RESUMO
Chloride-based solid electrolytes are considered interesting candidates for catholytes in all-solid-state batteries due to their high electrochemical stability, which allows the use of high-voltage cathodes without protective coatings. Aliovalent Zr(iv) substitution is a widely applicable strategy to increase the ionic conductivity of Li3M(iii)Cl6 solid electrolytes. In this study, we investigate how Zr(iv) substitution affects the structure and ion conduction in Li3-x In1-x Zr x Cl6 (0 ≤ x ≤ 0.5). Rietveld refinement using both X-ray and neutron diffraction is used to make a structural model based on two sets of scattering contrasts. AC-impedance measurements and solid-state NMR relaxometry measurements at multiple Larmor frequencies are used to study the Li-ion dynamics. In this manner the diffusion mechanism and its correlation with the structure are explored and compared to previous studies, advancing the understanding of these complex and difficult to characterize materials. It is found that the diffusion in Li3InCl6 is most likely anisotropic considering the crystal structure and two distinct jump processes found by solid-state NMR. Zr-substitution improves ionic conductivity by tuning the charge carrier concentration, accompanied by small changes in the crystal structure which affect ion transport on short timescales, likely reducing the anisotropy.
RESUMO
Li3YX6 (X = Cl, Br) materials are Li-ion conductors that can be used as solid electrolytes in all solid-state batteries. Solid electrolytes ideally have high ionic conductivity and (electro)chemical compatibility with the electrodes. It was proven that introducing Br to Li3YCl6 increases ionic conductivity but, according to thermodynamic calculations, should also reduce oxidative stability. In this paper, the trade-off between ionic conductivity and electrochemical stability in Li3YBr x Cl6-x halogen-substituted compounds is investigated. The compositions of Li3YBr1.5Cl4.5 and Li3YBr4.5Cl1.5 are reported for the first time, along with a consistent analysis of the whole Li3YBr x Cl6-x (x = 0-6) tie-line. The results show that, while Br-rich materials are more conductive (5.36 × 10-3 S/cm at 30 °C for x = 4.5), the oxidative stability is lower (â¼3 V compared to â¼3.5 V). Small Br content (x = 1.5) does not affect oxidative stability but substantially increases ionic conductivity compared to pristine Li3YCl6 (2.1 compared to 0.049 × 10-3 S/cm at 30 °C). This work highlights that optimization of substitutions in the anion framework provide prolific and rational avenues for tailoring the properties of solid electrolytes.
RESUMO
A key challenge for solid-state-batteries development is to design electrode-electrolyte interfaces that combine (electro)chemical and mechanical stability with facile Li-ion transport. However, while the solid-electrolyte/electrode interfacial area should be maximized to facilitate the transport of high electrical currents on the one hand, on the other hand, this area should be minimized to reduce the parasitic interfacial reactions and promote the overall cell stability. To improve these aspects simultaneously, we report the use of an interfacial inorganic coating and the study of its impact on the local Li-ion transport over the grain boundaries. Via exchange-NMR measurements, we quantify the equilibrium between the various phases present at the interface between an S-based positive electrode and an inorganic solid-electrolyte. We also demonstrate the beneficial effect of the LiI coating on the all-solid-state cell performances, which leads to efficient sulfur activation and prevention of solid-electrolyte decomposition. Finally, we report 200 cycles with a stable capacity of around 600 mAh g-1 at 0.264 mA cm-2 for a full lab-scale cell comprising of LiI-coated Li2S-based cathode, Li-In alloy anode and Li6PS5Cl solid electrolyte.
RESUMO
All-solid-state Li-ion batteries promise safer electrochemical energy storage with larger volumetric and gravimetric energy densities. A major concern is the limited electrochemical stability of solid electrolytes and related detrimental electrochemical reactions, especially because of our restricted understanding. Here we demonstrate for the argyrodite-, garnet- and NASICON-type solid electrolytes that the favourable decomposition pathway is indirect rather than direct, via (de)lithiated states of the solid electrolyte, into the thermodynamically stable decomposition products. The consequence is that the electrochemical stability window of the solid electrolyte is notably larger than predicted for direct decomposition, rationalizing the observed stability window. The observed argyrodite metastable (de)lithiated solid electrolyte phases contribute to the (ir)reversible cycling capacity of all-solid-state batteries, in addition to the contribution of the decomposition products, comprehensively explaining solid electrolyte redox activity. The fundamental nature of the proposed mechanism suggests this is a key aspect for solid electrolytes in general, guiding interface and material design for all-solid-state batteries.
RESUMO
Molecular dynamics simulations are a powerful tool to study diffusion processes in battery electrolyte and electrode materials. From molecular dynamics simulations, many properties relevant to diffusion can be obtained, including the diffusion path, amplitude of vibrations, jump rates, radial distribution functions, and collective diffusion processes. Here it is shown how the activation energies of different jumps and the attempt frequency can be obtained from a single molecular dynamics simulation. These detailed diffusion properties provide a thorough understanding of diffusion in solid electrolytes, and provide direction for the design of improved solid electrolyte materials. The presently developed analysis methodology is applied to DFT MD simulations of Li-ion diffusion in ß-Li3PS4. The methodology presented is generally applicable to diffusion in crystalline materials and facilitates the analysis of molecular dynamics simulations. The code used for the analysis is freely available at: https://bitbucket.org/niekdeklerk/md-analysis-with-matlab. The results on ß-Li3PS4 demonstrate that jumps between bc planes limit the conductivity of this important class of solid electrolyte materials. The simulations indicate that the rate-limiting jump process can be accelerated significantly by adding Li interstitials or Li vacancies, promoting three-dimensional diffusion, which results in increased macroscopic Li-ion diffusivity. Li vacancies can be introduced through Br doping, which is predicted to result in an order of magnitude larger Li-ion conductivity in ß-Li3PS4. Furthermore, the present simulations rationalize the improved Li-ion diffusivity upon O doping through the change in Li distribution in the crystal. Thus, it is demonstrated how a thorough understanding of diffusion, based on thorough analysis of MD simulations, helps to gain insight and develop strategies to improve the ionic conductivity of solid electrolytes.