Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 548
Filtrar
1.
Sci Rep ; 9(1): 12370, 2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31451722

RESUMO

In the past few years, the gut microbiome has been shown to play an important role in various disorders including in particular cardiovascular diseases. Especially the metabolite trimethylamine-N-oxide (TMAO), which is produced by gut microbial metabolism, has repeatedly been associated with an increased risk for cardiovascular events. Here we report a fast liquid chromatography tandem mass spectrometry (LC-MS/MS) method that can analyze the five most important gut metabolites with regards to TMAO in three minutes. Fast liquid chromatography is unconventionally used in this method as an on-line cleanup step to remove the most important ion suppressors leaving the gut metabolites in a cleaned flow through fraction, also known as negative chromatography. We compared different blood matrix types to recommend best sampling practices and found citrated plasma samples demonstrated lower concentrations for all analytes and choline concentrations were significantly higher in serum samples. We demonstrated the applicability of our method by investigating the effect of a standardized liquid meal (SLM) after overnight fasting of 25 healthy individuals on the gut metabolite levels. The SLM did not significantly change the levels of gut metabolites in serum.

2.
Sci Rep ; 9(1): 11623, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406173

RESUMO

Telomere shortening has been associated with multiple age-related diseases such as cardiovascular disease, diabetes, and dementia. However, the biological mechanisms responsible for these associations remain largely unknown. In order to gain insight into the metabolic processes driving the association of leukocyte telomere length (LTL) with age-related diseases, we investigated the association between LTL and serum metabolite levels in 7,853 individuals from seven independent cohorts. LTL was determined by quantitative polymerase chain reaction and the levels of 131 serum metabolites were measured with mass spectrometry in biological samples from the same blood draw. With partial correlation analysis, we identified six metabolites that were significantly associated with LTL after adjustment for multiple testing: lysophosphatidylcholine acyl C17:0 (lysoPC a C17:0, p-value = 7.1 × 10-6), methionine (p-value = 9.2 × 10-5), tyrosine (p-value = 2.1 × 10-4), phosphatidylcholine diacyl C32:1 (PC aa C32:1, p-value = 2.4 × 10-4), hydroxypropionylcarnitine (C3-OH, p-value = 2.6 × 10-4), and phosphatidylcholine acyl-alkyl C38:4 (PC ae C38:4, p-value = 9.0 × 10-4). Pathway analysis showed that the three phosphatidylcholines and methionine are involved in homocysteine metabolism and we found supporting evidence for an association of lipid metabolism with LTL. In conclusion, we found longer LTL associated with higher levels of lysoPC a C17:0 and PC ae C38:4, and with lower levels of methionine, tyrosine, PC aa C32:1, and C3-OH. These metabolites have been implicated in inflammation, oxidative stress, homocysteine metabolism, and in cardiovascular disease and diabetes, two major drivers of morbidity and mortality.

3.
Nat Commun ; 10(1): 3346, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31431621

RESUMO

Predicting longer-term mortality risk requires collection of clinical data, which is often cumbersome. Therefore, we use a well-standardized metabolomics platform to identify metabolic predictors of long-term mortality in the circulation of 44,168 individuals (age at baseline 18-109), of whom 5512 died during follow-up. We apply a stepwise (forward-backward) procedure based on meta-analysis results and identify 14 circulating biomarkers independently associating with all-cause mortality. Overall, these associations are similar in men and women and across different age strata. We subsequently show that the prediction accuracy of 5- and 10-year mortality based on a model containing the identified biomarkers and sex (C-statistic = 0.837 and 0.830, respectively) is better than that of a model containing conventional risk factors for mortality (C-statistic = 0.772 and 0.790, respectively). The use of the identified metabolic profile as a predictor of mortality or surrogate endpoint in clinical studies needs further investigation.

4.
Sci Rep ; 9(1): 9439, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263163

RESUMO

Type 2 diabetes (T2D) affects the health of millions of people worldwide. The identification of genetic determinants associated with changes in glycemia over time might illuminate biological features that precede the development of T2D. Here we conducted a genome-wide association study of longitudinal fasting glucose changes in up to 13,807 non-diabetic individuals of European descent from nine cohorts. Fasting glucose change over time was defined as the slope of the line defined by multiple fasting glucose measurements obtained over up to 14 years of observation. We tested for associations of genetic variants with inverse-normal transformed fasting glucose change over time adjusting for age at baseline, sex, and principal components of genetic variation. We found no genome-wide significant association (P < 5 × 10-8) with fasting glucose change over time. Seven loci previously associated with T2D, fasting glucose or HbA1c were nominally (P < 0.05) associated with fasting glucose change over time. Limited power influences unambiguous interpretation, but these data suggest that genetic effects on fasting glucose change over time are likely to be small. A public version of the data provides a genomic resource to combine with future studies to evaluate shared genetic links with T2D and other metabolic risk traits.

5.
Invest Ophthalmol Vis Sci ; 60(8): 3142-3149, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31323684

RESUMO

Purpose: To determine genetic correlations between common myopia and primary open-angle glaucoma (POAG). Methods: We tested the association of myopia polygenic risk scores (PRSs) with POAG and POAG endophenotypes using two studies: the Australian & New Zealand Registry of Advanced Glaucoma (ANZRAG) study comprising 798 POAG cases with 1992 controls, and the Rotterdam Study (RS), a population-based study with 11,097 participants, in which intraocular pressure (IOP) and optic disc parameter measurements were catalogued. PRSs were derived from genome-wide association study meta-analyses conducted by the Consortium for Refractive Error and Myopia (CREAM) and 23andMe. In total, 12 PRSs were constructed and tested. Further, we explored the genetic correlation between myopia, POAG, and POAG endophenotypes by using the linkage disequilibrium score regression (LDSC) method. Results: We did not find significant evidence for an association between PRS of myopia with POAG (P = 0.81), IOP (P = 0.07), vertical cup-disc ratio (P = 0.42), or cup area (P = 0.25). We observed a nominal association with retinal nerve fiber layer (P = 7.7 × 10-3) and a significant association between PRS for myopia and disc area (P = 1.59 × 10-9). Using the LDSC method, we found a genetic correlation only between myopia and disc area (genetic correlation [RhoG] = -0.12, P = 1.8 × 10-3), supporting the findings of the PRS approach. Conclusions: Using two complementary approaches we found no evidence to support a genetic overlap between myopia and POAG; our results suggest that the comorbidity of these diseases is not influenced by common variants. The association between myopia and optic disc size is well known and validates this methodology.

6.
Am J Hum Genet ; 105(1): 15-28, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31178129

RESUMO

Circulating levels of adiponectin, an adipocyte-secreted protein associated with cardiovascular and metabolic risk, are highly heritable. To gain insights into the biology that regulates adiponectin levels, we performed an exome array meta-analysis of 265,780 genetic variants in 67,739 individuals of European, Hispanic, African American, and East Asian ancestry. We identified 20 loci associated with adiponectin, including 11 that had been reported previously (p < 2 × 10-7). Comparison of exome array variants to regional linkage disequilibrium (LD) patterns and prior genome-wide association study (GWAS) results detected candidate variants (r2 > .60) spanning as much as 900 kb. To identify potential genes and mechanisms through which the previously unreported association signals act to affect adiponectin levels, we assessed cross-trait associations, expression quantitative trait loci in subcutaneous adipose, and biological pathways of nearby genes. Eight of the nine loci were also associated (p < 1 × 10-4) with at least one obesity or lipid trait. Candidate genes include PRKAR2A, PTH1R, and HDAC9, which have been suggested to play roles in adipocyte differentiation or bone marrow adipose tissue. Taken together, these findings provide further insights into the processes that influence circulating adiponectin levels.

7.
Hum Mol Genet ; 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-31152171

RESUMO

Many workers are daily exposed to occupational agents like gases/fumes, mineral dust or biological dust, which could induce adverse health effects. Epigenetic mechanisms, such as DNA methylation, have been suggested to play a role. We therefore aimed to identify differentially methylated regions (DMRs) upon occupational exposures in never-smokers and investigated if these DMRs associated with gene expression levels. To determine the effects of occupational exposures independent of smoking, 903 never-smokers of the LifeLines cohort study were included. We performed three genome-wide methylation analyses (Illumina 450 K), one per occupational exposure being gases/fumes, mineral dust and biological dust, using robust linear regression adjusted for appropriate confounders. DMRs were identified using comb-p in Python. Results were validated in the Rotterdam Study (233 never-smokers) and methylation-expression associations were assessed using Biobank-based Integrative Omics Study data (n = 2802). Of the total 21 significant DMRs, 14 DMRs were associated with gases/fumes and 7 with mineral dust. Three of these DMRs were associated with both exposures (RPLP1 and LINC02169 (2×)) and 11 DMRs were located within transcript start sites of gene expression regulating genes. We replicated two DMRs with gases/fumes (VTRNA2-1 and GNAS) and one with mineral dust (CCDC144NL). In addition, nine gases/fumes DMRs and six mineral dust DMRs significantly associated with gene expression levels. Our data suggest that occupational exposures may induce differential methylation of gene expression regulating genes and thereby may induce adverse health effects. Given the millions of workers that are exposed daily to occupational exposures, further studies on this epigenetic mechanism and health outcomes are warranted.

9.
Am J Ophthalmol ; 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31121135

RESUMO

PURPOSE: A genetic correlation is the proportion of phenotypic variance between traits that is shared on a genetic basis. Here we explore genetic correlations between diabetes- and glaucoma-related traits. DESIGN: Cross-sectional study. METHODS: We assembled genome-wide association study summary statistics from European-derived participants regarding diabetes-related traits like fasting blood sugar (FBS) and type 2 diabetes (T2D) and glaucoma-related traits (intraocular pressure (IOP), central corneal thickness (CCT), corneal hysteresis (CH), corneal resistance factor (CRF), cup-disc ratio (CDR), and primary open-angle glaucoma (POAG)). We included data from the National Eye Institute Glaucoma Human Genetics Collaboration Heritable Overall Operational Database, the UK Biobank and the International Glaucoma Genetics Consortium. We calculated genetic correlation (rg) between traits using linkage disequilibrium score regression. We also calculated genetic correlations between IOP, CCT and selected diabetes-related traits based on individual level phenotype data in two Northern European population-based samples using pedigree information and Sequential Oligogenic Linkage Analysis Routines (SOLAR). RESULTS: Overall, there was little rg between diabetes- and glaucoma-related traits. Specifically, we found a non-significant negative correlation between T2D and POAG (rg=-0.14; p=0.16). Using SOLAR, the genetic correlations between measured IOP, CCT, FBS, fasting insulin and hemoglobin A1c, were null. In contrast, genetic correlations between IOP and POAG (rg ≥0.45; p≤3.0E-04) and between CDR and POAG were high (rg =0.57; p=2.8E-10). However, genetic correlations between corneal properties (CCT, CRF and CH) and POAG were low (rg range: -0.18 - 0.11) and non-significant (p≥0.07). CONCLUSION: These analyses suggest there is limited genetic correlation between diabetes- and glaucoma-related traits.

10.
Endocrinology ; 160(7): 1731-1742, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31125048

RESUMO

Most patients with pancreatic cancer present with advanced disease and die within the first year after diagnosis. Predictive biomarkers that signal the presence of pancreatic cancer in an early stage are desperately needed. We aimed to identify new and validate previously found plasma metabolomic biomarkers associated with early stages of pancreatic cancer. Prediagnostic blood samples from individuals who were to receive a diagnosis of pancreatic cancer between 1 month and 17 years after sampling (N = 356) and age- and sex-matched controls (N = 887) were collected from five large population cohorts (HUNT2, HUNT3, FINRISK, Estonian Biobank, Rotterdam Study). We applied proton nuclear magnetic resonance-based metabolomics on the Nightingale platform. Logistic regression identified two interesting hits: glutamine (P = 0.011) and histidine (P = 0.012), with Westfall-Young family-wise error rate adjusted P values of 0.43 for both. Stratification in quintiles showed a 1.5-fold elevated risk for the lowest 20% of glutamine and a 2.2-fold increased risk for the lowest 20% of histidine. Stratification by time to diagnosis suggested glutamine to be involved in an earlier process (2 to 5 years before diagnosis), and histidine in a process closer to the actual onset (<2 years). Our data did not support the branched-chain amino acids identified earlier in several US cohorts as potential biomarkers for pancreatic cancer. Thus, although we identified glutamine and histidine as potential biomarkers of biological interest, our results imply that a study at this scale does not yield metabolomic biomarkers with sufficient predictive value to be clinically useful per se as prognostic biomarkers.

11.
Neurology ; 92(16): e1899-e1911, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30944236

RESUMO

OBJECTIVE: To identify a plasma metabolomic biomarker signature for migraine. METHODS: Plasma samples from 8 Dutch cohorts (n = 10,153: 2,800 migraine patients and 7,353 controls) were profiled on a 1H-NMR-based metabolomics platform, to quantify 146 individual metabolites (e.g., lipids, fatty acids, and lipoproteins) and 79 metabolite ratios. Metabolite measures associated with migraine were obtained after single-metabolite logistic regression combined with a random-effects meta-analysis performed in a nonstratified and sex-stratified manner. Next, a global test analysis was performed to identify sets of related metabolites associated with migraine. The Holm procedure was applied to control the family-wise error rate at 5% in single-metabolite and global test analyses. RESULTS: Decreases in the level of apolipoprotein A1 (ß -0.10; 95% confidence interval [CI] -0.16, -0.05; adjusted p = 0.029) and free cholesterol to total lipid ratio present in small high-density lipoprotein subspecies (HDL) (ß -0.10; 95% CI -0.15, -0.05; adjusted p = 0.029) were associated with migraine status. In addition, only in male participants, a decreased level of omega-3 fatty acids (ß -0.24; 95% CI -0.36, -0.12; adjusted p = 0.033) was associated with migraine. Global test analysis further supported that HDL traits (but not other lipoproteins) were associated with migraine status. CONCLUSIONS: Metabolic profiling of plasma yielded alterations in HDL metabolism in migraine patients and decreased omega-3 fatty acids only in male migraineurs.

12.
J Alzheimers Dis ; 68(4): 1535-1547, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30909233

RESUMO

Pre-synaptic secretion of brain-derived neurotrophic factor (BDNF) from noradrenergic neurons may protect the Alzheimer's disease (AD) brain from amyloid pathology. While the BDNF polymorphism (rs6265) is associated with faster cognitive decline and increased hippocampal atrophy, a replicable genetic association of BDNF with AD risk has yet to be demonstrated. This could be due to masking by underlying epistatic interactions between BDNF and other loci that encode proteins involved in moderating BDNF secretion (DBH and Sortilin). We performed a multi-cohort case-control association study of the BDNF, DBH, and SORT1 loci comprising 5,682 controls and 2,454 AD patients from Northern Europe (87% of samples) and Spain (13%). The BDNF locus was associated with increased AD risk (odds ratios; OR = 1.1-1.2, p = 0.005-0.3), an effect size that was consistent in the Northern European (OR = 1.1-1.2, p = 0.002-0.8) but not the smaller Spanish (OR = 0.8-1.6, p = 0.4-1.0) subset. A synergistic interaction between BDNF and sex (synergy factor; SF = 1.3-1.5 p = 0.002-0.02) translated to a greater risk of AD associated with BDNF in women (OR = 1.2-1.3, p = 0.007-0.00008) than men (OR = 0.9-1.0, p = 0.3-0.6). While the DBH polymorphism (rs1611115) was also associated with increased AD risk (OR = 1.1, p = 0.04) the synergistic interaction (SF = 2.2, p = 0.007) between BDNF (rs6265) and DBH (rs1611115) contributed greater AD risk than either gene alone, an effect that was greater in women (SF = 2.4, p = 0.04) than men (SF = 2.0, p = 0.2). These data support a complex genetic interaction at loci encoding proteins implicated in the DBH-BDNF inflammatory pathway that modifies AD risk, particularly in women.

13.
Aging (Albany NY) ; 11(5): 1440-1456, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30830859

RESUMO

Cognition in adults shows variation due to developmental and degenerative components. A recent genome-wide association study identified genetic variants for general cognitive function in 148 independent loci. Here, we aimed to elucidate possible developmental and neurodegenerative pathways underlying these genetic variants by relating them to functional, clinical and neuroimaging outcomes. This study was conducted within the population-based Rotterdam Study (N=11,496, mean age 65.3±9.9 years, 58.0% female). We used lead variants for general cognitive function to construct a polygenic score (PGS), and additionally excluded developmental variants at multiple significance thresholds. A higher PGS was related to more years of education (ß=0.29, p=4.3x10-7) and a larger intracranial volume (ß=0.05, p=7.5x10-4). To a smaller extent, the PGS was associated with less cognitive decline (ßΔG-factor=0.03, p=1.3x10-3), which became non-significant after adjusting for education (p=1.6x10-2). No associations were found with daily functioning, dementia, parkinsonism, stroke or microstructural white matter integrity. Excluding developmental variants attenuated nearly all associations. In conclusion, this study suggests that the genetic variants identified for general cognitive function are acting mainly through the developmental pathway of cognition. Therefore, cognition, assessed cross-sectionally, seems to have limited value as a biomarker for neurodegeneration.

14.
BMC Pulm Med ; 19(1): 58, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30845926

RESUMO

BACKGROUND: Airflow obstruction is a hallmark of chronic obstructive pulmonary disease (COPD), and is defined as either the ratio between forced expiratory volume in one second and forced vital capacity (FEV1/FVC) < 70% or < lower limit of normal (LLN). This study aimed to assess the overlap between genome-wide association studies (GWAS) on airflow obstruction using these two definitions in the same population stratified by smoking. METHODS: GWASes were performed in the LifeLines Cohort Study for both airflow obstruction definitions in never-smokers (NS = 5071) and ever-smokers (ES = 4855). The FEV1/FVC < 70% models were adjusted for sex, age, and height; FEV1/FVC < LLN models were not adjusted. Ever-smokers models were additionally adjusted for pack-years and current-smoking. The overlap in significantly associated SNPs between the two definitions and never/ever-smokers was assessed using several p-value thresholds. To quantify the agreement, the Pearson correlation coefficient was calculated between the p-values and ORs. Replication was performed in the Vlagtwedde-Vlaardingen study (NS = 432, ES = 823). The overlapping SNPs with p < 10- 4 were validated in the Vlagtwedde-Vlaardingen and Rotterdam Study cohorts (NS = 1966, ES = 3134) and analysed for expression quantitative trait loci (eQTL) in lung tissue (n = 1087). RESULTS: In the LifeLines cohort, 96% and 93% of the never- and ever-smokers were classified concordantly based on the two definitions. 26 and 29% of the investigated SNPs were overlapping at p < 0.05 in never- and ever-smokers, respectively. At p < 10- 4 the overlap was 4% and 6% respectively, which could be change findings as shown by simulation studies. The effect estimates of the SNPs of the two definitions correlated strongly, but the p-values showed more variation and correlated only moderately. Similar observations were made in the Vlagtwedde-Vlaardingen study. Two overlapping SNPs in never-smokers (NFYC and FABP7) had the same direction of effect in the validation cohorts and the NFYC SNP was an eQTL for NFYC-AS1. NFYC is a transcription factor that binds to several known COPD genes, and FABP7 may be involved in abnormal pulmonary development. CONCLUSIONS: The definition of airflow obstruction and the population under study may be important determinants of which SNPs are associated with airflow obstruction. The genes FABP7 and NFYC(-AS1) could play a role in airflow obstruction in never-smokers specifically.


Assuntos
Fator de Ligação a CCAAT/genética , Proteína 7 de Ligação a Ácidos Graxos/genética , Estudo de Associação Genômica Ampla , Doença Pulmonar Obstrutiva Crônica/genética , Fumar/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Volume Expiratório Forçado , Homologia de Genes/genética , Predisposição Genética para Doença , Humanos , Modelos Lineares , Modelos Logísticos , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Fumar/efeitos adversos , Espirometria , Capacidade Vital , Adulto Jovem
15.
Brain ; 142(4): 1009-1023, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30859180

RESUMO

We report a composite extreme phenotype design using distribution of white matter hyperintensities and brain infarcts in a population-based cohort of older persons for gene-mapping of cerebral small vessel disease. We demonstrate its application in the 3C-Dijon whole exome sequencing (WES) study (n = 1924, nWESextremes = 512), with both single variant and gene-based association tests. We used other population-based cohort studies participating in the CHARGE consortium for replication, using whole exome sequencing (nWES = 2,868, nWESextremes = 956) and genome-wide genotypes (nGW = 9924, nGWextremes = 3308). We restricted our study to candidate genes known to harbour mutations for Mendelian small vessel disease: NOTCH3, HTRA1, COL4A1, COL4A2 and TREX1. We identified significant associations of a common intronic variant in HTRA1, rs2293871 using single variant association testing (Pdiscovery = 8.21 × 10-5, Preplication = 5.25 × 10-3, Pcombined = 4.72 × 10-5) and of NOTCH3 using gene-based tests (Pdiscovery = 1.61 × 10-2, Preplication = 3.99 × 10-2, Pcombined = 5.31 × 10-3). Follow-up analysis identified significant association of rs2293871 with small vessel ischaemic stroke, and two blood expression quantitative trait loci of HTRA1 in linkage disequilibrium. Additionally, we identified two participants in the 3C-Dijon cohort (0.4%) carrying heterozygote genotypes at known pathogenic variants for familial small vessel disease within NOTCH3 and HTRA1. In conclusion, our proof-of-concept study provides strong evidence that using a novel composite MRI-derived phenotype for extremes of small vessel disease can facilitate the identification of genetic variants underlying small vessel disease, both common variants and those with rare and low frequency. The findings demonstrate shared mechanisms and a continuum between genes underlying Mendelian small vessel disease and those contributing to the common, multifactorial form of the disease.

16.
Neuroinformatics ; 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30903541

RESUMO

Multivariate methods have the potential to better capture complex relationships that may exist between different biological levels. Multiple Factor Analysis (MFA) is one of the most popular methods to obtain factor scores and measures of discrepancy between data sets. However, singular value decomposition in MFA is based on PCA, which is adequate only if the data is normally distributed, linear or stationary. In addition, including strongly correlated variables can overemphasize the contribution of the estimated components. In this work, we introduced a novel method referred as Independent Multifactorial Analysis (ICA-MFA) to derive relevant features from multiscale data. This method is an extended implementation of MFA, where the component value decomposition is based on Independent Component Analysis. In addition, ICA-MFA incorporates a predictive step based on an Independent Component Regression. We evaluated and compared the performance of ICA-MFA with both, the MFA method and traditional univariate analyses, in a simulation study. We showed how ICA-MFA explained up to 10-fold more variance than MFA and univariate methods. We applied the proposed algorithm in a study of 4057 individuals belonging to the population-based Rotterdam Study with available genetic and neuroimaging data, as well as information about executive cognitive functioning. Specifically, we used ICA-MFA to detect relevant genetic features related to structural brain regions, which in turn were involved, in the mechanisms of executive cognitive function. The proposed strategy makes it possible to determine the degree to which the whole set of genetic and/or neuroimaging markers contribute to the variability of the symptomatology jointly, rather than individually. While univariate results and MFA combinations only explained a limited proportion of variance (less than 2%), our method increased the explained variance (10%) and allowed the identification of significant components that maximize the variance explained in the model. The potential application of the ICA-MFA algorithm constitutes an important aspect of integrating multivariate multiscale data, specifically in the field of Neurogenetics.

17.
PLoS One ; 14(2): e0212293, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30768625

RESUMO

OBJECTIVE: To determine whether classes of diabetes medications are associated with cognitive health and dementia risk, above and beyond their glycemic control properties. RESEARCH DESIGN AND METHODS: Findings were pooled from 5 population-based cohorts: the Framingham Heart Study, the Rotterdam Study, the Atherosclerosis Risk in Communities (ARIC) Study, the Aging Gene-Environment Susceptibility-Reykjavik Study (AGES) and the Sacramento Area Latino Study on Aging (SALSA). Differences between users and non-users of insulin, metformin and sulfonylurea were assessed in each cohort for cognitive and brain MRI measures using linear regression models, and cognitive decline and dementia/AD risk using mixed effect models and Cox regression analyses, respectively. Findings were then pooled using meta-analytic techniques, including 3,590 individuals with diabetes for the prospective analysis. RESULTS: After adjusting for potential confounders including indices of glycemic control, insulin use was associated with increased risk of new-onset dementia (pooled HR (95% CI) = 1.58 (1.18, 2.12);p = 0.002) and with a greater decline in global cognitive function (ß = -0.014±0.007;p = 0.045). The associations with incident dementia remained similar after further adjustment for renal function and excluding persons with diabetes whose treatment was life-style change only. Insulin use was not related to cognitive function nor to brain MRI measures. No significant associations were found between metformin or sulfonylurea use and outcomes of brain function and structure. There was no evidence of significant between-study heterogeneity. CONCLUSIONS: Despite its advantages in controlling glycemic dysregulation and preventing complications, insulin treatment may be associated with increased adverse cognitive outcomes possibly due to a greater risk of hypoglycemia.

18.
Eur J Hum Genet ; 27(6): 952-962, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30679814

RESUMO

Genome-wide association studies (GWAS) of quantitative electrocardiographic (ECG) traits in large consortia have identified more than 130 loci associated with QT interval, QRS duration, PR interval, and heart rate (RR interval). In the current study, we meta-analyzed genome-wide association results from 30,000 mostly Dutch samples on four ECG traits: PR interval, QRS duration, QT interval, and RR interval. SNP genotype data was imputed using the Genome of the Netherlands reference panel encompassing 19 million SNPs, including millions of rare SNPs (minor allele frequency < 5%). In addition to many known loci, we identified seven novel locus-trait associations: KCND3, NR3C1, and PLN for PR interval, KCNE1, SGIP1, and NFKB1 for QT interval, and ATP2A2 for QRS duration, of which six were successfully replicated. At these seven loci, we performed conditional analyses and annotated significant SNPs (in exons and regulatory regions), demonstrating involvement of cardiac-related pathways and regulation of nearby genes.

19.
Neurobiol Aging ; 73: 229.e11-229.e18, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30314817

RESUMO

Next-generation sequencing has contributed to our understanding of the genetics of Alzheimer's disease (AD) and has explained a substantial part of the missing heritability of familial AD. We sequenced 19 exomes from 8 Dutch families with a high AD burden and identified EIF2AK3, encoding for protein kinase RNA-like endoplasmic reticulum kinase (PERK), as a candidate gene. Gene-based burden analysis in a Dutch AD exome cohort containing 547 cases and 1070 controls showed a significant association of EIF2AK3 with AD (OR 1.84 [95% CI 1.07-3.17], p-value 0.03), mainly driven by the variant p.R240H. Genotyping of this variant in an additional cohort from the Rotterdam Study showed a trend toward association with AD (p-value 0.1). Immunohistochemical staining with pPERK and peIF2α of 3 EIF2AK3 AD carriers showed an increase in hippocampal neuronal cells expressing these proteins compared with nondemented controls, but no difference was observed in AD noncarriers. This study suggests that rare variants in EIF2AK3 may be associated with disease risk in AD.

20.
Respir Res ; 19(1): 212, 2018 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-30390659

RESUMO

BACKGROUND: Genetic and environmental factors play a role in the development of COPD. The epigenome, and more specifically DNA methylation, is recognized as important link between these factors. We postulate that DNA methylation is one of the routes by which cigarette smoke influences the development of COPD. In this study, we aim to identify CpG-sites that are associated with cigarette smoke exposure and lung function levels in whole blood and validate these CpG-sites in lung tissue. METHODS: The association between pack years and DNA methylation was studied genome-wide in 658 current smokers with >5 pack years using robust linear regression analysis. Using mediation analysis, we subsequently selected the CpG-sites that were also associated with lung function levels. Significant CpG-sites were validated in lung tissue with pyrosequencing and expression quantitative trait methylation (eQTM) analysis was performed to investigate the association between DNA methylation and gene expression. RESULTS: 15 CpG-sites were significantly associated with pack years and 10 of these were additionally associated with lung function levels. We validated 5 CpG-sites in lung tissue and found several associations between DNA methylation and gene expression. CONCLUSION: This study is the first to validate a panel of CpG-sites that are associated with cigarette smoking and lung function levels in whole blood in the tissue of interest: lung tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA