Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 3338, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099686

RESUMO

The versatile nucleotide excision repair (NER) pathway initiates as the XPC-RAD23B-CETN2 complex first recognizes DNA lesions from the genomic DNA and recruits the general transcription factor complex, TFIIH, for subsequent lesion verification. Here, we present a cryo-EM structure of an NER initiation complex containing Rad4-Rad23-Rad33 (yeast homologue of XPC-RAD23B-CETN2) and 7-subunit coreTFIIH assembled on a carcinogen-DNA adduct lesion at 3.9-9.2 Å resolution. A ~30-bp DNA duplex could be mapped as it straddles between Rad4 and the Ssl2 (XPB) subunit of TFIIH on the 3' and 5' side of the lesion, respectively. The simultaneous binding with Rad4 and TFIIH was permitted by an unwinding of DNA at the lesion. Translocation coupled with torque generation by Ssl2 and Rad4 would extend the DNA unwinding at the lesion and deliver the damaged strand to Rad3 (XPD) in an open form suitable for subsequent lesion scanning and verification.


Assuntos
Microscopia Crioeletrônica , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/química , DNA/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIH/química , Adutos de DNA/metabolismo , DNA Helicases/química , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Fator de Transcrição TFIIH/genética
2.
Nat Commun ; 12(1): 3487, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108468

RESUMO

Fusicoccadiene synthase from Phomopsis amygdali (PaFS) is a unique bifunctional terpenoid synthase that catalyzes the first two steps in the biosynthesis of the diterpene glycoside Fusicoccin A, a mediator of 14-3-3 protein interactions. The prenyltransferase domain of PaFS generates geranylgeranyl diphosphate, which the cyclase domain then utilizes to generate fusicoccadiene, the tricyclic hydrocarbon skeleton of Fusicoccin A. Here, we use cryo-electron microscopy to show that the structure of full-length PaFS consists of a central octameric core of prenyltransferase domains, with the eight cyclase domains radiating outward via flexible linker segments in variable splayed-out positions. Cryo-electron microscopy and chemical crosslinking experiments additionally show that compact conformations can be achieved in which cyclase domains are more closely associated with the prenyltransferase core. This structural analysis provides a framework for understanding substrate channeling, since most of the geranylgeranyl diphosphate generated by the prenyltransferase domains remains on the enzyme for cyclization to form fusicoccadiene.


Assuntos
Alquil e Aril Transferases/química , Diterpenos/metabolismo , Proteínas Fúngicas/química , Alquil e Aril Transferases/metabolismo , Ascomicetos/química , Ascomicetos/enzimologia , Catálise , Domínio Catalítico , Microscopia Crioeletrônica , Ciclização , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/metabolismo , Proteínas Fúngicas/metabolismo , Glicosídeos/biossíntese , Liases/química , Liases/metabolismo , Enzimas Multifuncionais , Fosfatos de Poli-Isoprenil/metabolismo , Conformação Proteica
3.
Sci Adv ; 7(15)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33827808

RESUMO

During transcription initiation, the general transcription factor TFIIH marks RNA polymerase II by phosphorylating Ser5 of the carboxyl-terminal domain (CTD) of Rpb1, which is followed by extensive modifications coupled to transcription elongation, mRNA processing, and histone dynamics. We have determined a 3.5-Å resolution cryo-electron microscopy (cryo-EM) structure of the TFIIH kinase module (TFIIK in yeast), which is composed of Kin28, Ccl1, and Tfb3, yeast homologs of CDK7, cyclin H, and MAT1, respectively. The carboxyl-terminal region of Tfb3 was lying at the edge of catalytic cleft of Kin28, where a conserved Tfb3 helix served to stabilize the activation loop in its active conformation. By combining the structure of TFIIK with the previous cryo-EM structure of the preinitiation complex, we extend the previously proposed model of the CTD path to the active site of TFIIK.

4.
Nat Commun ; 12(1): 929, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568648

RESUMO

Respiratory electron transport complexes are organized as individual entities or combined as large supercomplexes (SC). Gram-negative bacteria deploy a mitochondrial-like cytochrome (cyt) bc1 (Complex III, CIII2), and may have specific cbb3-type cyt c oxidases (Complex IV, CIV) instead of the canonical aa3-type CIV. Electron transfer between these complexes is mediated by soluble (c2) and membrane-anchored (cy) cyts. Here, we report the structure of an engineered bc1-cbb3 type SC (CIII2CIV, 5.2 Å resolution) and three conformers of native CIII2 (3.3 Å resolution). The SC is active in vivo and in vitro, contains all catalytic subunits and cofactors, and two extra transmembrane helices attributed to cyt cy and the assembly factor CcoH. The cyt cy is integral to SC, its cyt domain is mobile and it conveys electrons to CIV differently than cyt c2. The successful production of a native-like functional SC and determination of its structure illustrate the characteristics of membrane-confined and membrane-external respiratory electron transport pathways in Gram-negative bacteria.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Rhodobacter capsulatus/enzimologia , Proteínas de Bactérias/genética , Domínio Catalítico , Coenzimas/química , Coenzimas/metabolismo , Microscopia Crioeletrônica , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Engenharia Genética , Rhodobacter capsulatus/química , Rhodobacter capsulatus/genética , Rhodobacter capsulatus/metabolismo
5.
Sci Adv ; 6(23)2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32917641

RESUMO

Actin-related protein (Arp) 2/3 complex nucleates branched actin networks that drive cell motility. It consists of seven proteins, including two actin-related subunits (Arp2 and Arp3). Two nucleation-promoting factors (NPFs) bind Arp2/3 complex during activation, but the order, specific interactions, and contribution of each NPF to activation are unresolved. Here, we report the cryo-electron microscopy structure of recombinantly expressed human Arp2/3 complex with two WASP family NPFs bound and address the mechanism of activation. A cross-linking assay that captures the transition of the Arps into the activated filament-like conformation shows that actin binding to NPFs favors this transition. Actin-NPF binding to Arp2 precedes binding to Arp3 and is sufficient to promote the filament-like conformation but not activation. Structure-guided mutagenesis of the NPF-binding sites reveals their distinct roles in activation and shows that, contrary to budding yeast Arp2/3 complex, NPF-mediated delivery of actin at the barbed end of both Arps is required for activation of human Arp2/3 complex.

6.
Curr Biol ; 29(16): 2625-2639.e5, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31353180

RESUMO

Centromeric nucleosomes are at the interface of the chromosome and the kinetochore that connects to spindle microtubules in mitosis. The core centromeric nucleosome complex (CCNC) harbors the histone H3 variant, CENP-A, and its binding proteins, CENP-C (through its central domain; CD) and CENP-N (through its N-terminal domain; NT). CENP-C can engage nucleosomes through two domains: the CD and the CENP-C motif (CM). CENP-CCD is part of the CCNC by virtue of its high specificity for CENP-A nucleosomes and ability to stabilize CENP-A at the centromere. CENP-CCM is thought to engage a neighboring nucleosome, either one containing conventional H3 or CENP-A, and a crystal structure of a nucleosome complex containing two copies of CENP-CCM was reported. Recent structures containing a single copy of CENP-NNT bound to the CENP-A nucleosome in the absence of CENP-C were reported. Here, we find that one copy of CENP-N is lost for every two copies of CENP-C on centromeric chromatin just prior to kinetochore formation. We present the structures of symmetric and asymmetric forms of the CCNC that vary in CENP-N stoichiometry. Our structures explain how the central domain of CENP-C achieves its high specificity for CENP-A nucleosomes and how CENP-C and CENP-N sandwich the histone H4 tail. The natural centromeric DNA path in our structures corresponds to symmetric surfaces for CCNC assembly, deviating from what is observed in prior structures using artificial sequences. At mitosis, we propose that CCNC asymmetry accommodates its asymmetric connections at the chromosome/kinetochore interface. VIDEO ABSTRACT.


Assuntos
Centrômero/ultraestrutura , Mitose/fisiologia , Nucleossomos/ultraestrutura , Proteínas Cromossômicas não Histona/ultraestrutura , Microscopia Crioeletrônica , Humanos
7.
Proc Natl Acad Sci U S A ; 114(50): 13230-13235, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180430

RESUMO

The DNA damage response is an essential process for the survival of living cells. In a subset of stress-responsive genes in humans, Elongin controls transcription in response to multiple stimuli, such as DNA damage, oxidative stress, and heat shock. Yeast Elongin (Ela1-Elc1), along with Def1, is known to facilitate ubiquitylation and degradation of RNA polymerase II (pol II) in response to multiple stimuli, yet transcription activity has not been examined. We have found that Def1 copurifies from yeast whole-cell extract with TFIIH, the largest general transcription factor required for transcription initiation and nucleotide excision repair. The addition of recombinant Def1 and Ela1-Elc1 enhanced transcription initiation in an in vitro reconstituted system including pol II, the general transcription factors, and TFIIS. Def1 also enhanced transcription restart from TFIIS-induced cleavage in a pol II transcribing complex. In the Δdef1 strain, heat shock genes were misregulated, indicating that Def1 is required for induction of some stress-responsive genes in yeast. Taken together, our results extend the understanding of the molecular mechanism of transcription regulation on cellular stress and reveal functional similarities to the mammalian system.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIH/metabolismo , Proteínas Cromossômicas não Histona/genética , Elonguina/genética , Elonguina/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico , Iniciação da Transcrição Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...