Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
Ann Neurol ; 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31433864

RESUMO

OBJECTIVE: Astrocytes have gained attention as important players in neurological disease. In line with their heterogeneous character, defects in specific astrocyte subtypes have been identified. Leukodystrophy Vanishing White Matter shows selective vulnerability in white matter astrocytes, but the underlying mechanisms remain unclear. Induced pluripotent stem cell technology is extensively being explored in studies of pathophysiology and regenerative medicine. However, models for distinct astrocyte subtypes for VWM are lacking, thereby hampering identification of disease-specific pathways. METHODS: Here we characterize human and mouse pluripotent stem cell-derived grey and white matter astrocyte subtypes to generate an in vitro Vanishing White Matter model. We examined morphology and functionality, and used co-culture methods, high-content microscopy and RNA sequencing to study Vanishing White Matter cultures. RESULTS: We found intrinsic vulnerability in specific astrocyte subpopulations in Vanishing White Matter. When comparing Vanishing White Matter and control cultures, white matter-like astrocytes inhibited oligodendrocyte maturation, and showed affected pathways in both human and mouse cultures, involving the immune system and extracellular matrix. Interestingly, human white matter-like astrocytes presented additional, human-specific disease mechanisms, such as neuronal and mitochondrial functioning. INTERPRETATION: Astrocyte subtype cultures revealed disease-specific pathways in Vanishing White Matter. Cross-validation of human and mouse-derived protocols identified human-specific disease aspects. This study provides new insights into VWM disease mechanisms which helps the development of in vivo regenerative applications, and we further present strategies to study astrocyte subtype vulnerability in neurological disease. This article is protected by copyright. All rights reserved.

2.
Ann Clin Transl Neurol ; 6(8): 1407-1422, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31402619

RESUMO

OBJECTIVE: Vanishing white matter (VWM) is a fatal, stress-sensitive leukodystrophy that mainly affects children and is currently without treatment. VWM is caused by recessive mutations in eukaryotic initiation factor 2B (eIF2B) that is crucial for initiation of mRNA translation and its regulation during the integrated stress response (ISR). Mutations reduce eIF2B activity. VWM pathomechanisms remain unclear. In contrast with the housekeeping function of eIF2B, astrocytes are selectively affected in VWM. One study objective was to test our hypothesis that in the brain translation of specific mRNAs is altered by eIF2B mutations, impacting primarily astrocytes. The second objective was to investigate whether modulation of eIF2B activity could ameliorate this altered translation and improve the disease. METHODS: Mice with biallelic missense mutations in eIF2B that recapitulate human VWM were used to screen for mRNAs with altered translation in brain using polysomal profiling. Findings were verified in brain tissue from VWM patients using qPCR and immunohistochemistry. The compound ISRIB (for "ISR inhibitor") was administered to VWM mice to increase eIF2B activity. Its effect on translation, neuropathology, and clinical signs was assessed. RESULTS: In brains of VWM compared to wild-type mice we observed the most prominent changes in translation concerning ISR mRNAs; their expression levels correlated with disease severity. We substantiated these findings in VWM patients' brains. ISRIB normalized expression of mRNA markers, ameliorated brain white matter pathology and improved motor skills in VWM mice. INTERPRETATION: The present findings show that ISR deregulation is central in VWM pathomechanisms and a viable target for therapy.

3.
Lancet Neurol ; 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31307818

RESUMO

Leukodystrophies comprise a large group of rare genetic disorders primarily affecting CNS white matter. Historically, the diagnostic process was slow and patient prognosis regarded as poor because curative treatment was only available for very few leukodystrophies in early stages of the disease. Whole-exome sequencing has both greatly increased the number of known leukodystrophies and improved diagnosis. Whether MRI keeps its central place in diagnosis and what the role is of whole-exome sequencing are relevant questions for neurologists. Improved diagnosis has revealed the phenotypic variability of leukodystrophies, requiring adaptation of prognostication. Technological advance in molecular techniques and improved insight into the pathophysiology of individual leukodystrophies have led to therapeutic developments, including drug design and gene therapy. Despite this progress, therapies are only beneficial early in the disease course, emphasising the need for a speedy diagnosis and for research on regenerative approaches to repair the damage already present.

4.
Eur J Med Genet ; 62(8): 103708, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31247379

RESUMO

Ribose 5-phosphate isomerase deficiency is a rare genetic leukoencephalopathy caused by pathogenic sequence variants in RPIA, that encodes ribose 5-phosphate isomerase, an enzyme in the pentose phosphate pathway. Till date, only three individuals with ribose 5-phosphate isomerase deficiency have been described in literature. We report on a subject with RPIA associated progressive leukoencephalopathy with elevated urine arabitol and ribitol levels and a novel missense variant c.770T > C p.(Ile257Thr) in exon 8 of RPIA. We also compare the phenotypes of all the four subjects. Our report confirms the phenotype and the genetic cause of this condition.

5.
Hum Mutat ; 40(7): 975-982, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30908763

RESUMO

D-2-hydroxyglutaric aciduria Type I (D-2-HGA Type I), a neurometabolic disorder with a broad clinical spectrum, is caused by recessive variants in the D2HGDH gene encoding D-2-hydroxyglutarate dehydrogenase (D-2-HGDH). We and others detected 42 potentially pathogenic variants in D2HGDH of which 31 were missense. We developed functional studies to investigate the effect of missense variants on D-2-HGDH catalytic activity. Site-directed mutagenesis was used to introduce 31 missense variants in the pCMV5-D2HGDH expression vector. The wild type and missense variants were overexpressed in HEK293 cells. D-2-HGDH enzyme activity was evaluated based on the conversion of [2 H4 ]D-2-HG to [2 H4 ]2-ketoglutarate, which was subsequently converted into [2 H4 ]L-glutamate and the latter quantified by LC-MS/MS. Eighteen variants resulted in almost complete ablation of D-2-HGDH activity and thus, should be considered pathogenic. The remaining 13 variants manifested residual activities ranging between 17% and 94% of control enzymatic activity. Our functional assay evaluating the effect of novel D2HGDH variants will be beneficial for the classification of missense variants and determination of pathogenicity.

6.
Stem Cell Reports ; 12(3): 441-450, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30799272

RESUMO

Stem cell therapy has great prospects for brain white matter disorders, including the genetically determined disorders called leukodystrophies. We focus on the devastating leukodystrophy vanishing white matter (VWM). Patients with VWM show severe disability and early death, and treatment options are lacking. Previous studies showed successful cell replacement therapy in rodent models for myelin defects. However, proof-of-concept studies of allogeneic cell replacement in models representative of human leukodystrophies are lacking. We tested cell replacement in a mouse model representative of VWM. We transplanted different murine glial progenitor cell populations and showed improved pathological hallmarks and motor function. Improved mice showed a higher percentage of transplanted cells that differentiated into GFAP+ astrocytes, suggesting best therapeutic prospects for replacement of astroglial lineage cells. This is a proof-of-concept study for cell transplantation in VWM and suggests that glial cell replacement therapy is a promising therapeutic strategy for leukodystrophy patients.

7.
Neurology ; 92(11): e1225-e1237, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30737337

RESUMO

OBJECTIVE: To describe the leukodystrophy caused by pathogenic variants in LARS2 and KARS, encoding mitochondrial leucyl transfer RNA (tRNA) synthase and mitochondrial and cytoplasmic lysyl tRNA synthase, respectively. METHODS: We composed a group of 5 patients with leukodystrophy, in whom whole-genome or whole-exome sequencing revealed pathogenic variants in LARS2 or KARS. Clinical information, brain MRIs, and postmortem brain autopsy data were collected. We assessed aminoacylation activities of purified mutant recombinant mitochondrial leucyl tRNA synthase and performed aminoacylation assays on patients' lymphoblasts and fibroblasts. RESULTS: Patients had a combination of early-onset deafness and later-onset neurologic deterioration caused by progressive brain white matter abnormalities on MRI. Female patients with LARS2 pathogenic variants had premature ovarian failure. In 2 patients, MRI showed additional signs of early-onset vascular abnormalities. In 2 other patients with LARS2 and KARS pathogenic variants, magnetic resonance spectroscopy revealed elevated white matter lactate, suggesting mitochondrial disease. Pathology in one patient with LARS2 pathogenic variants displayed evidence of primary disease of oligodendrocytes and astrocytes with lack of myelin and deficient astrogliosis. Aminoacylation activities of purified recombinant mutant leucyl tRNA synthase showed a 3-fold loss of catalytic efficiency. Aminoacylation assays on patients' lymphoblasts and fibroblasts showed about 50% reduction of enzyme activity. CONCLUSION: This study adds LARS2 and KARS pathogenic variants as gene defects that may underlie deafness, ovarian failure, and leukodystrophy with mitochondrial signature. We discuss the specific MRI characteristics shared by leukodystrophies caused by mitochondrial tRNA synthase defects. We propose to add aminoacylation assays as biochemical diagnostic tools for leukodystrophies.

8.
Neurology ; 92(6): e587-e593, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30635494

RESUMO

OBJECTIVE: To determine the molecular etiology of disease in 4 individuals from 2 unrelated families who presented with proximal muscle weakness and features suggestive of mitochondrial disease. METHODS: Clinical information and neuroimaging were reviewed. Genome sequencing was performed on affected individuals and biological parents. RESULTS: All affected individuals presented with muscle weakness and difficulty walking. In one family, both children had neonatal respiratory distress while the other family had 2 children with episodic deteriorations. In each family, muscle biopsy demonstrated ragged red fibers. MRI was suggestive of a mitochondrial leukoencephalopathy, with extensive deep cerebral white matter T2 hyperintense signal and selective involvement of the middle blade of the corpus callosum. Through genome sequencing, homozygous GFPT1 missense variants were identified in the affected individuals of each family. The variants detected (p.Arg14Leu and p.Thr151Lys) are absent from population databases and predicted to be damaging by in silico prediction tools. Following the genetic diagnosis, nerve conduction studies were performed and demonstrated a decremental response to repetitive nerve stimulation, confirming the diagnosis of myasthenia. Treatment with pyridostigmine was started in one family with favorable response. CONCLUSIONS: GFPT1 encodes a widely expressed protein that controls the flux of glucose into the hexosamine-biosynthesis pathway that produces precursors for glycosylation of proteins. GFPT1 variants and defects in other enzymes of this pathway have previously been associated with congenital myasthenia. These findings identify leukoencephalopathy as a previously unrecognized phenotype in GFPT1-related disease and suggest that mitochondrial dysfunction could contribute to this disorder.

9.
Neurogenetics ; 20(1): 1-8, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30535813

RESUMO

Here, we report brain white matter alterations in individuals clinically and genetically diagnosed with periodontal Ehlers-Danlos syndrome, a rare disease characterized by premature loss of teeth and connective tissue abnormalities. Eight individuals of two families clinically diagnosed with periodontal Ehlers-Danlos syndrome were included in the present study and underwent general physical, dental, and neurological examination. Whole exome sequencing was performed, and all patients included in the study underwent MRI of the brain. Whole exome sequencing revealed heterozygous C1R mutations c.926G>T (p.Cys309Phe, Family A) and c.149_150TC>AT (p.Val50Asp, Family B). All adult individuals (n = 7; age range 31 to 68 years) investigated by MRI had brain white matter abnormalities. The MRI of one investigated child aged 8 years was normal. The MRI pattern was suggestive of an underlying small vessel disease that is progressive with age. As observed in other leukoencephalopathies related to microangiopathies, the extent of the white matter changes was disproportionate to the neurologic features. Medical history revealed recurrent headaches or depression in some cases. Neurological examination was unremarkable in all individuals but one had mild cognitive decline and ataxia and experienced a seizure. The observation that periodontal Ehlers-Danlos syndrome caused by missense mutations in C1R is consistently associated with a leukoencephalopathy opens a new pathogenic link between the classical complement pathway, connective tissue, brain small vessels, and brain white matter abnormalities.

10.
Artigo em Inglês | MEDLINE | ID: mdl-30476126

RESUMO

Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) is a rare hypomyelinating leukodystrophy characterized by infantile or childhood onset of motor developmental delay, progressive rigidity and spasticity, with hypomyelination and progressive atrophy of the basal ganglia and cerebellum due to a genetic mutation of the TUBB4A gene. It has only been recognized since 2002 and the full spectrum of the disorder is still being delineated. Here, we review a case report of a severely affected girl with a thorough neuropathological evaluation demonstrating novel clinical and pathological findings. Clinically, our patient demonstrated visual dysfunction and hypodontia in addition to the typical phenotype. Morphologically, more severe and widespread changes in the white matter were observed, including to the optic tracts; in gray structures such as the caudate nucleus, thalamus, globus pallidus, and substantia nigra; as well as an area of focal cortical dysplasia. Overall this case offers further insight into the broad range of clinical and neuropathological findings that may be associated with H-ABC and related TUBB4A gene mutations.

11.
Nat Rev Neurol ; 14(12): 747-748, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30341432
12.
J Hum Genet ; 63(12): 1223-1229, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30258207

RESUMO

Biallelic mutations in IBA57 cause a mitochondrial disorder with a broad phenotypic spectrum that ranges from severe intellectual disability to adolescent-onset spastic paraplegia. Only 21 IBA57 mutations have been reported, therefore the phenotypic spectrum of IBA57-related mitochondrial disease has not yet been fully elucidated. In this study, we performed whole-exome sequencing on a Sepharadi Jewish and Japanese family with leukodystrophy. We identified four novel biallelic variants in IBA57 in the two families: one frameshift insertion and three missense variants. The three missense variants were predicted to be disease-causing by multiple in silico tools. The 29-year-old Sepharadi Jewish male had infantile-onset optic atrophy with clinically asymptomatic leukodystrophy involving periventricular white matter. The 19-year-old younger brother, with the same compound heterozygous IBA57 variants, had a similar clinical course until 7 years of age. However, he then developed a rapidly progressive spastic paraparesis following a febrile illness. A 7-year-old Japanese girl had developmental regression, spastic quadriplegia, and abnormal periventricular white matter signal on brain magnetic resonance imaging performed at 8 months of age. She had febrile convulsions at the age of 18 months and later developed epilepsy. In summary, we have identified four novel IBA57 mutations in two unrelated families. Consequently, we describe a patient with infantile-onset optic atrophy and asymptomatic white matter involvement, thus broadening the phenotypic spectrum of biallelic IBA57 mutations.

13.
Brain ; 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30010796

RESUMO

Defects in iron-sulphur [Fe-S] cluster biogenesis are increasingly recognized as causing neurological disease. Mutations in a number of genes that encode proteins involved in mitochondrial [Fe-S] protein assembly lead to complex neurological phenotypes. One class of proteins essential in the early cluster assembly are ferredoxins. FDX2 is ubiquitously expressed and is essential in the de novo formation of [2Fe-2S] clusters in humans. We describe and genetically define a novel complex neurological syndrome identified in two Brazilian families, with a novel homozygous mutation in FDX2. Patients were clinically evaluated, underwent MRI, nerve conduction studies, EMG and muscle biopsy. To define the genetic aetiology, a combination of homozygosity mapping and whole exome sequencing was performed. We identified six patients from two apparently unrelated families with autosomal recessive inheritance of a complex neurological phenotype involving optic atrophy and nystagmus developing by age 3, followed by myopathy and recurrent episodes of cramps, myalgia and muscle weakness in the first or second decade of life. Sensory-motor axonal neuropathy led to progressive distal weakness. MRI disclosed a reversible or partially reversible leukoencephalopathy. Muscle biopsy demonstrated an unusual pattern of regional succinate dehydrogenase and cytochrome c oxidase deficiency with iron accumulation. The phenotype was mapped in both families to the same homozygous missense mutation in FDX2 (c.431C > T, p.P144L). The deleterious effect of the mutation was validated by real-time reverse transcription polymerase chain reaction and western blot analysis, which demonstrated normal expression of FDX2 mRNA but severely reduced expression of FDX2 protein in muscle tissue. This study describes a novel complex neurological phenotype with unusual MRI and muscle biopsy features, conclusively mapped to a mutation in FDX2, which encodes a ubiquitously expressed mitochondrial ferredoxin essential for early [Fe-S] cluster biogenesis.

14.
Ann Neurol ; 84(2): 274-288, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30014503

RESUMO

OBJECTIVE: To comprehensively describe the natural history of vanishing white matter (VWM), aiming at improving counseling of patients/families and providing natural history data for future therapeutic trials. METHODS: We performed a longitudinal multicenter study among 296 genetically confirmed VWM patients. Clinical information was obtained via disease-specific clinical questionnaire, Health Utilities Index and Guy's Neurological Disability Scale assessments, and chart review. RESULTS: First disease signs occurred at a median age of 3 years (mode = 2 years, range = before birth to 54 years); 60% of patients were symptomatic before the age of 4 years. The nature of the first signs varied for different ages of onset. Overall, motor problems were the most common presenting sign, especially in children. Adolescent and adult onset patients were more likely to exhibit cognitive problems early after disease onset. One hundred two patients were deceased. Multivariate Cox regression analysis revealed a positive relation between age at onset and both preservation of ambulation and survival. Absence of stress-provoked episodes and absence of seizures predicted more favorable outcome. In patients with onset before 4 years, earlier onset was associated with more severe disability and higher mortality. For onset from 4 years on, disease course was generally milder, with a wide variation in severity. There were no significant differences for sex or for the 5 eIF2B gene groups. The results confirm the presence of a genotype-phenotype correlation. INTERPRETATION: The VWM disease spectrum consists of a continuum with extremely wide variability. Age at onset is a strong predictor for disease course. Ann Neurol 2018;84:274-288.

15.
Eur J Paediatr Neurol ; 22(5): 866-869, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29970281

RESUMO

Leukoencephalopathy with brain calcifications and cysts (LCC) is a genetic white matter disorder, which involves the brain small blood vessels. In the absence of extra-neurological symptoms, LCC has a pathognomonic radiological phenotype. Recently, biallelic mutations in the SNORD118 gene, which is a non-protein coding gene, were discovered to cause LCC. We present here two siblings with developmental delay and a typical MRI pattern, who were diagnosed with LCC. The mutations in the SNORD118 gene were initially missed with whole exome sequencing (WES), but recognition of the MRI patterns of both children raised the suspicion of LCC and led to a genetically proven diagnosis after re-evaluation of the WES data.

17.
Brain Pathol ; 28(3): 408-421, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29740943

RESUMO

VWM is one of the most prevalent leukodystrophies with unique clinical, pathological and molecular features. It mostly affects children, but may develop at all ages, from birth to senescence. It is dominated by cerebellar ataxia and susceptible to stresses that act as factors provoking disease onset or episodes of rapid neurological deterioration possibly leading to death. VWM is caused by mutations in any of the genes encoding the five subunits of the eukaryotic translation initiation factor 2B (eIF2B). Although eIF2B is ubiquitously expressed, VWM primarily manifests as a leukodystrophy with increasing white matter rarefaction and cystic degeneration, meager astrogliosis with no glial scarring and dysmorphic immature astrocytes and increased numbers of oligodendrocyte progenitor cells that are restrained from maturing into myelin-forming cells. Recent findings point to a central role for astrocytes in driving the brain pathology, with secondary effects on both oligodendroglia and axons. In this, VWM belongs to the growing group of astrocytopathies, in which loss of essential astrocytic functions and gain of detrimental functions drive degeneration of the white matter. Additional disease mechanisms include activation of the unfolded protein response with constitutive predisposition to cellular stress, failure of astrocyte-microglia crosstalk and possibly secondary effects on the oxidative phosphorylation. VWM involves a translation initiation factor. The group of leukodystrophies due to defects in mRNA translation is also growing, suggesting that this may be a common disease mechanism. The combination of all these features makes VWM an intriguing natural model to understand the biology and pathology of the white matter.

18.
Brain Pathol ; 28(3): 372-387, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29740942

RESUMO

Electrical activity of neurons in the brain, caused by the movement of ions between intracellular and extracellular compartments, is the basis of all our thoughts and actions. Maintaining the correct ionic concentration gradients is therefore crucial for brain functioning. Ion fluxes are accompanied by the displacement of osmotically obliged water. Since even minor brain swelling leads to severe brain damage and even death, brain ion and water movement has to be tightly regulated. Glial cells, in particular astrocytes, play a key role in ion and water homeostasis. They are endowed with specific channels, pumps and carriers to regulate ion and water flow. Glial cells form a large panglial syncytium to aid the uptake and dispersal of ions and water, and make extensive contacts with brain fluid barriers for disposal of excess ions and water. Genetic defects in glial proteins involved in ion and water homeostasis disrupt brain functioning, thereby leading to neurological diseases. Since white matter edema is often a hallmark disease feature, many of these diseases are characterized as leukodystrophies. In this review we summarize our current understanding of inherited glial diseases characterized by disturbed brain ion and water homeostasis by integrating findings from MRI, genetics, neuropathology and animal models for disease. We discuss how mutations in different glial proteins lead to disease, and highlight the similarities and differences between these diseases. To come to effective therapies for this group of diseases, a better mechanistic understanding of how glial cells shape ion and water movement in the brain is crucial.

19.
Dev Med Child Neurol ; 2018 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-29806077

RESUMO

Metachromatic leukodystrophy (MLD) is a rare progressive neurological disorder, often accompanied by motor impairments that are challenging to treat. In this case series, we report the course of treatment with intrathecal baclofen (ITB), aimed at improving daily care and comfort in children and young adults with MLD. All patients with MLD in our centre on ITB treatment for a minimum of 6 months were included (n=10; 4 males, 6 females; mean age 10y 8mo [range 6-24y]). Eight patients had MLD with a predominant spastic movement disorder (sMLD) and two were mainly dyskinetic. Patients with sMLD were compared with matched patients with spastic cerebral palsy (CP). Complication rates related to ITB treatment were similar in both groups. ITB treatment course in the first 6 months after pump implantation appears to show more dose increase in most patients MLD, compared to patients with spastic CP. This may be due to the progressive disease in MLD. ITB is a feasible therapy to improve daily care and comfort in patients with MLD and should therefore be considered early. WHAT THIS PAPER ADDS: Intrathecal baclofen (ITB) is a feasible therapy to improve comfort and daily care in children and young people with metachromatic leukodystrophy (MLD). In the first 6 months of ITB treatment, MLD seems to show more dose increase compared to spastic cerebral palsy.

20.
Ann Clin Transl Neurol ; 5(4): 429-444, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29687020

RESUMO

Objective: We aimed to study the occurrence and development of axonal pathology and the influence of astrocytes in vanishing white matter. Methods: Axons and myelin were analyzed using electron microscopy and immunohistochemistry on Eif2b4 and Eif2b5 single- and double-mutant mice and patient brain tissue. In addition, astrocyte-forebrain co-culture studies were performed. Results: In the corpus callosum of Eif2b5-mutant mice, myelin sheath thickness, axonal diameter, and G-ratio developed normally up to 4 months. At 7 months, however, axons had become thinner, while in control mice axonal diameters had increased further. Myelin sheath thickness remained close to normal, resulting in an abnormally low G-ratio in Eif2b5-mutant mice. In more severely affected Eif2b4-Eif2b5 double-mutants, similar abnormalities were already present at 4 months, while in milder affected Eif2b4 mutants, few abnormalities were observed at 7 months. Additionally, from 2 months onward an increased percentage of thin, unmyelinated axons and increased axonal density were present in Eif2b5-mutant mice. Co-cultures showed that Eif2b5 mutant astrocytes induced increased axonal density, also in control forebrain tissue, and that control astrocytes induced normal axonal density, also in mutant forebrain tissue. In vanishing white matter patient brains, axons and myelin sheaths were thinner than normal in moderately and severely affected white matter. In mutant mice and patients, signs of axonal transport defects and cytoskeletal abnormalities were minimal. Interpretation: In vanishing white matter, axons are initially normal and atrophy later. Astrocytes are central in this process. If therapy becomes available, axonal pathology may be prevented with early intervention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA