Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 26(41): 9005-9011, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32259331

RESUMO

Archetypal phosphine/borane frustrated Lewis pairs (FLPs) are famed for their ability to activate small molecules. The mechanism is generally believed to involve two-electron processes. However, the detection of radical intermediates indicates that single-electron transfer (SET) generating frustrated radical pairs could also play an important role. These highly reactive radical species typically have significantly higher energy than the FLP, which prompted this investigation into their formation. Herein, we provide evidence that the classical phosphine/borane combinations PMes3 /B(C6 F5 )3 and PtBu3 /B(C6 F5 )3 both form an electron donor-acceptor (charge-transfer) complex that undergoes visible-light-induced SET to form the corresponding highly reactive radical-ion pairs. Subsequently, we show that by tuning the properties of the Lewis acid/base pair, the energy required for SET can be reduced to become thermally accessible.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32348622

RESUMO

The reaction of zerovalent nickel compounds with white phosphorus (P4 ) is a barely explored route to binary nickel phosphide clusters. Here, we show that coordinatively and electronically unsaturated N-heterocyclic carbene (NHC) nickel(0) complexes afford unusual cluster compounds with P1 , P3 , P5 and P8 units. Using [Ni(IMes)2 ] [IMes=1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene], electron-deficient Ni3 P4 and Ni3 P6 clusters have been isolated, which can be described as superhypercloso and hypercloso clusters according to the Wade-Mingos rules. Use of the bulkier NHC complexes [Ni(IPr)2 ] or [(IPr)Ni(η6 -toluene)] [IPr=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene] affords a closo-Ni3 P8 cluster. Inverse-sandwich complexes [(NHC)2 Ni2 P5 ] (NHC=IMes, IPr) with an aromatic cyclo-P5 - ligand were identified as additional products.

3.
J Am Chem Soc ; 142(1): 552-563, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31846578

RESUMO

The redox noninnocence of the TAML scaffold in cobalt-TAML (tetra-amido macrocyclic ligand) complexes has been under debate since 2006. In this work, we demonstrate with a variety of spectroscopic measurements that the TAML backbone in the anionic complex [CoIII(TAMLred)]- is truly redox noninnocent and that one-electron oxidation affords [CoIII(TAMLsq)]. Multireference (CASSCF) calculations show that the electronic structure of [CoIII(TAMLsq)] is best described as an intermediate spin (S = 1) cobalt(III) center that is antiferromagnetically coupled to a ligand-centered radical, affording an overall doublet (S = 1/2) ground-state. Reaction of the cobalt(III)-TAML complexes with PhINNs as a nitrene precursor leads to TAML-centered oxidation and produces nitrene radical complexes without oxidation of the metal ion. The ligand redox state (TAMLred or TAMLsq) determines whether mono- or bis-nitrene radical complexes are formed. Reaction of [CoIII(TAMLsq)] or [CoIII(TAMLred)]- with PhINNs results in the formation of [CoIII(TAMLq)(N•Ns)] and [CoIII(TAMLq)(N•Ns)2]-, respectively. Herein, ligand-to-substrate single-electron transfer results in one-electron-reduced Fischer-type nitrene radicals (N•Ns-) that are intermediates in catalytic nitrene transfer to styrene. These nitrene radical species were characterized by EPR, XANES, and UV-vis spectroscopy, high-resolution mass spectrometry, magnetic moment measurements, and supporting CASSCF calculations.

4.
Dalton Trans ; 48(42): 15772-15777, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31612881

RESUMO

Reaction of 1,2-bis(diphenylphosphino)-ortho-carborane (L) with [K(thf){(MesBIAN)Co(η4-cod)}] (1, MesBIAN = bis(mesityliminoace-naphthene)diimine, cod = 1,5-cyclooctadiene) affords an anionic 13-vertex closo-cobaltacarborane cluster (2) in one step. The mechanism of this transformation has been studied by experimental and quantum chemical techniques, which suggest that a series of outer-sphere electron transfer and isomerisation processes occurs. This work shows that low-valent metalate anions are promising reagents for the synthesis of anionic metallacarborane clusters.

5.
Chemistry ; 25(23): 5987-5993, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30793814

RESUMO

A new method for the one-step C-H amination of xanthene and thioxanthene with sulfonamides is reported, without the need for any metal catalyst. A benzoquinone was employed as a hydride (or two-electron and one-proton) acceptor. Moreover, a previously unknown and uncatalyzed reaction between iminoiodanes and xanthene, thioxanthene and dihydroacridines (9,10-dihydro-9-heteroanthracenes or dihydroheteroanthracenes) is disclosed. The reactions proceed through hydride transfer from the heteroarene substrate to the iminoiodane or benzoquinone, followed by conjugate addition of the sulfonamide to the oxidized heteroaromatic compounds. These findings may have important mechanistic implications for metal-catalyzed C-H amination processes involving nitrene transfer from iminoiodanes to dihydroheteroanthracenes. Due to the weak C-H bond, xanthene is an often-employed substrate in mechanistic studies of C-H amination reactions, which are generally proposed to proceed via metal-catalyzed nitrene insertion, especially for reactions involving nitrene or imido complexes that are less reactive (i.e., less strongly oxidizing). However, these substrates clearly undergo non-catalyzed (proton-coupled) redox coupling with amines, thus providing alternative pathways to the widely assumed metal-catalyzed pathways.

6.
Chem Sci ; 10(4): 1117-1125, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30774909

RESUMO

The dinuclear ruthenium complex [Ru2H(µ-H)(Me2dad)(dbcot)2] contains a 1,4-dimethyl-diazabuta-1,3-diene (Me2dad) as a non-innocent bridging ligand between the metal centers to give a [Ru2(Me2dad)] core. In addition, each ruthenium is bound to one dibenzo[a,e]cyclooctatetraene (dbcot) ligand. This Ru dimer converts H2 to protons and electrons. It also catalyzes reversibly under mild conditions the selective hydrogenation of vitamins K2 and K3 to their corresponding hydroquinone equivalents without affecting the C[double bond, length as m-dash]C double bonds. Mechanistic studies suggest that the [Ru2(Me2dad)] moiety, like hydrogenases, reacts with H2 and releases electrons and protons stepwise.

7.
Angew Chem Int Ed Engl ; 57(37): 11929-11933, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30051582

RESUMO

Inspired by the commercially available azoimidazolium dyes (e.g., Basic Red 51) that can be obtained from aryldiazonium salts and N-heterocyclic carbenes, we developed the synthesis of a unique set of arylazophosphonium salts. A range of colours were obtained by applying readily tuneable phosphine donor ligands and para-substituted aryldiazonium salts as nitrogen-based Lewis acids. With cyclic voltammetry, a general procedure was designed to establish whether the reaction between a Lewis acid and a Lewis base occurs by single-electron transfer or electron-pair transfer.

8.
Inorg Chem ; 56(20): 12421-12435, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-28968088

RESUMO

A new family of low-coordinate Co complexes supported by three redox-noninnocent tridentate [OCO] pincer-type bis(phenolate) N-heterocyclic carbene (NHC) ligands are described. Combined experimental and computational data suggest that the charge-neutral four-coordinate complexes are best formulated as Co(II) centers bound to closed-shell [OCO]2- dianions, of the general formula [(OCO)CoIIL] (where L is a solvent-derived MeCN or THF). Cyclic voltammograms of the [(OCO)CoIIL] complexes reveal three oxidations accessible at potentials below 1.2 V vs Fc+/Fc, corresponding to generation of formally Co(V) species, but the true physical/spectroscopic oxidation states are much lower. Chemical oxidations afford the mono- and dications of the imidazoline NHC-derived complex, which were examined by computational and magnetic and spectroscopic methods, including single-crystal X-ray diffraction. The metal and ligand oxidation states of the monocationic complex are ambiguous; data are consistent with formulation as either [(SOCO)CoIII(THF)2]+ containing a closed-shell [SOCO]2- diphenolate ligand bound to a S = 1 Co(III) center, or [(SOCO•)CoII(THF)2]+ with a low-spin Co(II) ion ferromagnetically coupled to monoanionic [SOCO•]- containing a single unpaired electron distributed across the [OCO] framework. The dication is best described as [(SOCO0)CoII(THF)3]2+, with a single unpaired electron localized on the d7 Co(II) center and a doubly oxidized, charge-neutral, closed-shell SOCO0 ligand. The combined data provide for the first time unequivocal and structural evidence for [OCO] ligand redox activity. Notably, varying the degree of unsaturation in the NHC backbone shifts the ligand-based oxidation potentials by up to 400 mV. The possible chemical origins of this unexpected shift, along with the potential utility of the [OCO] pincer ligands for base-metal-mediated organometallic coupling catalysis, are discussed.

9.
Chemistry ; 23(33): 7945-7952, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28332743

RESUMO

Cobalt-porphyrin-catalysed intramolecular ring-closing C-H bond amination enables direct synthesis of various N-heterocycles from aliphatic azides. Pyrrolidines, oxazolidines, imidazolidines, isoindolines and tetrahydroisoquinoline can be obtained in good to excellent yields in a single reaction step with an air- and moisture-stable catalyst. Kinetic studies of the reaction in combination with DFT calculations reveal a metallo-radical-type mechanism involving rate-limiting azide activation to form the key cobalt(III)-nitrene radical intermediate. A subsequent low barrier intramolecular hydrogen-atom transfer from a benzylic C-H bond to the nitrene-radical intermediate followed by a radical rebound step leads to formation of the desired N-heterocyclic ring products. Kinetic isotope competition experiments are in agreement with a radical-type C-H bond-activation step (intramolecular KIE=7), which occurs after the rate-limiting azide activation step. The use of di-tert-butyldicarbonate (Boc2 O) significantly enhances the reaction rate by preventing competitive binding of the formed amine product. Under these conditions, the reaction shows clean first-order kinetics in both the [catalyst] and the [azide substrate], and is zero-order in [Boc2 O]. Modest enantioselectivities (29-46 % ee in the temperature range of 100-80 °C) could be achieved in the ring closure of (4-azidobutyl)benzene using a new chiral cobalt-porphyrin catalyst equipped with four (1S)-(-)-camphanic-ester groups.

10.
J Am Chem Soc ; 139(14): 5117-5124, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28298089

RESUMO

Coordination of FeCl3 to the redox-active pyridine-aminophenol ligand NNOH2 in the presence of base and under aerobic conditions generates FeCl2(NNOISQ) (1), featuring high-spin FeIII and an NNOISQ radical ligand. The complex has an overall S = 2 spin state, as deduced from experimental and computational data. The ligand-centered radical couples antiferromagnetically with the Fe center. Readily available, well-defined, and air-stable 1 catalyzes the challenging intramolecular direct C(sp3)-H amination of unactivated organic azides to generate a range of saturated N-heterocycles with the highest turnover number (TON) (1 mol% of 1, 12 h, TON = 62; 0.1 mol% of 1, 7 days, TON = 620) reported to date. The catalyst is easily recycled without noticeable loss of catalytic activity. A detailed kinetic study for C(sp3)-H amination of 1-azido-4-phenylbutane (S1) revealed zero order in the azide substrate and first order in both the catalyst and Boc2O. A cationic iron complex, generated from the neutral precatalyst upon reaction with Boc2O, is proposed as the catalytically active species.

11.
Inorg Chem ; 55(17): 8603-11, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27525360

RESUMO

The synthesis, spectroelectrochemical characterization (ultraviolet-visible and nuclear magnetic resonance), solid state structures, and computational metric parameters of three isostructural PdCl(NNO) complexes 1 [PdCl(NNO(ISQ))], 2 {[PdCl(NNO(AP))](-)}, and 5 {[PdCl(NNO(IBQ))](+)} (NNO = o-aminophenol-derived redox-active ligand with a pendant pyridine) with different NNO oxidation states are described. The reduced diamagnetic complex 2 readily reacts with halogenated solvents, including lattice solvent from crystalline pure material, as supported by spectroscopic data and density functional theory calculations. Thorough removal of chlorinated impurities allows for modest catalytic turnover in the conversion of 4-phenylbutyl azide into N-protected 2-phenylpyrrolidine, which is the first example of a palladium-catalyzed radical-type transformation facilitated by a redox-active ligand as well as the first C-H amination mediated by ligand-to-substrate single-electron transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA