Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Brain Imaging Behav ; 2020 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-32361945

RESUMO

While functional neuroimaging studies typically focus on a particular paradigm to investigate network connectivity, the human brain appears to possess an intrinsic "trait" architecture that is independent of any given paradigm. We have previously proposed the use of "cross-paradigm connectivity (CPC)" to quantify shared connectivity patterns across multiple paradigms and have demonstrated the utility of such measures in clinical studies. Here, using generalizability theory and connectome fingerprinting, we examined the reliability, stability, and individual identifiability of CPC in a group of highly-sampled healthy traveling subjects who received fMRI scans with a battery of five paradigms across multiple sites and days. Compared with single-paradigm connectivity matrices, the CPC matrices showed higher reliability in connectivity diversity, lower reliability in connectivity strength, higher stability, and higher individual identification accuracy. All of these assessments increased as a function of number of paradigms included in the CPC analysis. In comparisons involving different paradigm combinations and different brain atlases, we observed significantly higher reliability, stability, and identifiability for CPC matrices constructed from task-only data (versus those from both task and rest data), and higher identifiability but lower stability for CPC matrices constructed from the Power atlas (versus those from the AAL atlas). Moreover, we showed that multi-paradigm CPC matrices likely reflect the brain's "trait" structure that cannot be fully achieved from single-paradigm data, even with multiple runs. The present results provide evidence for the feasibility and utility of CPC in the study of functional "trait" networks and offer some methodological implications for future CPC studies.

2.
Hum Brain Mapp ; 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32420672

RESUMO

Left-right asymmetry of the human brain is one of its cardinal features, and also a complex, multivariate trait. Decades of research have suggested that brain asymmetry may be altered in psychiatric disorders. However, findings have been inconsistent and often based on small sample sizes. There are also open questions surrounding which structures are asymmetrical on average in the healthy population, and how variability in brain asymmetry relates to basic biological variables such as age and sex. Over the last 4 years, the ENIGMA-Laterality Working Group has published six studies of gray matter morphological asymmetry based on total sample sizes from roughly 3,500 to 17,000 individuals, which were between one and two orders of magnitude larger than those published in previous decades. A population-level mapping of average asymmetry was achieved, including an intriguing fronto-occipital gradient of cortical thickness asymmetry in healthy brains. ENIGMA's multi-dataset approach also supported an empirical illustration of reproducibility of hemispheric differences across datasets. Effect sizes were estimated for gray matter asymmetry based on large, international, samples in relation to age, sex, handedness, and brain volume, as well as for three psychiatric disorders: autism spectrum disorder was associated with subtly reduced asymmetry of cortical thickness at regions spread widely over the cortex; pediatric obsessive-compulsive disorder was associated with altered subcortical asymmetry; major depressive disorder was not significantly associated with changes of asymmetry. Ongoing studies are examining brain asymmetry in other disorders. Moreover, a groundwork has been laid for possibly identifying shared genetic contributions to brain asymmetry and disorders.

4.
Hum Brain Mapp ; 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32301246

RESUMO

The ENIGMA-DTI (diffusion tensor imaging) workgroup supports analyses that examine the effects of psychiatric, neurological, and developmental disorders on the white matter pathways of the human brain, as well as the effects of normal variation and its genetic associations. The seven ENIGMA disorder-oriented working groups used the ENIGMA-DTI workflow to derive patterns of deficits using coherent and coordinated analyses that model the disease effects across cohorts worldwide. This yielded the largest studies detailing patterns of white matter deficits in schizophrenia spectrum disorder (SSD), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), posttraumatic stress disorder (PTSD), traumatic brain injury (TBI), and 22q11 deletion syndrome. These deficit patterns are informative of the underlying neurobiology and reproducible in independent cohorts. We reviewed these findings, demonstrated their reproducibility in independent cohorts, and compared the deficit patterns across illnesses. We discussed translating ENIGMA-defined deficit patterns on the level of individual subjects using a metric called the regional vulnerability index (RVI), a correlation of an individual's brain metrics with the expected pattern for a disorder. We discussed the similarity in white matter deficit patterns among SSD, BD, MDD, and OCD and provided a rationale for using this index in cross-diagnostic neuropsychiatric research. We also discussed the difference in deficit patterns between idiopathic schizophrenia and 22q11 deletion syndrome, which is used as a developmental and genetic model of schizophrenia. Together, these findings highlight the importance of collaborative large-scale research to provide robust and reproducible effects that offer insights into individual vulnerability and cross-diagnosis features.

5.
NMR Biomed ; 33(6): e4294, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32207187

RESUMO

The human brain is asymmetrically lateralized for certain functions (such as language processing) to regions in one hemisphere relative to the other. Asymmetries are measured with a laterality index (LI). However, traditional LI measures are limited by a lack of consensus on metrics used for its calculation. To address this limitation, source-based laterality (SBL) leverages an independent component analysis for the identification of laterality-specific alterations, identifying covarying components between hemispheres across subjects. SBL is successfully implemented with simulated data with inherent differences in laterality. SBL is then compared with a voxel-wise analysis utilizing structural data from a sample of patients with schizophrenia and controls without schizophrenia. SBL group comparisons identified three distinct temporal regions and one cerebellar region with significantly altered laterality in patients with schizophrenia relative to controls. Previous work highlights reductions in laterality (ie, reduced left gray matter volume) in patients with schizophrenia compared with controls without schizophrenia. Results from this pilot SBL project are the first, to our knowledge, to identify covarying laterality differences within discrete temporal brain regions. The authors argue SBL provides a unique focus to detect covarying laterality differences in patients with schizophrenia, facilitating the discovery of laterality aspects undetected in previous work.

6.
Am J Psychiatry ; : appiajp201919030225, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32212855

RESUMO

OBJECTIVE: Schizophrenia has recently been associated with widespread white matter microstructural abnormalities, but the functional effects of these abnormalities remain unclear. Widespread heterogeneity of results from studies published to date preclude any definitive characterization of the relationship between white matter and cognitive performance in schizophrenia. Given the relevance of deficits in cognitive function to predicting social and functional outcomes in schizophrenia, the authors carried out a meta-analysis of available data through the ENIGMA Consortium, using a common analysis pipeline, to elucidate the relationship between white matter microstructure and a measure of general cognitive performance, IQ, in patients with schizophrenia and healthy participants. METHODS: The meta-analysis included 760 patients with schizophrenia and 957 healthy participants from 11 participating ENIGMA Consortium sites. For each site, principal component analysis was used to calculate both a global fractional anisotropy component (gFA) and a fractional anisotropy component for six long association tracts (LA-gFA) previously associated with cognition. RESULTS: Meta-analyses of regression results indicated that gFA accounted for a significant amount of variation in cognition in the full sample (effect size [Hedges' g]=0.27, CI=0.17-0.36), with similar effects sizes observed for both the patient (effect size=0.20, CI=0.05-0.35) and healthy participant groups (effect size=0.32, CI=0.18-0.45). Comparable patterns of association were also observed between LA-gFA and cognition for the full sample (effect size=0.28, CI=0.18-0.37), the patient group (effect size=0.23, CI=0.09-0.38), and the healthy participant group (effect size=0.31, CI=0.18-0.44). CONCLUSIONS: This study provides robust evidence that cognitive ability is associated with global structural connectivity, with higher fractional anisotropy associated with higher IQ. This association was independent of diagnosis; while schizophrenia patients tended to have lower fractional anisotropy and lower IQ than healthy participants, the comparable size of effect in each group suggested a more general, rather than disease-specific, pattern of association.

7.
J Neurosci Methods ; 334: 108600, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31978489

RESUMO

BACKGROUND: Dynamic functional network connectivity (dFNC) of the brain has attracted considerable attention recently. Many approaches have been suggested to study dFNC with sliding window Pearson correlation (SWPC) being the most well-known. SWPC needs a relatively large sample size to reach a robust estimation but using large window sizes prevents us to detect rapid changes in dFNC. NEW METHOD: Here we first calculate the gradients of each time series pair and use the magnitude of these gradients to calculate weighted average of shared trajectory (WAST) as a new estimator for dFNC. RESULTS: Using WAST to compare healthy control and schizophrenia patients using a large dataset, we show disconnectivity between different regions associated with schizophrenia. In addition, WAST results reveals patients with schizophrenia stay longer in a connectivity state with negative connectivity between motor and sensory regions than do healthy controls. COMPARISON WITH EXISTING METHODS: We compare WAST with SWPC and multiplication of temporal derivatives (MTD) using different simulation scenarios. We show that WAST enables us to detect very rapid changes in dFNC (undetected by SWPC) while MTD performance is generally lower. CONCLUSIONS: As large window sizes are unable to detect short states, using shorter window size is desirable if the estimator is robust enough. We provide evidence that WAST requires fewer samples (compared to SWPC) to reach a robust estimation. As a result, we were able to identify rapidly varying dFNC patterns undetected by SWPC while still being able to robustly estimate slower dFNC patterns.

8.
IEEE Trans Biomed Eng ; 67(1): 110-121, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30946659

RESUMO

OBJECTIVE: We propose and develop a novel biclustering (N-BiC) approach for performing N-way biclustering of neuroimaging data. Our approach is applicable to an arbitrary number of features from both imaging and behavioral data (e.g., symptoms). We applied it to structural MRI data from patients with schizophrenia. METHODS: It uses a source-based morphometry approach [i.e., independent component analysis of gray matter segmentation maps] to decompose the data into a set of spatial maps, each of which includes regions that covary among individuals. Then, the loading parameters for components of interest are entered to an exhaustive search, which incorporates a modified depth-first search technique to carry out the biclustering, with the goal of obtaining submatrices where the selected rows (individuals) show homogeneity in their expressions of selected columns (components) and vice versa. RESULTS: Findings demonstrate that multiple biclusters have an evident association with distinct brain networks for the different types of symptoms in schizophrenia. The study identifies two components: inferior temporal gyrus (16) and brainstem (7), which are related to positive (distortion/excess of normal function) and negative (diminution/loss of normal function) symptoms in schizophrenia, respectively. CONCLUSION: N-BiC is a data-driven method of biclustering MRI data that can exhaustively explore relationships/substructures from a dataset without any prior information with a higher degree of robustness than earlier biclustering applications. SIGNIFICANCE: The use of such approaches is important to investigate the underlying biological substrates of mental illness by grouping patients into homogeneous subjects, as the schizophrenia diagnosis is known to be relatively nonspecific and heterogeneous.

9.
Mol Psychiatry ; 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31780770

RESUMO

Identifying both the commonalities and differences in brain structures among psychiatric disorders is important for understanding the pathophysiology. Recently, the ENIGMA-Schizophrenia DTI Working Group performed a large-scale meta-analysis and reported widespread white matter microstructural alterations in schizophrenia; however, no similar cross-disorder study has been carried out to date. Here, we conducted mega-analyses comparing white matter microstructural differences between healthy comparison subjects (HCS; N = 1506) and patients with schizophrenia (N = 696), bipolar disorder (N = 211), autism spectrum disorder (N = 126), or major depressive disorder (N = 398; total N = 2937 from 12 sites). In comparison with HCS, we found that schizophrenia, bipolar disorder, and autism spectrum disorder share similar white matter microstructural differences in the body of the corpus callosum; schizophrenia and bipolar disorder featured comparable changes in the limbic system, such as the fornix and cingulum. By comparison, alterations in tracts connecting neocortical areas, such as the uncinate fasciculus, were observed only in schizophrenia. No significant difference was found in major depressive disorder. In a direct comparison between schizophrenia and bipolar disorder, there were no significant differences. Significant differences between schizophrenia/bipolar disorder and major depressive disorder were found in the limbic system, which were similar to the differences in schizophrenia and bipolar disorder relative to HCS. While schizophrenia and bipolar disorder may have similar pathological characteristics, the biological characteristics of major depressive disorder may be close to those of HCS. Our findings provide insights into nosology and encourage further investigations of shared and unique pathophysiology of psychiatric disorders.

10.
Schizophr Bull ; 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31595302

RESUMO

Negative symptoms are core contributors to vocational and social deficits in schizophrenia (SZ). Available antipsychotic medications typically fail to reduce these symptoms. The neurohormone oxytocin (OT) is a promising treatment for negative symptoms, given its role in complex social behaviors mediated by the amygdala. In sample 1, we used a double-blind, placebo-controlled, crossover design to test the effects of a single dose of intranasal OT on amygdala resting-state functional connectivity (rsFC) in SZ (n = 22) and healthy controls (HC, n = 24) using a whole-brain corrected approach: we identified regions for which OT modulated SZ amygdala rsFC, assessed whether OT-modulated circuits were abnormal in SZ relative to HC on placebo, and evaluated whether connectivity on placebo and OT-induced connectivity changes correlated with baseline negative symptoms in SZ. Given our modest sample size, we used a second SZ (n = 183) and HC (n = 178) sample to replicate any symptom correlations. In sample 1, OT increased rsFC between the amygdala and left middle temporal gyrus, superior temporal sulcus, and angular gyrus (MTG/STS/AngG) in SZ compared to HC. Further, SZ had hypo-connectivity in this circuit compared to HC on placebo. More severe negative symptoms correlated with less amygdala-to-left-MTG/STS/AngG connectivity on placebo and with greater OT-induced connectivity increases. In sample 2, we replicated the correlation between amygdala-left-MTG/STS/AngG hypo-connectivity and negative symptoms, finding a specific association with expressive negative symptoms. These data suggest intranasal OT can normalize functional connectivity in an amygdala-to-left-MTG/STS/AngG circuit that contributes to negative symptoms in SZ.

11.
Front Psychiatry ; 10: 499, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396111

RESUMO

Functional connectivity is one of the most widely used tools for investigating brain changes due to schizophrenia. Previous studies have identified abnormal functional connectivity in schizophrenia patients at the resting state brain network level. This study tests the existence of functional connectivity effects at whole brain and domain levels. Domain level refers to the integration of data from several brain networks grouped by their functional relationship. Data integration provides more consistent and accurate information compared to an individual brain network. This work considers two domain level measures: functional connectivity strength and randomness. The first measure is simply an average of connectivities within the domain. The second measure assesses the unpredictability and lack of pattern of functional connectivity within the domain. Domains with less random connectivity have higher chance of exhibiting a biologically meaningful connectivity pattern. Consistent with prior observations, individuals with schizophrenia showed aberrant domain connectivity strength between subcortical, cerebellar, and sensorial brain areas. Compared to healthy volunteers, functional connectivity between cognitive and default mode domains showed less randomness, while connectivity between default mode-sensorial areas showed more randomness in schizophrenia patients. These differences in connectivity patterns suggest deleterious rewiring trade-offs among important brain networks.

12.
Front Neurosci ; 13: 634, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316333

RESUMO

Brain functional connectivity has been shown to change over time during resting state fMRI experiments. Close examination of temporal changes have revealed a small set of whole-brain connectivity patterns called dynamic states. Dynamic functional network connectivity (dFNC) studies have demonstrated that it is possible to replicate the dynamic states across several resting state experiments. However, estimation of states and their temporal dynamicity still suffers from noisy and imperfect estimations. In regular dFNC implementations, states are estimated by comparing connectivity patterns through the data without considering time, in other words only zero order changes are examined. In this work we propose a method that includes first order variations of dFNC in the searching scheme of dynamic connectivity patterns. Our approach, referred to as temporal variation of functional network connectivity (tvFNC), estimates the derivative of dFNC, and then searches for reoccurring patterns of concurrent dFNC states and their derivatives. The tvFNC method is first validated using a simulated dataset and then applied to a resting-state fMRI sample including healthy controls (HC) and schizophrenia (SZ) patients and compared to the standard dFNC approach. Our dynamic approach reveals extra patterns in the connectivity derivatives complementing the already reported state patterns. State derivatives consist of additional information about increment and decrement of connectivity among brain networks not observed by the original dFNC method. The tvFNC shows more sensitivity than regular dFNC by uncovering additional FNC differences between the HC and SZ groups in each state. In summary, the tvFNC method provides a new and enhanced approach to examine time-varying functional connectivity.

13.
Psychol Med ; : 1-11, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31155012

RESUMO

BACKGROUND: Schizophrenia is associated with robust hippocampal volume deficits but subregion volume deficits, their associations with cognition, and contributing genes remain to be determined. METHODS: Hippocampal formation (HF) subregion volumes were obtained using FreeSurfer 6.0 from individuals with schizophrenia (n = 176, mean age ± s.d. = 39.0 ± 11.5, 132 males) and healthy volunteers (n = 173, mean age ± s.d. = 37.6 ± 11.3, 123 males) with similar mean age, gender, handedness, and race distributions. Relationships between the HF subregion volume with the largest between group difference, neuropsychological performance, and single-nucleotide polymorphisms were assessed. RESULTS: This study found a significant group by region interaction on hippocampal subregion volumes. Compared to healthy volunteers, individuals with schizophrenia had significantly smaller dentate gyrus (DG) (Cohen's d = -0.57), Cornu Ammonis (CA) 4, molecular layer of the hippocampus, hippocampal tail, and CA 1 volumes, when statistically controlling for intracranial volume; DG (d = -0.43) and CA 4 volumes remained significantly smaller when statistically controlling for mean hippocampal volume. DG volume showed the largest between group difference and significant positive associations with visual memory and speed of processing in the overall sample. Genome-wide association analysis with DG volume as the quantitative phenotype identified rs56055643 (ß = 10.8, p < 5 × 10-8, 95% CI 7.0-14.5) on chromosome 3 in high linkage disequilibrium with MOBP. Gene-based analyses identified associations between SLC25A38 and RPSA and DG volume. CONCLUSIONS: This study suggests that DG dysfunction is fundamentally involved in schizophrenia pathophysiology, that it may contribute to cognitive abnormalities in schizophrenia, and that underlying biological mechanisms may involve contributions from MOBP, SLC25A38, and RPSA.

14.
Neuroimage Clin ; 23: 101862, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31150956

RESUMO

In a recent machine learning study classifying "brain age" based on cross-sectional neuroanatomical data, clinical high-risk (CHR) individuals were observed to show deviation from the normal neuromaturational pattern, which in turn was predictive of greater risk of conversion to psychosis and a pattern of stably poor functional outcome. These effects were unique to cases who were between 12 and 17 years of age when their prodromal and psychotic symptoms began, suggesting that neuroanatomical deviance observable at the point of ascertainment of a CHR syndrome marks risk for an early onset form of psychosis. In the present study, we sought to clarify the pattern of neuroanatomical deviance linked to this "early onset" form of psychosis and whether this deviance is associated with poorer premorbid functioning. T1 MRI scans from 378 CHR individuals and 190 healthy controls (HC) from the North American Prodrome Longitudinal Study (NAPLS2) were analyzed. Widespread smaller cortical volume was observed among CHR individuals compared with HC at baseline evaluation, particularly among the younger group (i.e., those who were 12 to 17 years of age). Moreover, the younger CHR individuals who converted or presented worsened clinical symptoms at follow-up (within 2 years) exhibited smaller surface area in rostral anterior cingulate, lateral and medial prefrontal regions, and parahippocampal gyrus relative to the younger CHR individuals who remitted or presented a stable pattern of prodromal symptoms at follow-up. In turn, poorer premorbid functioning in childhood was associated with smaller surface area in medial orbitofrontal, lateral frontal, rostral anterior cingulate, precuneus, and temporal regions. Together with our prior report, these results are consistent with the view that neuroanatomical deviance manifesting in early adolescence marks vulnerability to a form of psychosis presenting with poor premorbid adjustment, an earlier age of onset (generally prior to the age of 18 years), and poor long-term outcome.

15.
Psychol Med ; : 1-12, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31084657

RESUMO

BACKGROUND: Childhood maltreatment (CM) plays an important role in the development of major depressive disorder (MDD). The aim of this study was to examine whether CM severity and type are associated with MDD-related brain alterations, and how they interact with sex and age. METHODS: Within the ENIGMA-MDD network, severity and subtypes of CM using the Childhood Trauma Questionnaire were assessed and structural magnetic resonance imaging data from patients with MDD and healthy controls were analyzed in a mega-analysis comprising a total of 3872 participants aged between 13 and 89 years. Cortical thickness and surface area were extracted at each site using FreeSurfer. RESULTS: CM severity was associated with reduced cortical thickness in the banks of the superior temporal sulcus and supramarginal gyrus as well as with reduced surface area of the middle temporal lobe. Participants reporting both childhood neglect and abuse had a lower cortical thickness in the inferior parietal lobe, middle temporal lobe, and precuneus compared to participants not exposed to CM. In males only, regardless of diagnosis, CM severity was associated with higher cortical thickness of the rostral anterior cingulate cortex. Finally, a significant interaction between CM and age in predicting thickness was seen across several prefrontal, temporal, and temporo-parietal regions. CONCLUSIONS: Severity and type of CM may impact cortical thickness and surface area. Importantly, CM may influence age-dependent brain maturation, particularly in regions related to the default mode network, perception, and theory of mind.

16.
Am J Psychiatry ; 176(7): 531-542, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31014101

RESUMO

OBJECTIVE: Neuroimaging studies show structural alterations of various brain regions in children and adults with attention deficit hyperactivity disorder (ADHD), although nonreplications are frequent. The authors sought to identify cortical characteristics related to ADHD using large-scale studies. METHODS: Cortical thickness and surface area (based on the Desikan-Killiany atlas) were compared between case subjects with ADHD (N=2,246) and control subjects (N=1,934) for children, adolescents, and adults separately in ENIGMA-ADHD, a consortium of 36 centers. To assess familial effects on cortical measures, case subjects, unaffected siblings, and control subjects in the NeuroIMAGE study (N=506) were compared. Associations of the attention scale from the Child Behavior Checklist with cortical measures were determined in a pediatric population sample (Generation-R, N=2,707). RESULTS: In the ENIGMA-ADHD sample, lower surface area values were found in children with ADHD, mainly in frontal, cingulate, and temporal regions; the largest significant effect was for total surface area (Cohen's d=-0.21). Fusiform gyrus and temporal pole cortical thickness was also lower in children with ADHD. Neither surface area nor thickness differences were found in the adolescent or adult groups. Familial effects were seen for surface area in several regions. In an overlapping set of regions, surface area, but not thickness, was associated with attention problems in the Generation-R sample. CONCLUSIONS: Subtle differences in cortical surface area are widespread in children but not adolescents and adults with ADHD, confirming involvement of the frontal cortex and highlighting regions deserving further attention. Notably, the alterations behave like endophenotypes in families and are linked to ADHD symptoms in the population, extending evidence that ADHD behaves as a continuous trait in the population. Future longitudinal studies should clarify individual lifespan trajectories that lead to nonsignificant findings in adolescent and adult groups despite the presence of an ADHD diagnosis.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Adolescente , Adulto , Fatores Etários , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Estudos de Casos e Controles , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Criança , Pré-Escolar , Feminino , Humanos , Imagem por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem , Escalas de Graduação Psiquiátrica , Fatores Sexuais , Adulto Jovem
17.
Hum Brain Mapp ; 40(10): 3058-3077, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30884018

RESUMO

The brain is highly dynamic, reorganizing its activity at different interacting spatial and temporal scales, including variation within and between brain networks. The chronnectome is a model of the brain in which nodal activity and connectivity patterns change in fundamental and recurring ways over time. Most literature assumes fixed spatial nodes/networks, ignoring the possibility that spatial nodes/networks may vary in time. Here, we introduce an approach to calculate a spatially fluid chronnectome (called the spatial chronnectome for clarity), which focuses on the variations of networks coupling at the voxel level, and identify a novel set of spatially dynamic features. Results reveal transient spatially fluid interactions between intra- and internetwork relationships in which brain networks transiently merge and separate, emphasizing dynamic segregation and integration. Brain networks also exhibit distinct spatial patterns with unique temporal characteristics, potentially explaining a broad spectrum of inconsistencies in previous studies that assumed static networks. Moreover, we show anticorrelative connections to brain networks are transient as opposed to constant across the entire scan. Preliminary assessments using a multi-site dataset reveal the ability of the approach to obtain new information and nuanced alterations that remain undetected during static analysis. Patients with schizophrenia (SZ) display transient decreases in voxel-wise network coupling within visual and auditory networks, and higher intradomain coupling variability. In summary, the spatial chronnectome represents a new direction of research enabling the study of functional networks which are transient at the voxel level, and the identification of mechanisms for within- and between-subject spatial variability.

18.
J Neurosci Methods ; 320: 64-71, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30902651

RESUMO

It has been widely shown that genomic factors influence both risk for schizophrenia and variation in functional brain connectivity. Moreover, schizophrenia is characterized by disrupted brain connectivity. In this work, we proposed a genome-connectome bipartite graph model to perform imaging genomic analysis. Functional network connectivity (FNC) was estimated after decomposing resting state functional magnetic resonance imaging data from both healthy controls (HC) and patients with schizophrenia (SZ) into spatial brain components using group independent component analysis (G-ICA). Then 83 FNC connections showing a group difference (HC vs SZ) were selected as fMRI nodes, and eighty-one schizophrenia-related single nucleotide polymorphisms (SNPs) were selected as genetic nodes respectively in the bipartite graph. Edges connecting pairs of genetic and fMRI nodes were defined based on the SNP-FNC associations across subjects evaluated by a general linear model. Results show that some SNP nodes in the bipartite graph have a high degree implying they are influential in modulating brain connectivity and may be more strongly associated with the risk of schizophrenia than other SNPs. A bi-clustering analysis detected a cluster with 15 SNPs interacting with 38 FNC connections, most of which were within or between somato-motor and visual brain areas. This suggests that the activity of these brain regions may be related to common SNPs and provides insights into the pathology of schizophrenia. The findings suggest that the SNP-FNC bipartite graph approach is a novel model to investigate genetic influences on functional brain connectivity in mental illness.

20.
Schizophr Res ; 208: 242-249, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30819594

RESUMO

Schizophrenia is a complex disorder that affects perception, cognition, and emotion causing symptoms such as delusions, hallucinations, and suspiciousness. Schizophrenia is also associated with structural cortical abnormalities including lower gray matter (GM) concentration, GM volume, and cortical thickness relative to healthy control individuals. However, the association between GM measures and symptom dimensions in schizophrenia is still not well understood. Here, we applied parallel independent component analysis (pICA), a higher-order statistical approach that identifies covarying patterns within two (or more) data modalities simultaneously, to link covarying brain networks of GM concentration with covarying linear combinations of the positive and negative syndrome scale (PANSS). In a large sample of patients with schizophrenia (n = 337) the association between these two data modalities was investigated. The pICA revealed a distinct PANSS profile characterized by increased delusional symptoms, suspiciousness, hallucinations, and anxiety, that was associated with a pattern of lower GM concentration in inferior temporal gyri and fusiform gyri and higher GM concentration in the sensorimotor cortex. GM alterations replicate previous findings; additionally, applying a multivariate technique, we were able to map a very specific symptom profile onto these GM alterations extending our understanding of cortical abnormalities associated with schizophrenia. Techniques like parallel ICA can reveal linked patterns of alterations across different data modalities that can help to identify biologically-informed phenotypes which might help to improve future treatment targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA