efeitos da radiação , Teoria Quântica , Raios Ultravioleta
8.
J Org Chem ; 83(9): 4905-4921, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29641195

RESUMO

An original oxidative ring contraction of easily accessible cyclobutene derivatives for the selective formation of cyclopropylketones (CPKs) under atmospheric conditions is reported. Comprehensive mechanistic studies are proposed to support this novel, yet unusual, rearrangement. Insights into the mechanism ultimately led to simplification and generalization of the ring contraction of cyclobutenes using mCPBA as an oxidant. This unique and functional group tolerant transformation proceeds under mild conditions at room temperature, providing access to a new library of polyfunctionalized motifs. With CPKs being attractive and privileged pharmacophores, the elaboration of such a simple and straightforward strategy represents a highly valuable tool for drug discovery and medicinal chemistry. Additionally, the described method was employed to generate a pool of bioactive substances and key precursors in a minimum number of steps.

9.
J Phys Chem A ; 122(11): 2849-2857, 2018 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-29498853

RESUMO

The inclusion of solvent effects in the theoretical analysis of molecular processes becomes increasingly important. Currently, it is not feasible to directly include the solvent on the quantum level. We use an Ehrenfest approach to study the coupled time evolution of quantum dynamically treated solutes and classical solvents system. The classical dynamics of the solvent is coupled to the wavepacket dynamics of the solute and rotational and translational degrees of freedom of the solute are included classically. This allows quantum dynamics simulations for ultrafast processes that are decided by environment interactions without explicit separation of time scales. We show the application to the dissociation of ICN in liquid Ar as a proof of principal system and to the more applied example of uracil in water.

10.
J Am Chem Soc ; 140(15): 5311-5318, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29578704

RESUMO

Hemithioindigo-based molecular motors are powered by nondamaging visible light and provide very fast directional rotations at ambient conditions. Their ground state energy profile has been probed in detail, but the crucial excited state processes are completely unknown so far. In addition, very fast processes in the ground state are also still elusive to date and thus knowledge of the whole operational mechanism remains to a large extent in the dark. In this work we elucidate the complete light-driven rotation mechanism by a combination of multiscale broadband transient absorption measurements covering a time scale from fs to ms in conjunction with a high level theoretical description of the excited state. In addition to a full description of the excited state dynamics in the various time regimes, we also provide the first experimental evidence for the elusive fourth intermediate ground state of the original HTI motor. The fate of this intermediate also is followed directly proving complete unidirectionality for both 180° rotation steps. At the same time, we uncover the hitherto unknown involvement of an unproductive triplet state pathway, which slightly diminishes the quantum yield of the E to Z photoisomerization. A rate model analysis shows that increasing the speed of motor rotation is most effectively done by increasing the photoisomerization quantum yields instead of barrier reduction for the thermal ratcheting steps. Our findings are of crucial importance for improved future designs of any light-driven molecular motor in general to yield better efficiencies and applicability.

11.
J Chem Theory Comput ; 14(1): 55-62, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29236484

RESUMO

A challenge for molecular quantum dynamics (QD) calculations is the curse of dimensionality with respect to the nuclear degrees of freedom. A common approach that works especially well for fast reactive processes is to reduce the dimensionality of the system to a few most relevant coordinates. Identifying these can become a very difficult task, because they often are highly unintuitive. We present a machine learning approach that utilizes an autoencoder that is trained to find a low-dimensional representation of a set of molecular configurations. These configurations are generated by trajectory calculations performed on the reactive molecular systems of interest. The resulting low-dimensional representation can be used to generate a potential energy surface grid in the desired subspace. Using the G-matrix formalism to calculate the kinetic energy operator, QD calculations can be carried out on this grid. In addition to step-by-step instructions for the grid construction, we present the application to a test system.

12.
Phys Chem Chem Phys ; 19(37): 25662-25670, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28905947

RESUMO

The fast and slow components of the relaxation of photoexcited thiophene have been investigated by means of SHARC (surface hopping including arbitrary couplings) molecular dynamics based on multiconfiguration electronic structure calculations. Triplet states are included to ascertain their role in the relaxation process. After thiophene is excited to the S1 state, ultrafast dynamics (τfast = 96 fs) initiates a ring opening due to cleavage of a carbon sulfur bond and simultaneous ring puckering. This time constant is in agreement with previous experimental and theoretical studies. The subsequent dynamics of the open-ring structures is characterized by the interplay of internal conversion and intersystem crossing. For the open-ring structures, the S0, S1, T1 and T2 states are nearly degenerate and the spin-orbit couplings are large. The underlying potential energy surface is flat and long-lived open-ring structures in the singlet as well as in the triplet states are formed. Both the participation of triplet states and the shape of the energy surface explain the experimentally observed slow ring closure in the ground state.

13.
ACS Cent Sci ; 3(1): 39-46, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28149951

RESUMO

Aplydactone (1) is a brominated ladderane sesquiterpenoid that was isolated from the sea hare Aplysia dactylomela together with the chamigranes dactylone (2) and 10-epi-dactylone (3). Given the habitat of A. dactylomela, it seems likely that 1 is formed from 2 through a photochemical [2 + 2] cycloaddition. Here, we disclose a concise synthesis of 1, 2, and 3 that was guided by excited state theory and relied on several highly stereoselective transformations. Our experiments and calculations confirm the photochemical origin of 1 and explain why it is formed as the sole isomer. Irradiation of 3 with long wavelength UV light resulted in a [2 + 2] cycloaddition that proceeded with opposite regioselectivity. On the basis of this finding, it seems likely that the resulting regioisomer, termed "8-epi-isoaplydactone", could also be found in A. dactylomela.

14.
J Am Chem Soc ; 139(14): 5061-5066, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28187684

RESUMO

The RNA nucleobase uracil can suffer from photodamage when exposed to UV light, which may lead to severe biological defects. To prevent this from happening in most cases, uracil exhibits an ultrafast relaxation mechanism from the electronically excited state back to the ground state. In our theoretical work, we demonstrate how this process can be significantly influenced using shaped laser pulses. This not only sheds new light on how efficient nature is in preventing biologically momentous photodamage. We also show a way to entirely prevent photorelaxation by preparing a long-living wave packet in the excited state. This can enable new experiments dedicated to finding the photochemical pathways leading to uracil photodamage. The optimized laser pulses we present fulfill all requirements to be experimentally accessible.

15.
Phys Chem Chem Phys ; 19(3): 2025-2035, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28009022

RESUMO

For the series furan, furfural and ß-furfural we investigated the effect of substituents and their positioning on the photoinduced relaxation dynamics in a combined theoretical and experimental approach. Using time resolved photoelectron spectroscopy with a high intensity probe pulse, we can, for the first time, follow the whole deactivation process of furan through a two photon probe signal. Using the extended 2-electron 2-orbital model [Nenov et al., J. Chem. Phys., 2011, 135, 034304] we explain the formation of one central conical intersection and predict the influence of the aldehyde group of the derivatives on its geometry. This, as well as the relaxation mechanisms from photoexcitation to the final outcome was investigated using a variety of theoretical methods. Complete active space self consistent field was used for on-the-fly calculations while complete active space perturbation theory and coupled cluster theory were used to accurately describe critical configurations. Experiment and theory show the relaxation dynamics of furfural and ß-furfural to be slowed down, and together they disclose an additional deactivation pathway, which is attributed to the nO lonepair state introduced with the aldehyde group.

16.
J Phys Chem A ; 120(50): 9941-9947, 2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-27934475

RESUMO

A wide variety of organic dyes form, under certain conditions, clusters know as J- and H-aggregates. Cyanine dyes are such a class of molecules where the spatial proximity of several dyes leads to overlapping electron orbitals and thus to the creation of a new energy landscape compared to that of the individual units. In this work, we create artificial H-aggregates of exactly two Cyanine 3 (Cy3) dyes by covalently linking them to a DNA molecule with controlled subnanometer distances. The absorption spectra of these coupled systems exhibit a blue-shifted peak, whose intensity varies depending on the distance between the dyes and the rigidity of the DNA template. Simulated vibrational resolved spectra, based on molecular orbital theory, excellently reproduce the experimentally observed features. Circular dichroism spectroscopy additionally reveals distinct signals, which indicates a chiral arrangement of the dye molecules. Molecular dynamic simulations of a Cy3-Cy3 construct including a 14-base pair DNA sequence verified chiral stacking of the dye molecules.


Assuntos
Carbocianinas/química , DNA/química , Dicroísmo Circular , Simulação de Dinâmica Molecular
17.
J Chem Theory Comput ; 12(12): 5698-5708, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27951675

RESUMO

The curse of dimensionality still remains as the central challenge of molecular quantum dynamical calculations. Either compromises on the accuracy of the potential landscape have to be made or methods must be used that reduce the dimensionality of the configuration space of molecular systems to a low dimensional one. For dynamic approaches such as grid-based wave packet dynamics that are confined to a small number of degrees of freedom this dimensionality reduction can become a major part of the overall problem. A common strategy to reduce the configuration space is by selection of a set of internal coordinates using chemical intuition. We devised two methods that increase the degree of automation of the dimensionality reduction as well as replace chemical intuition by more quantifiable criteria. Both methods reduce the dimensionality linearly and use the intrinsic reaction coordinate as guidance. The first one solely relies on the intrinsic reaction coordinate (IRC), whereas the second one uses semiclassical trajectories to identify the important degrees of freedom.

18.
Faraday Discuss ; 194: 495-508, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27711784

RESUMO

The migration of hydrogen atoms resulting in the isomerization of hydrocarbons is an important process which can occur on ultrafast timescales. Here, we visualize the light-induced hydrogen migration of acetylene to vinylidene in an ionic state using two synchronized 4 fs intense laser pulses. The first pulse induces hydrogen migration, and the second is used for monitoring transient structural changes via Coulomb explosion imaging. Varying the time delay between the pulses reveals the migration dynamics with a time constant of 54 ± 4 fs as observed in the H+ + H+ + CC+ channel. Due to the high temporal resolution, vibrational wave-packet motions along the CC- and CH-bonds are observed. Even though a maximum in isomerization yield for kinetic energy releases above 16 eV is measured, we find no indication for a backwards isomerization - in contrast to previous measurements. Here, we propose an alternative explanation for the maximum in isomerization yield, namely the surpassing of the transition state to the vinylidene configuration within the excited dication state.

19.
J Chem Phys ; 144(23): 234104, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27334151

RESUMO

Quantum dynamics simulations require prior knowledge of the potential energy surface as well as the kinetic energy operator. Typically, they are evaluated in a low-dimensional subspace of the full configuration space of the molecule as its dimensionality increases proportional to the number of atoms. This entails the challenge to find the most suitable subspace. We present an approach to design specially adapted reactive coordinates spanning this subspace. In addition to the essential geometric changes, these coordinates take into account the relaxation of the non-reactive coordinates without the necessity of performing geometry optimizations at each grid point. The method is demonstrated for an ultrafast photoinduced bond cleavage in a commonly used organic precursor for the generation of electrophiles. The potential energy surfaces for the reaction as well as the Wilson G-matrix as part of the kinetic energy operator are shown for a complex chemical reaction, both including the relaxation of the non-reactive coordinates on equal footing. A microscopic interpretation of the shape of the G-matrix elements allows to analyze the impact of the non-reactive coordinates on the kinetic energy operator. Additionally, we compare quantum dynamics simulations with and without the relaxation of the non-reactive coordinates included in the kinetic energy operator to demonstrate its influence.

20.
Struct Dyn ; 3(4): 043205, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26958588

RESUMO

Photoinduced bond cleavage is often employed for the generation of highly reactive carbocations in solution and to study their reactivity. Diphenylmethyl derivatives are prominent precursors in polar and moderately polar solvents like acetonitrile or dichloromethane. Depending on the leaving group, the photoinduced bond cleavage occurs on a femtosecond to picosecond time scale and typically leads to two distinguishable products, the desired diphenylmethyl cations (Ph2CH(+)) and as competing by-product the diphenylmethyl radicals ([Formula: see text]). Conical intersections are the chief suspects for such ultrafast branching processes. We show for two typical examples, the neutral diphenylmethylchloride (Ph2CH-Cl) and the charged diphenylmethyltriphenylphosphonium ions ([Formula: see text]) that the role of the conical intersections depends not only on the molecular features but also on the interplay with the environment. It turns out to differ significantly for both precursors. Our analysis is based on quantum chemical and quantum dynamical calculations. For comparison, we use ultrafast transient absorption measurements. In case of Ph2CH-Cl, we can directly connect the observed signals to two early three-state and two-state conical intersections, both close to the Franck-Condon region. In case of the [Formula: see text], dynamic solvent effects are needed to activate a two-state conical intersection at larger distances along the reaction coordinate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA