Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genet Med ; 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31388190

RESUMO

PURPOSE: Sifrim-Hitz-Weiss syndrome (SIHIWES) is a recently described multisystemic neurodevelopmental disorder caused by de novo variants in CHD4. In this study, we investigated the clinical spectrum of the disorder, genotype-phenotype correlations, and the effect of different missense variants on CHD4 function. METHODS: We collected clinical and molecular data from 32 individuals with mostly de novo variants in CHD4, identified through next-generation sequencing. We performed adenosine triphosphate (ATP) hydrolysis and nucleosome remodeling assays on variants from five different CHD4 domains. RESULTS: The majority of participants had global developmental delay, mild to moderate intellectual disability, brain anomalies, congenital heart defects, and dysmorphic features. Macrocephaly was a frequent but not universal finding. Additional common abnormalities included hypogonadism in males, skeletal and limb anomalies, hearing impairment, and ophthalmic abnormalities. The majority of variants were nontruncating and affected the SNF2-like region of the protein. We did not identify genotype-phenotype correlations based on the type or location of variants. Alterations in ATP hydrolysis and chromatin remodeling activities were observed in variants from different domains. CONCLUSION: The CHD4-related syndrome is a multisystemic neurodevelopmental disorder. Missense substitutions in different protein domains alter CHD4 function in a variant-specific manner, but result in a similar phenotype in humans.

2.
Brain ; 142(4): 867-884, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30879067

RESUMO

Recessive mutations in RTTN, encoding the protein rotatin, were originally identified as cause of polymicrogyria, a cortical malformation. With time, a wide variety of other brain malformations has been ascribed to RTTN mutations, including primary microcephaly. Rotatin is a centrosomal protein possibly involved in centriolar elongation and ciliogenesis. However, the function of rotatin in brain development is largely unknown and the molecular disease mechanism underlying cortical malformations has not yet been elucidated. We performed both clinical and cell biological studies, aimed at clarifying rotatin function and pathogenesis. Review of the 23 published and five unpublished clinical cases and genomic mutations, including the effect of novel deep intronic pathogenic mutations on RTTN transcripts, allowed us to extrapolate the core phenotype, consisting of intellectual disability, short stature, microcephaly, lissencephaly, periventricular heterotopia, polymicrogyria and other malformations. We show that the severity of the phenotype is related to residual function of the protein, not only the level of mRNA expression. Skin fibroblasts from eight affected individuals were studied by high resolution immunomicroscopy and flow cytometry, in parallel with in vitro expression of RTTN in HEK293T cells. We demonstrate that rotatin regulates different phases of the cell cycle and is mislocalized in affected individuals. Mutant cells showed consistent and severe mitotic failure with centrosome amplification and multipolar spindle formation, leading to aneuploidy and apoptosis, which could relate to depletion of neuronal progenitors often observed in microcephaly. We confirmed the role of rotatin in functional and structural maintenance of primary cilia and determined that the protein localized not only to the basal body, but also to the axoneme, proving the functional interconnectivity between ciliogenesis and cell cycle progression. Proteomics analysis of both native and exogenous rotatin uncovered that rotatin interacts with the neuronal (non-muscle) myosin heavy chain subunits, motors of nucleokinesis during neuronal migration, and in human induced pluripotent stem cell-derived bipolar mature neurons rotatin localizes at the centrosome in the leading edge. This illustrates the role of rotatin in neuronal migration. These different functions of rotatin explain why RTTN mutations can lead to heterogeneous cerebral malformations, both related to proliferation and migration defects.

5.
Genet Med ; 2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30349098

RESUMO

PURPOSE: Pathogenic variants in ARID1B are one of the most frequent causes of intellectual disability (ID) as determined by large-scale exome sequencing studies. Most studies published thus far describe clinically diagnosed Coffin-Siris patients (ARID1B-CSS) and it is unclear whether these data are representative for patients identified through sequencing of unbiased ID cohorts (ARID1B-ID). We therefore sought to determine genotypic and phenotypic differences between ARID1B-ID and ARID1B-CSS. In parallel, we investigated the effect of different methods of phenotype reporting. METHODS: Clinicians entered clinical data in an extensive web-based survey. RESULTS: 79 ARID1B-CSS and 64 ARID1B-ID patients were included. CSS-associated dysmorphic features, such as thick eyebrows, long eyelashes, thick alae nasi, long and/or broad philtrum, small nails and small or absent fifth distal phalanx and hypertrichosis, were observed significantly more often (p < 0.001) in ARID1B-CSS patients. No other significant differences were identified. CONCLUSION: There are only minor differences between ARID1B-ID and ARID1B-CSS patients. ARID1B-related disorders seem to consist of a spectrum, and patients should be managed similarly. We demonstrated that data collection methods without an explicit option to report the absence of a feature (such as most Human Phenotype Ontology-based methods) tended to underestimate gene-related features.

6.
Genet Med ; 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30287924

RESUMO

PURPOSE: Several studies have reported diagnostic yields up to 57% for rapid exome or genome sequencing (rES/GS) as a single test in neonatal intensive care unit (NICU) patients, but the additional yield of rES/GS compared with other available diagnostic options still remains unquantified in this population. METHODS: We retrospectively evaluated all genetic NICU consultations in a 2-year period. RESULTS: In 132 retrospectively evaluated NICU consultations 27 of 32 diagnoses (84.4%) were made using standard genetic workup. Most diagnoses (65.6%) were made within 16 days. Diagnostic ES yield was 5/29 (17.2%). Genetic diagnoses had a direct effect on clinical management in 90.6% (29/32) of patients. CONCLUSIONS: Our study shows that exome sequencing has a place in NICU diagnostics, but given the associated costs and the high yield of alternative diagnostic strategies, we recommend to first perform clinical genetic consultation.

7.
Bone Rep ; 9: 27-36, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30003121

RESUMO

Angulated femurs are present prenatally both in CYP26B1 deficient humans with a reduced capacity to degrade retinoic acid (RA, the active metabolite of vitamin A), and mice overexpressing vascular endothelial growth factor a (Vegfa). Since excessive ingestion of vitamin A is known to induce spontaneous fractures and as the Vegfa-induced femur angulation in mice appears to be caused by intrauterine fractures, we analyzed bones from a CYP26B1 deficient human and rats with hypervitaminosis A to further explore Vegfa as a mechanistic link for the effect of vitamin A on bone. We show that bone from a human with CYP26B1 mutations displayed periosteal osteoclasts in piles within deep resorption pits, a pathognomonic sign of hypervitaminosis A. Analysis of the human angulated fetal femur revealed excessive bone formation in the marrow cavity and abundant blood vessels. Normal human endothelial cells showed disturbed cell-cell junctions and increased CYP26B1 and VEGFA expression upon RA exposure. Studies in rats showed increased plasma and tissue Vegfa concentrations and signs of bone marrow microhemorrhage on the first day of excess dietary vitamin A intake. Subsequently hypervitaminosis A rats displayed excess bone formation, fibrosis and an increased number of megakaryocytes in the bone marrow, which are known characteristics of Vegfa overexpression. This study supports the notion that the skeletal phenotype in CYP26B1 deficient human bone is caused by excess RA. Our findings suggest that an initial part of the vitamin A mechanism causing bone alterations is mediated by excess Vegfa and disturbed bone marrow microvessel integrity.

8.
Hum Mutat ; 39(9): 1226-1237, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29897170

RESUMO

Malan syndrome is an overgrowth disorder described in a limited number of individuals. We aim to delineate the entity by studying a large group of affected individuals. We gathered data on 45 affected individuals with a molecularly confirmed diagnosis through an international collaboration and compared data to the 35 previously reported individuals. Results indicate that height is > 2 SDS in infancy and childhood but in only half of affected adults. Cardinal facial characteristics include long, triangular face, macrocephaly, prominent forehead, everted lower lip, and prominent chin. Intellectual disability is universally present, behaviorally anxiety is characteristic. Malan syndrome is caused by deletions or point mutations of NFIX clustered mostly in exon 2. There is no genotype-phenotype correlation except for an increased risk for epilepsy with 19p13.2 microdeletions. Variants arose de novo, except in one family in which mother was mosaic. Variants causing Malan and Marshall-Smith syndrome can be discerned by differences in the site of stop codon formation. We conclude that Malan syndrome has a well recognizable phenotype that usually can be discerned easily from Marshall-Smith syndrome but rarely there is some overlap. Differentiation from Sotos and Weaver syndrome can be made by clinical evaluation only.

9.
Am J Med Genet B Neuropsychiatr Genet ; 177(4): 397-405, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29603867

RESUMO

Recurrent deletions and duplications at the 2q13 locus have been associated with developmental delay (DD) and dysmorphisms. We aimed to undertake detailed clinical characterization of individuals with 2q13 copy number variations (CNVs), with a focus on behavioral and psychiatric phenotypes. Participants were recruited via the Unique chromosomal disorder support group, U.K. National Health Service Regional Genetics Centres, and the DatabasE of genomiC varIation and Phenotype in Humans using Ensembl Resources (DECIPHER) database. A review of published 2q13 patient case reports was undertaken to enable combined phenotypic analysis. We present a new case series of 2q13 CNV carriers (21 deletion, 4 duplication) and the largest ever combined analysis with data from published studies, making a total of 54 deletion and 23 duplication carriers. DD/intellectual disabilities was identified in the majority of carriers (79% deletion, 70% duplication), although in the new cases 52% had an IQ in the borderline or normal range. Despite the median age of the new cases being only 9 years, 64% had a clinical psychiatric diagnosis. Combined analysis found attention deficit hyperactivity disorder (ADHD) to be the most frequent diagnosis (48% deletion, 60% duplication), followed by autism spectrum disorders (33% deletion, 17% duplication). Aggressive (33%) and self-injurious behaviors (33%) were also identified in the new cases. CNVs at 2q13 are typically associated with DD with mildly impaired intelligence, and a high rate of childhood psychiatric diagnoses-particularly ADHD. We have further characterized the clinical phenotype related to imbalances of the 2q13 region and identified it as a region of interest for the neurobiological investigation of ADHD.

10.
Am J Hum Genet ; 102(5): 985-994, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29656860

RESUMO

N-alpha-acetylation is a common co-translational protein modification that is essential for normal cell function in humans. We previously identified the genetic basis of an X-linked infantile lethal Mendelian disorder involving a c.109T>C (p.Ser37Pro) missense variant in NAA10, which encodes the catalytic subunit of the N-terminal acetyltransferase A (NatA) complex. The auxiliary subunit of the NatA complex, NAA15, is the dimeric binding partner for NAA10. Through a genotype-first approach with whole-exome or genome sequencing (WES/WGS) and targeted sequencing analysis, we identified and phenotypically characterized 38 individuals from 33 unrelated families with 25 different de novo or inherited, dominantly acting likely gene disrupting (LGD) variants in NAA15. Clinical features of affected individuals with LGD variants in NAA15 include variable levels of intellectual disability, delayed speech and motor milestones, and autism spectrum disorder. Additionally, mild craniofacial dysmorphology, congenital cardiac anomalies, and seizures are present in some subjects. RNA analysis in cell lines from two individuals showed degradation of the transcripts with LGD variants, probably as a result of nonsense-mediated decay. Functional assays in yeast confirmed a deleterious effect for two of the LGD variants in NAA15. Further supporting a mechanism of haploinsufficiency, individuals with copy-number variant (CNV) deletions involving NAA15 and surrounding genes can present with mild intellectual disability, mild dysmorphic features, motor delays, and decreased growth. We propose that defects in NatA-mediated N-terminal acetylation (NTA) lead to variable levels of neurodevelopmental disorders in humans, supporting the importance of the NatA complex in normal human development.

11.
Am J Med Genet A ; 176(5): 1212-1215, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29681085

RESUMO

The SETD2-related overgrowth syndrome is also called "Luscan-Lumish syndrome" (OMIM 616831) with the clinical characteristics of intellectual disability, speech delay, macrocephaly, facial dysmorphism, and autism spectrum disorders. We report on two novel patients a 4.5-year-old boy and a 23-year-old female adolescent with a speech and language developmental delay, autism spectrum disorder and macrocephaly, who were both diagnosed with SETD2-related overgrowth syndrome due to de novo frameshift mutations in the SETD2 gene. Features not previously described which were present in either one of our patients were nasal polyps, a large tongue with creases, a high pain threshold, constipation, and undescended testicles. These features may be related to the syndrome and may need special attention in future patients. Additionally, prevention of obesity should be an important point of attention for patients diagnosed with a SETD2-related overgrowth syndrome.

12.
Am J Hum Genet ; 101(5): 768-788, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100089

RESUMO

Calcium/calmodulin-dependent protein kinase II (CAMK2) is one of the first proteins shown to be essential for normal learning and synaptic plasticity in mice, but its requirement for human brain development has not yet been established. Through a multi-center collaborative study based on a whole-exome sequencing approach, we identified 19 exceedingly rare de novo CAMK2A or CAMK2B variants in 24 unrelated individuals with intellectual disability. Variants were assessed for their effect on CAMK2 function and on neuronal migration. For both CAMK2A and CAMK2B, we identified mutations that decreased or increased CAMK2 auto-phosphorylation at Thr286/Thr287. We further found that all mutations affecting auto-phosphorylation also affected neuronal migration, highlighting the importance of tightly regulated CAMK2 auto-phosphorylation in neuronal function and neurodevelopment. Our data establish the importance of CAMK2A and CAMK2B and their auto-phosphorylation in human brain function and expand the phenotypic spectrum of the disorders caused by variants in key players of the glutamatergic signaling pathway.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Deficiência Intelectual/genética , Mutação/genética , Animais , Encéfalo/patologia , Linhagem Celular , Exoma/genética , Feminino , Ácido Glutâmico/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia , Fosforilação/genética , Transdução de Sinais/genética
13.
Am J Hum Genet ; 100(6): 907-925, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575647

RESUMO

Yin and yang 1 (YY1) is a well-known zinc-finger transcription factor with crucial roles in normal development and malignancy. YY1 acts both as a repressor and as an activator of gene expression. We have identified 23 individuals with de novo mutations or deletions of YY1 and phenotypic features that define a syndrome of cognitive impairment, behavioral alterations, intrauterine growth restriction, feeding problems, and various congenital malformations. Our combined clinical and molecular data define "YY1 syndrome" as a haploinsufficiency syndrome. Through immunoprecipitation of YY1-bound chromatin from affected individuals' cells with antibodies recognizing both ends of the protein, we show that YY1 deletions and missense mutations lead to a global loss of YY1 binding with a preferential retention at high-occupancy sites. Finally, we uncover a widespread loss of H3K27 acetylation in particular on the YY1-bound enhancers, underscoring a crucial role for YY1 in enhancer regulation. Collectively, these results define a clinical syndrome caused by haploinsufficiency of YY1 through dysregulation of key transcriptional regulators.


Assuntos
Cromatina/metabolismo , Haploinsuficiência/genética , Deficiência Intelectual/genética , Transcrição Genética , Fator de Transcrição YY1/genética , Acetilação , Adolescente , Sequência de Bases , Pré-Escolar , Imunoprecipitação da Cromatina , Estudos de Coortes , Elementos Facilitadores Genéticos/genética , Feminino , Ontologia Genética , Haplótipos/genética , Hemizigoto , Histonas/metabolismo , Humanos , Linfócitos/metabolismo , Masculino , Metilação , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Ligação Proteica/genética , Domínios Proteicos , Fator de Transcrição YY1/química
14.
Nat Genet ; 49(4): 515-526, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28191889

RESUMO

Gene-disruptive mutations contribute to the biology of neurodevelopmental disorders (NDDs), but most of the related pathogenic genes are not known. We sequenced 208 candidate genes from >11,730 cases and >2,867 controls. We identified 91 genes, including 38 new NDD genes, with an excess of de novo mutations or private disruptive mutations in 5.7% of cases. Drosophila functional assays revealed a subset with increased involvement in NDDs. We identified 25 genes showing a bias for autism versus intellectual disability and highlighted a network associated with high-functioning autism (full-scale IQ >100). Clinical follow-up for NAA15, KMT5B, and ASH1L highlighted new syndromic and nonsyndromic forms of disease.


Assuntos
Transtorno Autístico/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Feminino , Humanos , Masculino , Mutação/genética , Fenótipo
15.
Genet Med ; 19(1): 45-52, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27195816

RESUMO

PURPOSE: Truncating mutations in the maternally imprinted, paternally expressed gene MAGEL2, which is located in the Prader-Willi critical region 15q11-13, have recently been reported to cause Schaaf-Yang syndrome, a Prader-Willi-like disease that manifests as developmental delay/intellectual disability, hypotonia, feeding difficulties, and autism spectrum disorder. The causality of the reported variants in the context of the patients' phenotypes was questioned, as MAGEL2 whole-gene deletions seem to cause little or no clinical phenotype. METHODS: Here we report a total of 18 newly identified individuals with Schaaf-Yang syndrome from 14 families, including 1 family with 3 individuals found to be affected with a truncating variant of MAGEL2, 11 individuals who are clinically affected but were not tested molecularly, and a presymptomatic fetal sibling carrying the pathogenic MAGEL2 variant. RESULTS: All cases harbor truncating mutations of MAGEL2, and nucleotides c.1990-1996 arise as a mutational hotspot, with 10 individuals and 1 fetus harboring a c.1996dupC (p.Q666fs) mutation and 2 fetuses harboring a c.1996delC (p.Q666fs) mutation. The phenotypic spectrum of Schaaf-Yang syndrome ranges from fetal akinesia to neurobehavioral disease and contractures of the small finger joints. CONCLUSION: This study provides strong evidence for the pathogenicity of truncating mutations of the paternal allele of MAGEL2, refines the associated clinical phenotypes, and highlights implications for genetic counseling for affected families.Genet Med 19 1, 45-52.


Assuntos
Transtorno do Espectro Autista/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Síndrome de Prader-Willi/genética , Proteínas/genética , Adolescente , Adulto , Transtorno do Espectro Autista/fisiopatologia , Criança , Pré-Escolar , Cromossomos Humanos Par 15 , Deficiências do Desenvolvimento/fisiopatologia , Feminino , Expressão Gênica , Impressão Genômica , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/fisiopatologia , Masculino , Mutação , Fenótipo , Síndrome de Prader-Willi/fisiopatologia
17.
Eur J Hum Genet ; 24(11): 1639-1643, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27165009

RESUMO

Whole-exome sequencing of a patient with intellectual disability and without recognisable phenotype yielded a mutation in the intron20 splice donor site of CREBBP. Mutations at different positions within the same intron20 splice donor site were observed in three patients clinically suspected as having Rubinstein-Taybi syndrome (RSTS). All mutations were de novo and likely disease-causing. To investigate a putative difference in splicing between the patient without RSTS phenotype and the three patients with the RSTS phenotype, we analysed the effects of these mutations on splicing of the pre-mRNA of CREBBP. As no RNA of patients was available, we generated a new and improved exon-trap vector, pCDNAGHE, and tested the effect of the various mutations on splicing in vitro. All mutations lead to skipping of exon20. In one of the patients with an RSTS phenotype, there was also some normal splicing detectable. We conclude that the splicing pattern obtained by exon-trapping cannot explain the difference in phenotype between the patient without the RSTS phenotype and the patients with clinical RSTS. Patient or tissue-specific splice effects as well as modifying genes likely will explain the difference in phenotype.


Assuntos
Proteína de Ligação a CREB/genética , Íntrons , Mutação , Processamento de RNA , Síndrome de Rubinstein-Taybi/genética , Animais , Proteína de Ligação a CREB/metabolismo , Linhagem Celular , Criança , Pré-Escolar , Cricetinae , Cricetulus , Feminino , Humanos , Masculino , Fenótipo , Síndrome de Rubinstein-Taybi/diagnóstico
18.
Horm Res Paediatr ; 85(6): 412-20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26925581

RESUMO

BACKGROUND: Recessive mutations in the leptin receptor (LEPR) are a rare cause of hyperphagia and severe early-onset obesity. To date, the phenotype has only been described in 25 obese children, some of whom also had altered immune function, hypogonadotropic hypogonadism, reduced growth hormone secretion, hypothalamic hypothyroidism or reduced adult height. We provide a detailed description of the phenotype of 2 affected girls to add to this knowledge. METHODS: Whole-exome sequencing and targeted sequencing were used to detect the LEPR mutations. RNA analysis was performed to assess the effect of splice-site mutations. RESULTS: In 2 unrelated girls with severe obesity, three novel LEPR mutations were detected. Longitudinal growth data show normal childhood growth, and in the older girl, a normal adult height despite hypogonadotropic hypogonadism and the lack of an obvious pubertal growth spurt. Bone age is remarkably advanced in the younger (prepubertal) girl, and bone mineral density (BMD) is high in both girls, which might be directly or indirectly related to leptin resistance. CONCLUSION: The spectrum of clinical features of LEPR deficiency may be expanded with increased BMD. Future observations in LEPR-deficient subjects should help further unravel the role of leptin in human bone biology.


Assuntos
Densidade Óssea , Mutação , Obesidade/genética , Receptores para Leptina/genética , Adolescente , Adulto , Criança , Feminino , Humanos , Obesidade/sangue , Obesidade/patologia , Receptores para Leptina/metabolismo , Índice de Gravidade de Doença
19.
BMC Med Genet ; 16: 95, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26467218

RESUMO

BACKGROUND: Noonan syndrome (NS), a heterogeneous developmental disorder associated with variable clinical expression including short stature, congenital heart defect, unusual pectus deformity and typical facial features, is caused by activating mutations in genes involved in the RAS-MAPK signaling pathway. CASE PRESENTATION: Here, we present a clinical and molecular characterization of a small family with Noonan syndrome. Comprehensive mutation analysis of NF1, PTPN11, SOS1, CBL, BRAF, RAF1, SHOC2, MAP2K2, MAP2K1, SPRED1, NRAS, HRAS and KRAS was performed using targeted next-generation sequencing. The result revealed a recurrent mutation in NRAS, c.179G > A (p.G60E), in the index patient. This mutation was inherited from the index patient's father, who also showed signs of NS. CONCLUSIONS: We describe clinical features in this family and review the literature for genotype-phenotype correlations for NS patients with mutations in NRAS. Neither of affected individuals in this family presented with juvenile myelomonocytic leukemia (JMML), which together with previously published results suggest that the risk for NS individuals with a germline NRAS mutation developing JMML is not different from the proportion seen in other NS cases. Interestingly, 50% of NS individuals with an NRAS mutation (including our family) present with lentigines and/or Café-au-lait spots. This demonstrates a predisposition to hyperpigmented lesions in NRAS-positive NS individuals. In addition, the affected father in our family presented with a hearing deficit since birth, which together with lentigines are two characteristics of NS with multiple lentigines (previously LEOPARD syndrome), supporting the difficulties in diagnosing individuals with RASopathies correctly. The clinical and genetic heterogeneity observed in RASopathies is a challenge for genetic testing. However, next-generation sequencing technology, which allows screening of a large number of genes simultaneously, will facilitate an early and accurate diagnosis of patients with RASopathies.


Assuntos
Análise Mutacional de DNA/métodos , GTP Fosfo-Hidrolases/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Membrana/genética , Mutação , Síndrome de Noonan/genética , Síndrome de Noonan/patologia , Adulto , Manchas Café com Leite/epidemiologia , Manchas Café com Leite/genética , Feminino , Genes ras , Humanos , Lentigo , Leucemia Mielomonocítica Juvenil/epidemiologia , Masculino , Pessoa de Meia-Idade , Linhagem
20.
Am J Med Genet A ; 167A(5): 1008-17, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25728055

RESUMO

Interstitial deletion 1q24q25 is a rare rearrangement associated with intellectual disability, growth retardation, abnormal extremities and facial dysmorphism. In this study, we describe the largest series reported to date, including 18 patients (4M/14F) aged from 2 days to 67 years and comprising two familial cases. The patients presented with a characteristic phenotype including mild to moderate intellectual disability (100%), intrauterine (92%) and postnatal (94%) growth retardation, microcephaly (77%), short hands and feet (83%), brachydactyly (70%), fifth finger clinodactyly (78%) and facial dysmorphism with a bulbous nose (72%), abnormal ears (67%) and micrognathia (56%). Other findings were abnormal palate (50%), single transverse palmar crease (53%), renal (38%), cardiac (38%), and genital (23%) malformations. The deletions were characterized by chromosome microarray. They were of different sizes (490 kb to 20.95 Mb) localized within chromosome bands 1q23.3-q31.2 (chr1:160797550-192912120, hg19). The 490 kb deletion is the smallest deletion reported to date associated with this phenotype. We delineated three regions that may contribute to the phenotype: a proximal one (chr1:164,501,003-167,022,133), associated with cardiac and renal anomalies, a distal one (chr1:178,514,910-181,269,712) and an intermediate 490 kb region (chr1:171970575-172460683, hg19), deleted in the most of the patients, and containing DNM3, MIR3120 and MIR214 that may play an important role in the phenotype. However, this genetic region seems complex with multiple regions giving rise to the same phenotype.


Assuntos
Anormalidades Múltiplas/genética , Deleção Cromossômica , Estudos de Associação Genética , Deficiência Intelectual/genética , Anormalidades Múltiplas/classificação , Anormalidades Múltiplas/fisiopatologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Cromossomos Humanos Par 1/genética , Hibridização Genômica Comparativa , Feminino , Humanos , Hibridização in Situ Fluorescente , Lactente , Recém-Nascido , Deficiência Intelectual/classificação , Deficiência Intelectual/fisiopatologia , Masculino , Pessoa de Meia-Idade , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA