Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Intensive Care Med Exp ; 8(Suppl 1): 42, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33336308


INTRODUCTION: In hemorrhaging trauma patients, the endothelium is activated, resulting in excessive endothelial synthesis of von Willebrand Factor (vWF), which may enhance micro-thrombi formation, resulting in obstruction of the microcirculation and endothelial injury, aggravating bleeding, as well as contributing to organ failure. Under normal conditions, vWF is cleaved by the metalloprotease ADAMTS-13. After trauma, ADAMTS-13 levels are reduced. OBJECTIVES: To assess whether recombinant human ADAMTS-13 inhibits endothelial injury and organ failure in a rat trauma-transfusion model. METHODS: Blood products were prepared from syngeneic rat blood according to blood bank standards. Polytrauma was induced in rats by crush injury to the intestines and liver and by fracture of the femur. The rats were hemorrhaged until a mean arterial pressure (MAP) of 40 mmHg was reached. Rats were randomized to receive transfusion of RBCs, FFPs, and platelets in a 1:1:1 ratio to achieve a MAP of 70 mmHg, with or without the addition of ADAMTS-13 (50 µg/kg). Blood samples were assessed for biochemistry and rotational thromboelastometry (ROTEM). Syndecan-1 and VE-cadherin levels were measured as a reflection of endothelial integrity. The amount of leakage of dextran-FITC from the vascular system to the parenchyma in lungs was quantified. To assess inflammation, IL-6 and IL-8 levels were determined. Organ damage was assessed by histopathology. RESULTS: All rats were severely shocked, with no significant differences in shock parameters between groups. Rats treated with ADAMTS-13 showed signs of a more effective shock reversal (higher blood pressure, lower lactate levels) compared to controls. Also, ROTEM parameters of clot formation in rats receiving ADAMTS-13 improved compared to controls, which was mainly platelet-dependent. Syndecan-1 levels relative to baseline trended to be lower in ADAMTS-13 treated rats compared to controls (107 vs 149%, p = 0.08). ADAMTS-13 reduced albuminuria (1.7 vs 4.4 g/L, p < 0.01) and organ-specific inflammation (pulmonary IL-6 243 vs 369 pg/mL, p = 0.08; splenic IL-6 253 vs 307, p = 0.03) compared to controls, but did not improve histopathological scores. CONCLUSIONS: The use of ADAMTS-13 in a rat trauma-transfusion model improves parameters of shock, platelet-driven coagulation, endothelial damage, and organ inflammation. These results suggest that ADAMTS-13 is important in mediating outcome of trauma. Whether ADAMTS-13 can be used as a therapeutic adjunct to treat bleeding trauma patients remains to be determined.

J Thromb Haemost ; 18(10): 2457-2467, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32638483


Prothrombin complex concentrate (PCC) is increasingly being used as a treatment for major bleeding in patients who are not taking anticoagulants. The aim of this systematic review and meta-analysis is to evaluate the effectiveness of PCC administration for the treatment of bleeding in patients not taking anticoagulants. Studies investigating the effectivity of PCC to treat bleeding in adult patients and providing data on either mortality or blood loss were eligible. Data were pooled using Mantel-Haenszel random effects meta-analysis or inverse variance random effects meta-analysis. From 4668 identified studies, 17 observational studies were included. In all patient groups combined, PCC administration was not associated with mortality (odds ratio = 0.83; 95% confidence interval [CI], 0.66-1.06; P = .13; I2  = 0%). However, in trauma patients, PCC administration, in addition to fresh frozen plasma, was associated with reduced mortality (odds ratio = 0.64; CI, 0.46-0.88; P = .007; I2  = 0%). PCC administration was associated with a reduction in blood loss in cardiac surgery patients (mean difference: -384; CI, -640 to -128, P = .003, I2  = 81%) and a decreased need for red blood cell transfusions when compared with standard care across a wide range of bleeding patients not taking anticoagulants (mean difference: -1.80; CI, -3.22 to -0.38; P = .01; I2  = 92%). In conclusion, PCC administration was not associated with reduced mortality in the whole cohort but did reduce mortality in trauma patients. In bleeding patients, PCC reduced the need for red blood cell transfusions when compared with treatment strategies not involving PCC. In bleeding cardiac surgery patients, PCC administration reduced blood loss.

Fatores de Coagulação Sanguínea , Hemorragia , Adulto , Anticoagulantes/efeitos adversos , Fatores de Coagulação Sanguínea/uso terapêutico , Fator IX , Hemorragia/induzido quimicamente , Hemorragia/tratamento farmacológico , Humanos , Plasma , Estudos Retrospectivos
Intensive Care Med Exp ; 7(Suppl 1): 42, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346913


BACKGROUND: Platelet dysfunction importantly contributes to trauma-induced coagulopathy (TIC). Our aim was to examine the impact of transfusing platelets (PLTs) in a 2:1 PLT-to-red blood cell (RBC) ratio versus the standard 1:1 ratio on transfusion requirements, correction of TIC, and organ damage in a rat multiple trauma transfusion model. METHODS: Mechanically ventilated male Sprague Dawley rats were traumatized by crush injury to the small intestine and liver and a fracture of the femur, followed by exsanguination until a mean arterial pressure (MAP) of 40 mmHg. Animals were randomly assigned to receive resuscitation in a high PLT dose (PLT to plasma to RBC in a ratio of 2:1:1) or a standard PLT dose (ratio of 1:1:1) until a MAP of 60 mmHg was reached (n = 8 per group). Blood samples were taken for biochemical and thromboelastometry (ROTEM) assessment. Organs were harvested for histopathology.Outcome measures were transfusion requirements needed to reach a pretargeted MAP, as well as ROTEM correction and organ failure. RESULTS: Trauma resulted in coagulopathy as assessed by deranged ROTEM results. Mortality rate was 19%, with all deaths occurring in the standard dose group. The severity of hypovolemic shock as assessed by lactate and base excess was not different in both groups. The volume of transfusion needed to reach the MAP target was lower in the high PLT dose group compared to the standard dose, albeit not statistically significant (p = 0.054). Transfusion with a high PLT dose resulted in significant stronger clot firmness compared to the standard dose at all time points following trauma, while platelet counts were similar. Organ failure as assessed by biochemical analysis and histopathology was not different between groups, nor were there any thromboembolic events recorded. CONCLUSIONS: Resuscitation with a high (2:1) PLT-to-RBC ratio was more effective compared to standard (1:1) PLT-to-RBC ratio in treating TIC, with a trend towards reduced transfusion volumes. Also, high PLT dose did not aggravate organ damage. Transfusion strategies using higher PLT dose regiments might be a feasible treatment option in hemorrhaging trauma patients for the correction of TIC.