Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
medRxiv ; 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34909794

RESUMO

Background: By August 2021, South Africa experienced three SARS-CoV-2 waves; the second and third associated with emergence of Beta and Delta variants respectively. Methods: We conducted a prospective cohort study during July 2020-August 2021 in one rural and one urban community. Mid-turbinate nasal swabs were collected twice-weekly from household members irrespective of symptoms and tested for SARS-CoV-2 using real-time reverse transcription polymerase chain reaction (rRT-PCR). Serum was collected every two months and tested for anti-SARS-CoV-2 antibodies. Results: Among 115,759 nasal specimens from 1,200 members (follow-up rate 93%), 1976 (2%) were SARS-CoV-2-positive. By rRT-PCR and serology combined, 62% (749/1200) of individuals experienced ≥1 SARS-CoV-2 infection episode, and 12% (87/749) experienced reinfection. Of 662 PCR-confirmed episodes with available data, 15% (n=97) were associated with ≥1 symptom. Among 222 households, 200 (90%) had ≥1 SARS-CoV-2-positive individual. Household cumulative infection risk (HCIR) was 25% (213/856). On multivariable analysis, accounting for age and sex, index case lower cycle threshold value (OR 3.9, 95%CI 1.7-8.8), urban community (OR 2.0,95%CI 1.1-3.9), Beta (OR 4.2, 95%CI 1.7-10.1) and Delta (OR 14.6, 95%CI 5.7-37.5) variant infection were associated with increased HCIR. HCIR was similar for symptomatic (21/110, 19%) and asymptomatic (195/775, 25%) index cases (p=0.165). Attack rates were highest in individuals aged 13-18 years and individuals in this age group were more likely to experience repeat infections and to acquire SARS-CoV-2 infection. People living with HIV who were not virally supressed were more likely to develop symptomatic illness, and shed SARS-CoV-2 for longer compared to HIV-uninfected individuals. Conclusions: In this study, 85% of SARS-CoV-2 infections were asymptomatic and index case symptom status did not affect HCIR, suggesting a limited role for control measures targeting symptomatic individuals. Increased household transmission of Beta and Delta variants, likely contributed to successive waves, with >60% of individuals infected by the end of follow-up. Research in context: Evidence before this study: Previous studies have generated wide-ranging estimates of the proportion of SARS-CoV-2 infections which are asymptomatic. A recent systematic review found that 20% (95% CI 3%-67%) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections remained asymptomatic throughout infection and that transmission from asymptomatic individuals was reduced. A systematic review and meta-analysis of 87 household transmission studies of SARS-CoV-2 found an estimated secondary attack rate of 19% (95% CI 16-22). The review also found that household secondary attack rates were increased from symptomatic index cases and that adults were more likely to acquire infection. As of December 2021, South Africa experienced three waves of SARS-CoV-2 infections; the second and third waves were associated with circulation of Beta and Delta variants respectively. SARS-CoV-2 vaccines became available in February 2021, but uptake was low in study sites reaching 5% fully vaccinated at the end of follow up. Studies to quantify the burden of asymptomatic infections, symptomatic fraction, reinfection frequency, duration of shedding and household transmission of SARS-CoV-2 from asymptomatically infected individuals have mostly been conducted as part of outbreak investigations or in specific settings. Comprehensive systematic community studies of SARS-CoV-2 burden and transmission including for the Beta and Delta variants are lacking, especially in low vaccination settings.Added value of this study: We conducted a unique detailed COVID-19 household cohort study over a 13 month period in South Africa, with real time reverse transcriptase polymerase chain reaction (rRT-PCR) testing twice a week irrespective of symptoms and bimonthly serology. By the end of the study in August 2021, 749 (62%) of 1200 individuals from 222 randomly sampled households in a rural and an urban community in South Africa had at least one confirmed SARS-CoV-2 infection, detected on rRT-PCR and/or serology, and 12% (87/749) experienced reinfection. Symptom data were analysed for 662 rRT-PCR-confirmed infection episodes that occurred >14 days after the start of follow-up (of a total of 718 rRT-PCR-confirmed episodes), of these, 15% (n=97) were associated with one or more symptoms. Among symptomatic indvidiausl, 9% (n=9) were hospitalised and 2% (n=2) died. Ninety percent (200/222) of included households, had one or more individual infected with SARS-CoV-2 on rRT-PCR and/or serology within the household. SARS-CoV-2 infected index cases transmitted the infection to 25% (213/856) of susceptible household contacts. Index case ribonucleic acid (RNA) viral load proxied by rRT-PCR cycle threshold value was strongly predictive of household transmission. Presence of symptoms in the index case was not associated with household transmission. Household transmission was four times greater from index cases infected with Beta variant and fifteen times greater from index cases infected with Delta variant compared to wild-type infection. Attack rates were highest in individuals aged 13-18 years and individuals in this age group were more likely to experience repeat infections and to acquire SARS-CoV-2 infection within households. People living with HIV (PLHIV) who were not virally supressed were more likely to develop symptomatic illness when infected with SARS-CoV-2, and shed SARS-CoV-2 for longer when compared to HIV-uninfected individuals.Implications of all the available evidence: We found a high rate of SARS-CoV-2 infection in households in a rural community and an urban community in South Africa, with the majority of infections being asymptomatic in individuals of all ages. Asymptomatic individuals transmitted SARS-CoV-2 at similar levels to symptomatic individuals suggesting that interventions targeting symptomatic individuals such as symptom-based testing and contact tracing of individuals tested because they report symptoms may have a limited impact as control measures. Increased household transmission of Beta and Delta variants, likely contributed to recurrent waves of COVID-19, with >60% of individuals infected by the end of follow-up. Higher attack rates, reinfection and acquisition in adolescents and prolonged SARS-CoV-2 shedding in PLHIV who were not virally suppressed suggests that prioritised vaccination of individuals in these groups could impact community transmission.

2.
J Infect Dis ; 224(Supplement_3): S161-S173, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469555

RESUMO

BACKGROUND: The World Health Organization (WHO) coordinates the Global Invasive Bacterial Vaccine-Preventable Diseases (IB-VPD) Surveillance Network to support vaccine introduction decisions and use. The network was established to strengthen surveillance and laboratory confirmation of meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis. METHODS: Sentinel hospitals report cases of children <5 years of age hospitalized for suspected meningitis. Laboratories report confirmatory testing results and strain characterization tested by polymerase chain reaction. In 2019, the network included 123 laboratories that follow validated, standardized testing and reporting strategies. RESULTS: From 2014 through 2019, >137 000 suspected meningitis cases were reported by 58 participating countries, with 44.6% (n = 61 386) reported from countries in the WHO African Region. More than half (56.6%, n = 77 873) were among children <1 year of age, and 4.0% (n = 4010) died among those with reported disease outcome. Among suspected meningitis cases, 8.6% (n = 11 798) were classified as probable bacterial meningitis. One of 3 bacterial pathogens was identified in 30.3% (n = 3576) of these cases, namely S. pneumoniae (n = 2177 [60.9%]), H. influenzae (n = 633 [17.7%]), and N. meningitidis (n = 766 [21.4%]). Among confirmed bacterial meningitis cases with outcome reported, 11.0% died; case fatality ratio varied by pathogen (S. pneumoniae, 12.2%; H. influenzae, 6.1%; N. meningitidis, 11.0%). Among the 277 children who died with confirmed bacterial meningitis, 189 (68.2%) had confirmed S. pneumoniae. The proportion of pneumococcal cases with pneumococcal conjugate vaccine (PCV) serotypes decreased as the number of countries implementing PCV increased, from 77.8% (n = 273) to 47.5% (n = 248). Of 397 H. influenzae specimens serotyped, 49.1% (n = 195) were type b. Predominant N. meningitidis serogroups varied by region. CONCLUSIONS: This multitier, global surveillance network has supported countries in detecting and serotyping the 3 principal invasive bacterial pathogens that cause pediatric meningitis. Streptococcus pneumoniae was the most common bacterial pathogen detected globally despite the growing number of countries that have nationally introduced PCV. The large proportions of deaths due to S. pneumoniae reflect the high proportion of meningitis cases caused by this pathogen. This global network demonstrated a strong correlation between PCV introduction status and reduction in the proportion of pneumococcal meningitis infections caused by vaccine serotypes. Maintaining case-based, active surveillance with laboratory confirmation for prioritized vaccine-preventable diseases remains a critical component of the global agenda in public health.The World Health Organization (WHO)-coordinated Invasive Bacterial Vaccine-Preventable Disease (IB-VPD) Surveillance Network reported data from 2014 to 2019, contributing to the estimates of the disease burden and serotypes of pediatric meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis.

3.
J Infect Dis ; 224(Supplement_3): S194-S203, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469556

RESUMO

BACKGROUND: As part of the global Invasive Bacterial Vaccine-Preventable Diseases Surveillance Network, 12 African countries referred cerebrospinal fluid (CSF) samples to South Africa's regional reference laboratory. We evaluated the utility of real-time polymerase chain reaction (PCR) in detecting and serotyping/grouping Haemophilus influenzae, Neisseria meningitidis, and Streptococcus pneumoniae (HNS). METHODS: From 2008 to 2017, CSF samples collected from children <5 years old with suspected meningitis underwent routine microbiology testing in-country, and 11 680 samples were submitted for HNS PCR at the regional reference laboratory. Unconditional logistic regression, with adjustment for geographic location, was performed to identify factors associated with PCR positivity. RESULTS: The overall HNS PCR positivity rate for all countries was 10% (1195 of 11 626 samples). In samples with both PCR and culture results, HNS PCR positivity was 11% (744 of 6747 samples), and HNS culture positivity was 3% (207 of 6747). Molecular serotype/serogroup was assigned in 75% of PCR-positive specimens (762 of 1016). Compared with PCR-negative CSF samples, PCR-positive samples were more often turbid (adjusted odds ratio, 6.80; 95% confidence interval, 5.67-8.17) and xanthochromic (1.72; 1.29-2.28), had elevated white blood cell counts (6.13; 4.71-7.99) and high protein concentrations (5.80; 4.34-7.75), and were more often HNS culture positive (32.70; 23.18-46.12). CONCLUSION: PCR increased detection of vaccine-preventable bacterial meningitis in countries where confirmation of suspected meningitis cases is impeded by limited culture capacity.

4.
Euro Surveill ; 26(29)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34296675

RESUMO

BackgroundIn South Africa, COVID-19 control measures to prevent SARS-CoV-2 spread were initiated on 16 March 2020. Such measures may also impact the spread of other pathogens, including influenza virus and respiratory syncytial virus (RSV) with implications for future annual epidemics and expectations for the subsequent northern hemisphere winter.MethodsWe assessed the detection of influenza and RSV through facility-based syndromic surveillance of adults and children with mild or severe respiratory illness in South Africa from January to October 2020, and compared this with surveillance data from 2013 to 2019.ResultsFacility-based surveillance revealed a decline in influenza virus detection during the regular season compared with previous years. This was observed throughout the implementation of COVID-19 control measures. RSV detection decreased soon after the most stringent COVID-19 control measures commenced; however, an increase in RSV detection was observed after the typical season, following the re-opening of schools and the easing of measures.ConclusionCOVID-19 non-pharmaceutical interventions led to reduced circulation of influenza and RSV in South Africa. This has limited the country's ability to provide influenza virus strains for the selection of the annual influenza vaccine. Delayed increases in RSV case numbers may reflect the easing of COVID-19 control measures. An increase in influenza virus detection was not observed, suggesting that the measures may have impacted the two pathogens differently. The impact that lowered and/or delayed influenza and RSV circulation in 2020 will have on the intensity and severity of subsequent annual epidemics is unknown and warrants close monitoring.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Adulto , Criança , Humanos , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Pandemias/prevenção & controle , Infecções por Vírus Respiratório Sincicial/diagnóstico , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , SARS-CoV-2 , África do Sul/epidemiologia
5.
Lancet Digit Health ; 3(6): e360-e370, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34045002

RESUMO

BACKGROUND: Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis, which are typically transmitted via respiratory droplets, are leading causes of invasive diseases, including bacteraemic pneumonia and meningitis, and of secondary infections subsequent to post-viral respiratory disease. The aim of this study was to investigate the incidence of invasive disease due to these pathogens during the early months of the COVID-19 pandemic. METHODS: In this prospective analysis of surveillance data, laboratories in 26 countries and territories across six continents submitted data on cases of invasive disease due to S pneumoniae, H influenzae, and N meningitidis from Jan 1, 2018, to May, 31, 2020, as part of the Invasive Respiratory Infection Surveillance (IRIS) Initiative. Numbers of weekly cases in 2020 were compared with corresponding data for 2018 and 2019. Data for invasive disease due to Streptococcus agalactiae, a non-respiratory pathogen, were collected from nine laboratories for comparison. The stringency of COVID-19 containment measures was quantified using the Oxford COVID-19 Government Response Tracker. Changes in population movements were assessed using Google COVID-19 Community Mobility Reports. Interrupted time-series modelling quantified changes in the incidence of invasive disease due to S pneumoniae, H influenzae, and N meningitidis in 2020 relative to when containment measures were imposed. FINDINGS: 27 laboratories from 26 countries and territories submitted data to the IRIS Initiative for S pneumoniae (62 837 total cases), 24 laboratories from 24 countries submitted data for H influenzae (7796 total cases), and 21 laboratories from 21 countries submitted data for N meningitidis (5877 total cases). All countries and territories had experienced a significant and sustained reduction in invasive diseases due to S pneumoniae, H influenzae, and N meningitidis in early 2020 (Jan 1 to May 31, 2020), coinciding with the introduction of COVID-19 containment measures in each country. By contrast, no significant changes in the incidence of invasive S agalactiae infections were observed. Similar trends were observed across most countries and territories despite differing stringency in COVID-19 control policies. The incidence of reported S pneumoniae infections decreased by 68% at 4 weeks (incidence rate ratio 0·32 [95% CI 0·27-0·37]) and 82% at 8 weeks (0·18 [0·14-0·23]) following the week in which significant changes in population movements were recorded. INTERPRETATION: The introduction of COVID-19 containment policies and public information campaigns likely reduced transmission of S pneumoniae, H influenzae, and N meningitidis, leading to a significant reduction in life-threatening invasive diseases in many countries worldwide. FUNDING: Wellcome Trust (UK), Robert Koch Institute (Germany), Federal Ministry of Health (Germany), Pfizer, Merck, Health Protection Surveillance Centre (Ireland), SpID-Net project (Ireland), European Centre for Disease Prevention and Control (European Union), Horizon 2020 (European Commission), Ministry of Health (Poland), National Programme of Antibiotic Protection (Poland), Ministry of Science and Higher Education (Poland), Agencia de Salut Pública de Catalunya (Spain), Sant Joan de Deu Foundation (Spain), Knut and Alice Wallenberg Foundation (Sweden), Swedish Research Council (Sweden), Region Stockholm (Sweden), Federal Office of Public Health of Switzerland (Switzerland), and French Public Health Agency (France).


Assuntos
Infecções Bacterianas/epidemiologia , COVID-19 , Infecções Respiratórias/epidemiologia , Infecções Bacterianas/transmissão , COVID-19/prevenção & controle , Haemophilus influenzae , Humanos , Incidência , Análise de Séries Temporais Interrompida , Neisseria meningitidis , Vigilância da População , Estudos Prospectivos , Prática de Saúde Pública , Streptococcus agalactiae , Streptococcus pneumoniae
6.
EBioMedicine ; 65: 103274, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33721818

RESUMO

Bacterial meningitis is a major global cause of morbidity and mortality. Rapid identification of the aetiological agent of meningitis is essential for clinical and public health management and disease prevention given the wide range of pathogens that cause the clinical syndrome and the availability of vaccines that protect against some, but not all, of these. Since microbiological culture is complex, slow, and often impacted by prior antimicrobial treatment of the patient, molecular diagnostic assays have been developed for bacterial detection. Distinguishing between meningitis caused by Neisseria meningitidis (meningococcus), Streptococcus pneumoniae (pneumococcus), Haemophilus influenzae, and Streptococcus agalactiae and identifying their polysaccharide capsules is especially important. Here, we review methods used in the identification of these bacteria, providing an up-to-date account of available assays, allowing clinicians and diagnostic laboratories to make informed decisions about which assays to use.


Assuntos
Meningites Bacterianas/diagnóstico , DNA Bacteriano/análise , DNA Bacteriano/metabolismo , Haemophilus influenzae/genética , Haemophilus influenzae/isolamento & purificação , Haemophilus influenzae/metabolismo , Humanos , Testes de Fixação do Látex , Meningites Bacterianas/patologia , Neisseria meningitidis/genética , Neisseria meningitidis/isolamento & purificação , Neisseria meningitidis/metabolismo , Técnicas de Amplificação de Ácido Nucleico/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Streptococcus agalactiae/genética , Streptococcus agalactiae/isolamento & purificação , Streptococcus agalactiae/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/isolamento & purificação , Streptococcus pneumoniae/metabolismo
7.
Clin Infect Dis ; 73(3): e745-e753, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-33530100

RESUMO

BACKGROUND: Policy recommendations on pertussis vaccination need to be guided by data, which are limited from low- and middle-income countries. We aimed to describe the epidemiology of pertussis in South Africa, a country with high human immunodeficiency virus (HIV) prevalence and routine pertussis vaccination for 6 decades including the acellular vaccine since 2009. METHODS: Hospitalized patients of all ages were enrolled at 5 sentinel sites as part of a pneumonia surveillance program from January 2013 through December 2018. Nasopharyngeal specimens and induced sputum were tested by polymerase chain reaction (PCR) for Bordetella pertussis. In addition, demographic and clinical information were collected. Incidence rates were calculated for 2013-2016, and multivariable logistic regression performed to identify factors associated with pertussis. RESULTS: Over the 6-year period 19 429 individuals were enrolled, of which 239 (1.2%) tested positive for B. pertussis. Detection rate was highest in infants aged <6 months (2.8%, 155/5524). Mean annual incidence was 17 cases per 100 000 population, with the highest incidence in children <1 year of age (228 per 100 000). Age-adjusted incidence was 65.9 per 100 000 in HIV-infected individuals compared to 8.5 per 100 000 in HIV-uninfected individuals (risk ratio 30.4, 95% confidence interval: 23.0-40.2). Ten individuals (4.2%) with pertussis died; of which 7 were infants aged <6 months and 3 were immunocompromised adults. CONCLUSIONS: Pertussis continues to be a significant cause of illness and hospitalization in South Africa, despite routine vaccination. The highest burden of disease and death occurred in infants; however, HIV-infected adults were also identified as an important group at risk of B. pertussis infection.


Assuntos
Coqueluche , Adulto , Bordetella pertussis , Criança , Humanos , Incidência , Lactente , Vacina contra Coqueluche , África do Sul/epidemiologia , Coqueluche/epidemiologia
8.
Clin Infect Dis ; 73(1): e28-e38, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32369560

RESUMO

BACKGROUND: Invasive meningococcal disease clusters occur among university students and may reflect higher carriage prevalence among this population. We aimed to measure meningococcal carriage prevalence, acquisition, and risk factors among first-year university students in South Africa. METHODS: In summer-autumn 2017, after consenting to participate, we collected oropharyngeal swabs and questionnaires on carriage risk factors and tested students for HIV at 2 universities, during registration week (survey 1) and 6-8 weeks later (survey 2). Meningococci were detected by culture and polymerase chain reaction. RESULTS: We enrolled 2120 students at registration. Mean age was 18.5 years, 59% (1252/2120) were female and 0.8% (16/1984) had HIV. Seventy-eight percent of students returned for survey 2 (1655/2120). Among the cohort, carriage prevalence was 4.7% (77/1655) at registration, increasing to 7.9% (130/1655) at survey 2: 5.0% (83) acquired new carriage, 2.8% (47) had persistent carriage, 1.8% (30) cleared the initial carriage, and 90.3% (1495) remained carriage free. At both surveys, nongenogroupable meningococci predominated, followed by genogroups Y, B, W, and C. On multinomial analysis, risk factors for carriage acquisition included attending nightclubs (adjusted relative risk ratio [aRRR], 2.1; 95% CI, 1.1-4.0), having intimate kissing partners (aRRR, 1.8; 95% CI, 1.1-2.9) and HIV (aRRR, 5.0; 95% CI, 1.1-24.4). CONCLUSIONS: Meningococcal carriage among first-year university students increased after 2 months. Sociobehavioral risk factors were associated with increased carriage for all analyses. HIV was associated with carriage acquisition. Until vaccination programs become mandatory in South African universities, data suggest that students with HIV could benefit most from meningococcal vaccination.


Assuntos
Infecções por HIV , Infecções Meningocócicas , Neisseria meningitidis , Adolescente , Portador Sadio/epidemiologia , Estudos Transversais , Feminino , Infecções por HIV/epidemiologia , Humanos , Infecções Meningocócicas/epidemiologia , Neisseria meningitidis/genética , Prevalência , África do Sul/epidemiologia , Estudantes , Universidades
9.
Commun Biol ; 3(1): 559, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033372

RESUMO

Hyper-virulent Streptococcus pneumoniae serotype 1 strains are endemic in Sub-Saharan Africa and frequently cause lethal meningitis outbreaks. It remains unknown whether genetic variation in serotype 1 strains modulates tropism into cerebrospinal fluid to cause central nervous system (CNS) infections, particularly meningitis. Here, we address this question through a large-scale linear mixed model genome-wide association study of 909 African pneumococcal serotype 1 isolates collected from CNS and non-CNS human samples. By controlling for host age, geography, and strain population structure, we identify genome-wide statistically significant genotype-phenotype associations in surface-exposed choline-binding (P = 5.00 × 10-08) and helicase proteins (P = 1.32 × 10-06) important for invasion, immune evasion and pneumococcal tropism to CNS. The small effect sizes and negligible heritability indicated that causation of CNS infection requires multiple genetic and other factors reflecting a complex and polygenic aetiology. Our findings suggest that certain pathogen genetic variation modulate pneumococcal survival and tropism to CNS tissue, and therefore, virulence for meningitis.


Assuntos
Variação Genética/genética , Meningite Pneumocócica/microbiologia , Streptococcus pneumoniae/patogenicidade , Tropismo Viral/genética , Adolescente , Sistema Nervoso Central/microbiologia , Criança , Pré-Escolar , Estudo de Associação Genômica Ampla , Humanos , Lactente , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/isolamento & purificação , Streptococcus pneumoniae/fisiologia
10.
Microb Genom ; 6(5)2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32375991

RESUMO

Knowledge of pneumococcal lineages, their geographic distribution and antibiotic resistance patterns, can give insights into global pneumococcal disease. We provide interactive bioinformatic outputs to explore such topics, aiming to increase dissemination of genomic insights to the wider community, without the need for specialist training. We prepared 12 country-specific phylogenetic snapshots, and international phylogenetic snapshots of 73 common Global Pneumococcal Sequence Clusters (GPSCs) previously defined using PopPUNK, and present them in Microreact. Gene presence and absence defined using Roary, and recombination profiles derived from Gubbins are presented in Phandango for each GPSC. Temporal phylogenetic signal was assessed for each GPSC using BactDating. We provide examples of how such resources can be used. In our example use of a country-specific phylogenetic snapshot we determined that serotype 14 was observed in nine unrelated genetic backgrounds in South Africa. The international phylogenetic snapshot of GPSC9, in which most serotype 14 isolates from South Africa were observed, highlights that there were three independent sub-clusters represented by South African serotype 14 isolates. We estimated from the GPSC9-dated tree that the sub-clusters were each established in South Africa during the 1980s. We show how recombination plots allowed the identification of a 20 kb recombination spanning the capsular polysaccharide locus within GPSC97. This was consistent with a switch from serotype 6A to 19A estimated to have occured in the 1990s from the GPSC97-dated tree. Plots of gene presence/absence of resistance genes (tet, erm, cat) across the GPSC23 phylogeny were consistent with acquisition of a composite transposon. We estimated from the GPSC23-dated tree that the acquisition occurred between 1953 and 1975. Finally, we demonstrate the assignment of GPSC31 to 17 externally generated pneumococcal serotype 1 assemblies from Utah via Pathogenwatch. Most of the Utah isolates clustered within GPSC31 in a USA-specific clade with the most recent common ancestor estimated between 1958 and 1981. The resources we have provided can be used to explore to data, test hypothesis and generate new hypotheses. The accessible assignment of GPSCs allows others to contextualize their own collections beyond the data presented here.


Assuntos
Elementos de DNA Transponíveis , Polissacarídeos Bacterianos/genética , Análise de Sequência de DNA/métodos , Streptococcus pneumoniae/classificação , Bases de Dados Genéticas , Farmacorresistência Bacteriana , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Filogeografia , Polônia , Sorogrupo , África do Sul , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/isolamento & purificação , Utah
11.
J Antimicrob Chemother ; 75(3): 512-520, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31789384

RESUMO

OBJECTIVES: We reported tet(S/M) in Streptococcus pneumoniae and investigated its temporal spread in relation to nationwide clinical interventions. METHODS: We whole-genome sequenced 12 254 pneumococcal isolates from 29 countries on an Illumina HiSeq sequencer. Serotype, multilocus ST and antibiotic resistance were inferred from genomes. An SNP tree was built using Gubbins. Temporal spread was reconstructed using a birth-death model. RESULTS: We identified tet(S/M) in 131 pneumococcal isolates and none carried other known tet genes. Tetracycline susceptibility testing results were available for 121 tet(S/M)-positive isolates and all were resistant. A majority (74%) of tet(S/M)-positive isolates were from South Africa and caused invasive diseases among young children (59% HIV positive, where HIV status was available). All but two tet(S/M)-positive isolates belonged to clonal complex (CC) 230. A global phylogeny of CC230 (n=389) revealed that tet(S/M)-positive isolates formed a sublineage predicted to exhibit resistance to penicillin, co-trimoxazole, erythromycin and tetracycline. The birth-death model detected an unrecognized outbreak of this sublineage in South Africa between 2000 and 2004 with expected secondary infections (effective reproductive number, R) of ∼2.5. R declined to ∼1.0 in 2005 and <1.0 in 2012. The declining epidemic could be related to improved access to ART in 2004 and introduction of pneumococcal conjugate vaccine (PCV) in 2009. Capsular switching from vaccine serotype 14 to non-vaccine serotype 23A was observed within the sublineage. CONCLUSIONS: The prevalence of tet(S/M) in pneumococci was low and its dissemination was due to an unrecognized outbreak of CC230 in South Africa. Capsular switching in this MDR sublineage highlighted its potential to continue to cause disease in the post-PCV13 era.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Antibacterianos/farmacologia , Criança , Pré-Escolar , Farmacorresistência Bacteriana , Humanos , Tipagem de Sequências Multilocus , Infecções Pneumocócicas/epidemiologia , Vacinas Pneumocócicas , Sorogrupo , África do Sul/epidemiologia , Resistência a Tetraciclina/genética
12.
Microb Genom ; 5(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31617841

RESUMO

Most pneumococci express a polysaccharide capsule, a key virulence factor and target for pneumococcal vaccines. However, pneumococci showing no serological evidence of capsule expression [nontypeable pneumococci (NTPn)] are more frequently isolated from carriage studies than in invasive disease. Limited data exist about the population structure of carriage NTPn from the African continent. We aimed to characterize carriage NTPn and compare them to previously described invasive NTPn. Carriage and invasive NTPn isolates were obtained from South African cross-sectional studies (2009 and 2012) and laboratory-based surveillance for invasive pneumococcal disease (2003-2013), respectively. Isolates were characterized by capsular locus sequence analysis, multilocus sequence typing, antimicrobial non-susceptibility patterns and phylogenetic analysis. NTPn represented 3.7 % (137/3721) of carriage isolates compared to 0.1 % (39/32 824) of invasive isolates (P<0.001), and 24 % (33/137) of individuals were co-colonized with encapsulated pneumococci. Non-susceptibility to cotrimoxazole [84 % (112/133) vs 44 % (17/39)], penicillin [77 % (102/133) vs 36 % (14/39)], erythromycin [53 % (70/133) vs 31 % (12/39)] and clindamycin [36 % (48/133) vs 18 % (7/39)] was higher (P=0.03) among carriage than invasive NTPn. Ninety-one per cent (124/137) of carriage NTPn had complete deletion of the capsular locus and 9 % (13/137) had capsule genes, compared to 44 % (17/39) and 56 % (22/39) of invasive NTPn, respectively. Carriage NTPn were slightly less diverse [Simpson's diversity index (D)=0.92] compared to invasive NTPn [D=0.97]. Sixty-seven per cent (92/137) of carriage NTPn belonged to a lineage exclusive to NTPn strains compared to 23 % (9/39) of invasive NTPn. We identified 293 and 275 genes that were significantly associated with carriage and invasive NTPn, respectively. NTPn isolates detected in carriage differed from those causing invasive disease, which may explain their success in colonisation or in causing invasive disease.


Assuntos
Portador Sadio/microbiologia , Farmacorresistência Bacteriana/genética , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Portador Sadio/epidemiologia , Estudos Transversais , Genômica , Humanos , Filogenia , Infecções Pneumocócicas/epidemiologia , Sorotipagem , África do Sul/epidemiologia , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/isolamento & purificação
13.
Clin Infect Dis ; 69(Suppl 2): S49-S57, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31505629

RESUMO

BACKGROUND: Bacterial meningitis is a major cause of morbidity and mortality in sub-Saharan Africa. We analyzed data from the World Health Organization's (WHO) Invasive Bacterial Vaccine-preventable Diseases Surveillance Network (2011-2016) to describe the epidemiology of laboratory-confirmed Streptococcus pneumoniae (Spn), Neisseria meningitidis, and Haemophilus influenzae meningitis within the WHO African Region. We also evaluated declines in vaccine-type pneumococcal meningitis following pneumococcal conjugate vaccine (PCV) introduction. METHODS: Reports of meningitis in children <5 years old from sentinel surveillance hospitals in 26 countries were classified as suspected, probable, or confirmed. Confirmed meningitis cases were analyzed by age group and subregion (South-East and West-Central). We described case fatality ratios (CFRs), pathogen distribution, and annual changes in serotype and serogroup, including changes in vaccine-type Spn meningitis following PCV introduction. RESULTS: Among 49 844 reported meningitis cases, 1670 (3.3%) were laboratory-confirmed. Spn (1007/1670 [60.3%]) was the most commonly detected pathogen; vaccine-type Spn meningitis cases declined over time. CFR was the highest for Spn meningitis: 12.9% (46/357) in the South-East subregion and 30.9% (89/288) in the West-Central subregion. Meningitis caused by N. meningitidis was more common in West-Central than South-East Africa (321/954 [33.6%] vs 110/716 [15.4%]; P < .0001). Haemophilus influenzae (232/1670 [13.9%]) was the least prevalent organism. CONCLUSIONS: Spn was the most common cause of pediatric bacterial meningitis in the African region even after reported cases declined following PCV introduction. Sustaining robust surveillance is essential to monitor changes in pathogen distribution and to inform and guide vaccination policies.


Assuntos
Meningites Bacterianas/epidemiologia , Vigilância de Evento Sentinela , Doenças Preveníveis por Vacina/epidemiologia , Doenças Preveníveis por Vacina/microbiologia , Organização Mundial da Saúde , África Oriental/epidemiologia , Pré-Escolar , Feminino , Haemophilus influenzae tipo b/classificação , Humanos , Lactente , Masculino , Meningites Bacterianas/mortalidade , Mortalidade , Neisseria meningitidis/classificação , Vacinas Pneumocócicas/administração & dosagem , Prevalência , Sorogrupo , África do Sul/epidemiologia , Streptococcus pneumoniae/classificação , Vacinação/estatística & dados numéricos , Vacinas Conjugadas/administração & dosagem
14.
Lancet Infect Dis ; 19(7): 759-769, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31196809

RESUMO

BACKGROUND: Invasive pneumococcal disease remains an important health priority owing to increasing disease incidence caused by pneumococci expressing non-vaccine serotypes. We previously defined 621 Global Pneumococcal Sequence Clusters (GPSCs) by analysing 20 027 pneumococcal isolates collected worldwide and from previously published genomic data. In this study, we aimed to investigate the pneumococcal lineages behind the predominant serotypes, the mechanism of serotype replacement in disease, as well as the major pneumococcal lineages contributing to invasive pneumococcal disease in the post-vaccine era and their antibiotic resistant traits. METHODS: We whole-genome sequenced 3233 invasive pneumococcal disease isolates from laboratory-based surveillance programmes in Hong Kong (n=78), Israel (n=701), Malawi (n=226), South Africa (n=1351), The Gambia (n=203), and the USA (n=674). The genomes represented pneumococci from before and after pneumococcal conjugate vaccine (PCV) introductions and were from children younger than 3 years. We identified predominant serotypes by prevalence and their major contributing lineages in each country, and assessed any serotype replacement by comparing the incidence rate between the pre-PCV and PCV periods for Israel, South Africa, and the USA. We defined the status of a lineage as vaccine-type GPSC (≥50% 13-valent PCV [PCV13] serotypes) or non-vaccine-type GPSC (>50% non-PCV13 serotypes) on the basis of its initial serotype composition detected in the earliest vaccine period to measure their individual contribution toward serotype replacement in each country. Major pneumococcal lineages in the PCV period were identified by pooled incidence rate using a random effects model. FINDINGS: The five most prevalent serotypes in the PCV13 period varied between countries, with only serotypes 5, 12F, 15B/C, 19A, 33F, and 35B/D common to two or more countries. The five most prevalent serotypes in the PCV13 period varied between countries, with only serotypes 5, 12F, 15B/C, 19A, 33F, and 35B/D common to two or more countries. These serotypes were associated with more than one lineage, except for serotype 5 (GPSC8). Serotype replacement was mainly mediated by expansion of non-vaccine serotypes within vaccine-type GPSCs and, to a lesser extent, by increases in non-vaccine-type GPSCs. A globally spreading lineage, GPSC3, expressing invasive serotypes 8 in South Africa and 33F in the USA and Israel, was the most common lineage causing non-vaccine serotype invasive pneumococcal disease in the PCV13 period. We observed that same prevalent non-vaccine serotypes could be associated with distinctive lineages in different countries, which exhibited dissimilar antibiotic resistance profiles. In non-vaccine serotype isolates, we detected significant increases in the prevalence of resistance to penicillin (52 [21%] of 249 vs 169 [29%] of 575, p=0·0016) and erythromycin (three [1%] of 249 vs 65 [11%] of 575, p=0·0031) in the PCV13 period compared with the pre-PCV period. INTERPRETATION: Globally spreading lineages expressing invasive serotypes have an important role in serotype replacement, and emerging non-vaccine serotypes associated with different pneumococcal lineages in different countries might be explained by local antibiotic-selective pressures. Continued genomic surveillance of the dynamics of the pneumococcal population with increased geographical representation in the post-vaccine period will generate further knowledge for optimising future vaccine design. FUNDING: Bill & Melinda Gates Foundation, Wellcome Sanger Institute, and the US Centers for Disease Control.


Assuntos
Resistência Microbiana a Medicamentos , Infecções Pneumocócicas , Vacinas Pneumocócicas/administração & dosagem , Sorogrupo , Vacinas Conjugadas , Sequenciamento Completo do Genoma , África/epidemiologia , Pré-Escolar , Feminino , Hong Kong/epidemiologia , Humanos , Lactente , Recém-Nascido , Israel/epidemiologia , Masculino , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/imunologia , Prevalência , Streptococcus pneumoniae/imunologia
15.
Microb Genom ; 5(7)2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31184299

RESUMO

The pneumococcus produces a polysaccharide capsule, encoded by the cps locus, that provides protection against phagocytosis and determines serotype. Nearly 100 serotypes have been identified with new serotypes still being discovered, especially in previously understudied regions. Here we present an analysis of the cps loci of more than 18  000 genomes from the Global Pneumococcal Sequencing (GPS) project with the aim of identifying novel cps loci with the potential to produce previously unrecognized capsule structures. Serotypes were assigned using whole genome sequence data and 66 of the approximately 100 known serotypes were included in the final dataset. Closer examination of each serotype's sequences identified nine putative novel cps loci (9X, 11X, 16X, 18X1, 18X2, 18X3, 29X, 33X and 36X) found in ~2.6  % of the genomes. The large number and global distribution of GPS genomes provided an unprecedented opportunity to identify novel cps loci and consider their phylogenetic and geographical distribution. Nine putative novel cps loci were identified and examples of each will undergo subsequent structural and immunological analysis.


Assuntos
Cápsulas Bacterianas/genética , Infecções Pneumocócicas/microbiologia , Polissacarídeos Bacterianos/genética , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/genética , Mapeamento Cromossômico/métodos , DNA Bacteriano/genética , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Genes Bacterianos , Loci Gênicos , Humanos , Sorogrupo , Streptococcus pneumoniae/isolamento & purificação , Sequenciamento Completo do Genoma/métodos
16.
Nat Commun ; 10(1): 2176, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092817

RESUMO

Streptococcus pneumoniae is a common nasopharyngeal colonizer, but can also cause life-threatening invasive diseases such as empyema, bacteremia and meningitis. Genetic variation of host and pathogen is known to play a role in invasive pneumococcal disease, though to what extent is unknown. In a genome-wide association study of human and pathogen we show that human variation explains almost half of variation in susceptibility to pneumococcal meningitis and one-third of variation in severity, identifying variants in CCDC33 associated with susceptibility. Pneumococcal genetic variation explains a large amount of invasive potential (70%), but has no effect on severity. Serotype alone is insufficient to explain invasiveness, suggesting other pneumococcal factors are involved in progression to invasive disease. We identify pneumococcal genes involved in invasiveness including pspC and zmpD, and perform a human-bacteria interaction analysis. These genes are potential candidates for the development of more broadly-acting pneumococcal vaccines.


Assuntos
Predisposição Genética para Doença , Meningite Pneumocócica/genética , Streptococcus pneumoniae/genética , Adulto , Idoso , Proteínas de Bactérias/genética , Feminino , Variação Genética , Genoma Bacteriano/genética , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno/genética , Humanos , Masculino , Meningite Pneumocócica/microbiologia , Pessoa de Meia-Idade , Estudos Prospectivos , Proteínas/genética , Streptococcus pneumoniae/isolamento & purificação
17.
EBioMedicine ; 43: 338-346, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31003929

RESUMO

BACKGROUND: Pneumococcal conjugate vaccines have reduced the incidence of invasive pneumococcal disease, caused by vaccine serotypes, but non-vaccine-serotypes remain a concern. We used whole genome sequencing to study pneumococcal serotype, antibiotic resistance and invasiveness, in the context of genetic background. METHODS: Our dataset of 13,454 genomes, combined with four published genomic datasets, represented Africa (40%), Asia (25%), Europe (19%), North America (12%), and South America (5%). These 20,027 pneumococcal genomes were clustered into lineages using PopPUNK, and named Global Pneumococcal Sequence Clusters (GPSCs). From our dataset, we additionally derived serotype and sequence type, and predicted antibiotic sensitivity. We then measured invasiveness using odds ratios that relating prevalence in invasive pneumococcal disease to carriage. FINDINGS: The combined collections (n = 20,027) were clustered into 621 GPSCs. Thirty-five GPSCs observed in our dataset were represented by >100 isolates, and subsequently classed as dominant-GPSCs. In 22/35 (63%) of dominant-GPSCs both non-vaccine serotypes and vaccine serotypes were observed in the years up until, and including, the first year of pneumococcal conjugate vaccine introduction. Penicillin and multidrug resistance were higher (p < .05) in a subset dominant-GPSCs (14/35, 9/35 respectively), and resistance to an increasing number of antibiotic classes was associated with increased recombination (R2 = 0.27 p < .0001). In 28/35 dominant-GPSCs, the country of isolation was a significant predictor (p < .05) of its antibiogram (mean misclassification error 0.28, SD ±â€¯0.13). We detected increased invasiveness of six genetic backgrounds, when compared to other genetic backgrounds expressing the same serotype. Up to 1.6-fold changes in invasiveness odds ratio were observed. INTERPRETATION: We define GPSCs that can be assigned to any pneumococcal genomic dataset, to aid international comparisons. Existing non-vaccine-serotypes in most GPSCs preclude the removal of these lineages by pneumococcal conjugate vaccines; leaving potential for serotype replacement. A subset of GPSCs have increased resistance, and/or serotype-independent invasiveness.


Assuntos
Farmacorresistência Bacteriana , Genoma Bacteriano , Genômica , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biodiversidade , Evolução Molecular , Feminino , Genômica/métodos , Genótipo , Saúde Global , Humanos , Masculino , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas , Polimorfismo de Nucleotídeo Único , Sorogrupo , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/imunologia
18.
BMC Infect Dis ; 19(1): 276, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30898099

RESUMO

BACKGROUND: We assessed the utility of a multi-target, real-time PCR assay for Bordetella pertussis detection and diagnosis in patients with severe respiratory illness (SRI), influenza-like illness (ILI), and asymptomatic controls. METHODS: Real-time PCR detection of IS481, pIS1001, hIS1001 and ptxS1 was performed on nasopharyngeal specimens (SRI, ILI and controls) and induced sputum (SRI) collected from June 2012 to May 2016 through respiratory illness surveillance. Using PCR cycle threshold (Ct) value cut-offs, IS481 positive cases were classified as confirmed (Ct < 35) or possible (Ct 35-39) pertussis disease. RESULTS: Among 12,922 samples, 146 (1.1%) were IS481 positive of which 62% (90/146) were classified as confirmed. The attributable fraction (AF) was 92.2% (95% CI, 65.6 to 98.2%) and 90.5% (95% CI, 57.5 to 97.9%) amongst SRI and ILI PCR-confirmed pertussis cases, respectively. Amongst possible pertussis cases, AF was 36.9% (95% CI, - 142.3 to 83.6%) and 67.5% (95% CI, - 30.6 to 91.9%) in the SRI and ILI groups, respectively. CONCLUSION: All IS481 positive specimens could be considered as B. pertussis infection, and potentially pertussis disease with supportive clinical information.


Assuntos
Bordetella pertussis/genética , Tipagem Molecular , Coqueluche/diagnóstico , Diagnóstico Diferencial , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/microbiologia , África do Sul , Coqueluche/epidemiologia , Coqueluche/microbiologia
19.
Clin Infect Dis ; 69(3): 495-504, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30351372

RESUMO

BACKGROUND: Invasive meningococcal disease (IMD) is endemic to South Africa, where vaccine use is negligible. We describe the epidemiology of IMD in South Africa. METHODS: IMD cases were identified through a national, laboratory-based surveillance program, GERMS-SA, from 2003-2016. Clinical data on outcomes and human immunodeficiency virus (HIV) statuses were available from 26 sentinel hospital sites. We conducted space-time analyses to detect clusters of serogroup-specific IMD cases. RESULTS: Over 14 years, 5249 IMD cases were identified. The incidence was 0.97 cases per 100 000 persons in 2003, peaked at 1.4 cases per 100 000 persons in 2006, and declined to 0.23 cases per 100 000 persons in 2016. Serogroups were confirmed in 3917 (75%) cases: serogroup A was present in 4.7% of cases, B in 23.3%, C in 9.4%; W in 49.5%; Y in 12.3%, X in 0.3%; Z in 0.1% and 0.4% of cases were non-groupable. We identified 8 serogroup-specific, geo-temporal clusters of disease. Isolate susceptibility was 100% to ceftriaxone, 95% to penicillin, and 99.9% to ciprofloxacin. The in-hospital case-fatality rate was 17% (247/1479). Of those tested, 36% (337/947) of IMD cases were HIV-coinfected. The IMD incidence in HIV-infected persons was higher for all age categories, with an age-adjusted relative risk ratio (aRRR) of 2.5 (95% confidence interval [CI] 2.2-2.8; P < .001) from 2012-2016. No patients reported previous meningococcal vaccine exposure. Patients with serogroup W were 3 times more likely to present with severe disease than those with serogroup B (aRRR 2.7, 95% CI 1.1-6.3); HIV coinfection was twice as common with W and Y diseases (aRRR W = 1.8, 95% CI 1.1-2.9; aRRR Y = 1.9, 95% CI 1.0-3.4). CONCLUSIONS: In the absence of significant vaccine use, IMD in South Africa decreased by 76% from 2003-2016. HIV was associated with an increased risk of IMD, especially for serogroup W and Y diseases.


Assuntos
Coinfecção/epidemiologia , Infecções Meningocócicas/epidemiologia , Adolescente , Adulto , Idoso , Antibacterianos/uso terapêutico , Criança , Pré-Escolar , Coinfecção/microbiologia , Coinfecção/virologia , Feminino , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Infecções por HIV/microbiologia , Mortalidade Hospitalar , Humanos , Incidência , Masculino , Infecções Meningocócicas/tratamento farmacológico , Infecções Meningocócicas/mortalidade , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Neisseria meningitidis/imunologia , Fatores de Risco , Sorogrupo , África do Sul/epidemiologia , Adulto Jovem
20.
J Infect Dis ; 219(11): 1697-1704, 2019 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-30590585

RESUMO

BACKGROUND: The association of rhinovirus (RV) detection to illness is poorly understood. METHODS: We enrolled case patients hospitalized with severe respiratory illness (SRI) at 2 hospitals and outpatients with influenza-like illness (ILI) and asymptomatic individuals (controls) from 2 affiliated clinics during 2013-2015. We compared the RV prevalence among ILI and SRI cases to those of controls stratified by human immunodeficiency virus (HIV) serostatus using penalized logistic regression. The attributable fraction (AF) was calculated. RESULTS: During 2013-2015, RV was detected in 17.4% (368/2120), 26.8% (979/3654), and 23.0% (1003/4360) of controls, ILI cases, and SRI cases, respectively. The RV AF (95% confidence interval) was statistically significant among children aged <5 years (ILI: 44.6% [30.7%-55.7%] and SRI: 50.3% [38.6%-59.9%]; P < .001) and individuals aged ≥5 years (ILI: 62.9% [54.4%-69.8%] and SRI: 51.3% [38.7%-61.3%]; P < .001) as well as among HIV-infected (ILI: 59.9% [45.8%-70.3%] and SRI: 39.8% [22.3%-53.3%]; P < .001) and HIV-uninfected (ILI: 53.6% [44.7%-61.1%] and SRI: 55.3% [45.6%-63.2%]; P < .001) individuals. CONCLUSIONS: Although RV detection was common among controls, it was also associated with a substantial proportion of clinical illness across age groups, irrespective of HIV status.


Assuntos
Infecções por HIV/epidemiologia , Influenza Humana/epidemiologia , Infecções por Picornaviridae/epidemiologia , Infecções Respiratórias/epidemiologia , Rhinovirus/isolamento & purificação , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Infecções por HIV/virologia , Humanos , Lactente , Influenza Humana/virologia , Pacientes Internados , Pessoa de Meia-Idade , Pacientes Ambulatoriais , Infecções por Picornaviridae/virologia , Estudos Prospectivos , Infecções Respiratórias/virologia , África do Sul/epidemiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...