Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Curr Biol ; 29(6): 1019-1029.e4, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30853432


During visual perception, the brain enhances the representations of image regions that belong to figures and suppresses those that belong to the background. Natural images contain many regions that initially appear to be part of a figure when analyzed locally (proto-objects) but are actually part of the background if the whole image is considered. These proto-grounds must be correctly assigned to the background to allow correct shape identification and guide behavior. To understand how the brain resolves this conflict between local and global processing, we recorded neuronal activity from the primary visual cortex (V1) of macaque monkeys while they discriminated between n/u shapes that have a central proto-ground region. We studied the fine-grained spatiotemporal profile of neural activity evoked by the n/u shape and found that neural representation of the object proceeded from a coarse-to-fine resolution. Approximately 100 ms after the stimulus onset, the representation of the proto-ground region was enhanced together with the rest of the n/u surface, but after ∼115 ms, the proto-ground was suppressed back to the level of the background. Suppression of the proto-ground was only present in animals that had been trained to perform the shape-discrimination task, and it predicted the choice of the animal on a trial-by-trial basis. Attention enhanced figure-ground modulation, but it had no effect on the strength of proto-ground suppression. The results indicate that the accuracy of scene segmentation is sharpened by a suppressive process that resolves local ambiguities by assigning proto-grounds to the background.

Macaca mulatta/fisiologia , Neurônios/fisiologia , Reconhecimento Visual de Modelos , Córtex Visual/fisiologia , Animais , Masculino , Estimulação Luminosa
J Neurosci Methods ; 286: 38-55, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28512008


BACKGROUND: Primate neurobiologists use chronically implanted devices such as pedestals for head stabilization and chambers to gain access to the brain and study its activity. Such implants are skull-mounted, and made from a hard, durable material, such as titanium. NEW METHOD: Here, we present a low-cost method of creating customized 3D-printed cranial implants that are tailored to the anatomy of individual animals. We performed pre-surgical computed tomography (CT) and magnetic resonance (MR) scans to generate three-dimensional (3D) models of the skull and brain. We then used 3D modelling software to design implantable head posts, chambers, and a pedestal anchorage base, as well as craniotomy guides to aid us during surgery. Prototypes were made from plastic or resin, while implants were 3D-printed in titanium. The implants underwent post-processing and received a coating of osteocompatible material to promote bone integration. RESULTS: Their tailored fit greatly facilitated surgical implantation, and eliminated the gap between the implant and the bone. To date, our implants remain robust and well-integrated with the skull. COMPARISON WITH EXISTING METHOD(S): Commercial-off-the-shelf solutions typically come with a uniform, flat base, preventing them from sitting flush against the curved surface of the skull. This leaves gaps for fluid and tissue ingress, increasing the risk of microbial infection and tissue inflammation, as well as implant loss. CONCLUSIONS: The use of 3D printing technology enabled us to quickly and affordably create unique, complex designs, avoiding the constraints levied by traditional production methods, thereby boosting experimental success and improving the wellbeing of the animals.

Encéfalo/diagnóstico por imagem , Cabeça/diagnóstico por imagem , Cabeça/cirurgia , Modelos Anatômicos , Impressão Tridimensional , Próteses e Implantes , Animais , Vasos Sanguíneos/diagnóstico por imagem , Encéfalo/cirurgia , Mapeamento Encefálico , Imageamento Tridimensional , Macaca mulatta , Masculino , Impressão Tridimensional/instrumentação , Tomografia Computadorizada por Raios X