Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 191: 118-125, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34517052

RESUMO

Prion disease is caused by the misfolding of the cellular prion protein, PrPC, into a self-templating conformer, PrPSc. Nuclear magnetic resonance (NMR) and X-ray crystallography revealed the 3D structure of the globular domain of PrPC and the possibility of its dimerization via an interchain disulfide bridge that forms due to domain swap or by non-covalent association of two monomers. On the contrary, PrPSc is composed by a complex and heterogeneous ensemble of poorly defined conformations and quaternary arrangements that are related to different patterns of neurotoxicity. Targeting PrPC with molecules that stabilize the native conformation of its globular domain emerged as a promising approach to develop anti-prion therapies. One of the advantages of this approach is employing structure-based drug discovery methods to PrPC. Thus, it is essential to expand our structural knowledge about PrPC as much as possible to aid such drug discovery efforts. In this work, we report a crystallographic structure of the globular domain of human PrPC that shows a novel dimeric form and a novel oligomeric arrangement. We use molecular dynamics simulations to explore its structural dynamics and stability and discuss potential implications of these new quaternary structures to the conversion process.

2.
Biochem J ; 478(19): 3655-3670, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34529035

RESUMO

Several Schistosoma species cause Schistosomiasis, an endemic disease in 78 countries that is ranked second amongst the parasitic diseases in terms of its socioeconomic impact and human health importance. The drug recommended for treatment by the WHO is praziquantel (PZQ), but there are concerns associated with PZQ, such as the lack of information about its exact mechanism of action, its high price, its effectiveness - which is limited to the parasite's adult form - and reports of resistance. The parasites lack the de novo purine pathway, rendering them dependent on the purine salvage pathway or host purine bases for nucleotide synthesis. Thus, the Schistosoma purine salvage pathway is an attractive target for the development of necessary and selective new drugs. In this study, the purine nucleotide phosphorylase II (PNP2), a new isoform of PNP1, was submitted to a high-throughput fragment-based hit discovery using a crystallographic screening strategy. PNP2 was crystallized and crystals were soaked with 827 fragments, a subset of the Maybridge 1000 library. X-ray diffraction data was collected and structures were solved. Out of 827-screened fragments we have obtained a total of 19 fragments that show binding to PNP2. Fourteen of these fragments bind to the active site of PNP2, while five were observed in three other sites. Here we present the first fragment screening against PNP2.

4.
J Med Chem ; 64(15): 11379-11394, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34337941

RESUMO

The effectiveness of ß-lactam antibiotics is increasingly compromised by ß-lactamases. Boron-containing inhibitors are potent serine-ß-lactamase inhibitors, but the interactions of boron-based compounds with the penicillin-binding protein (PBP) ß-lactam targets have not been extensively studied. We used high-throughput X-ray crystallography to explore reactions of a boron-containing fragment set with the Pseudomonas aeruginosa PBP3 (PaPBP3). Multiple crystal structures reveal that boronic acids react with PBPs to give tricovalently linked complexes bonded to Ser294, Ser349, and Lys484 of PaPBP3; benzoxaboroles react with PaPBP3 via reaction with two nucleophilic serines (Ser294 and Ser349) to give dicovalently linked complexes; and vaborbactam reacts to give a monocovalently linked complex. Modifications of the benzoxaborole scaffold resulted in a moderately potent inhibition of PaPBP3, though no antibacterial activity was observed. Overall, the results further evidence the potential for the development of new classes of boron-based antibiotics, which are not compromised by ß-lactamase-driven resistance.

5.
Nat Commun ; 12(1): 4848, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381037

RESUMO

There is currently a lack of effective drugs to treat people infected with SARS-CoV-2, the cause of the global COVID-19 pandemic. The SARS-CoV-2 Non-structural protein 13 (NSP13) has been identified as a target for anti-virals due to its high sequence conservation and essential role in viral replication. Structural analysis reveals two "druggable" pockets on NSP13 that are among the most conserved sites in the entire SARS-CoV-2 proteome. Here we present crystal structures of SARS-CoV-2 NSP13 solved in the APO form and in the presence of both phosphate and a non-hydrolysable ATP analog. Comparisons of these structures reveal details of conformational changes that provide insights into the helicase mechanism and possible modes of inhibition. To identify starting points for drug development we have performed a crystallographic fragment screen against NSP13. The screen reveals 65 fragment hits across 52 datasets opening the way to structure guided development of novel antiviral agents.


Assuntos
Metiltransferases/química , RNA Helicases/química , SARS-CoV-2/química , Proteínas não Estruturais Virais/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Apoenzimas/química , Apoenzimas/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Modelos Moleculares , Fosfatos/química , Fosfatos/metabolismo , Conformação Proteica , RNA Helicases/antagonistas & inibidores , RNA Helicases/metabolismo , RNA Viral/química , RNA Viral/metabolismo , SARS-CoV-2/enzimologia , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo
6.
Wellcome Open Res ; 6: 146, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34250265

RESUMO

There is an increasingly urgent need for new antibiotics, yet there is a significant and persistent economic problem when it comes to developing such medicines. The problem stems from the perceived need for a "market" to drive commercial antibiotic development. In this article, we explore abandoning the market as a prerequisite for successful antibiotic research and development. Once one stops trying to fix a market model that has stopped functioning, one is free to carry out research and development (R&D) in ways that are more openly collaborative, a mechanism that has been demonstrably effective for the R&D underpinning the response to the COVID pandemic. New "open source" research models have great potential for the development of medicines for areas of public health where the traditional profit-driven model struggles to deliver. New financial initiatives, including major push/pull incentives, aimed at fixing the broken antibiotics market provide one possible means for funding an openly collaborative approach to drug development. We argue that now is therefore the time to evaluate, at scale, whether such methods can deliver new medicines through to patients, in a timely manner.

7.
Sci Rep ; 11(1): 13208, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168183

RESUMO

Effective agents to treat coronavirus infection are urgently required, not only to treat COVID-19, but to prepare for future outbreaks. Repurposed anti-virals such as remdesivir and human anti-inflammatories such as barcitinib have received emergency approval but their overall benefits remain unclear. Vaccines are the most promising prospect for COVID-19, but will need to be redeveloped for any future coronavirus outbreak. Protecting against future outbreaks requires the identification of targets that are conserved between coronavirus strains and amenable to drug discovery. Two such targets are the main protease (Mpro) and the papain-like protease (PLpro) which are essential for the coronavirus replication cycle. We describe the discovery of two non-antiviral therapeutic agents, the caspase-1 inhibitor SDZ 224015 and Tarloxotinib that target Mpro and PLpro, respectively. These were identified through extensive experimental screens of the drug repurposing ReFRAME library of 12,000 therapeutic agents. The caspase-1 inhibitor SDZ 224015, was found to be a potent irreversible inhibitor of Mpro (IC50 30 nM) while Tarloxotinib, a clinical stage epidermal growth factor receptor inhibitor, is a sub micromolar inhibitor of PLpro (IC50 300 nM, Ki 200 nM) and is the first reported PLpro inhibitor with drug-like properties. SDZ 224015 and Tarloxotinib have both undergone safety evaluation in humans and hence are candidates for COVID-19 clinical evaluation.


Assuntos
Antivirais/química , COVID-19/tratamento farmacológico , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Reposicionamento de Medicamentos , Oligopeptídeos/química , Linhagem Celular , Humanos , Serpinas/química , Proteínas Virais/química
8.
J Vis Exp ; (171)2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34125095

RESUMO

In fragment-based drug discovery, hundreds or often thousands of compounds smaller than ~300 Da are tested against the protein of interest to identify chemical entities that can be developed into potent drug candidates. Since the compounds are small, interactions are weak, and the screening method must therefore be highly sensitive; moreover, structural information tends to be crucial for elaborating these hits into lead-like compounds. Therefore, protein crystallography has always been a gold-standard technique, yet historically too challenging to find widespread use as a primary screen. Initial XChem experiments were demonstrated in 2014 and then trialed with academic and industrial collaborators to validate the process. Since then, a large research effort and significant beamtime have streamlined sample preparation, developed a fragment library with rapid follow-up possibilities, automated and improved the capability of I04-1 beamline for unattended data collection, and implemented new tools for data management, analysis and hit identification. XChem is now a facility for large-scale crystallographic fragment screening, supporting the entire crystals-to-deposition process, and accessible to academic and industrial users worldwide. The peer-reviewed academic user program has been actively developed since 2016, to accommodate projects from as broad a scientific scope as possible, including well-validated as well as exploratory projects. Academic access is allocated through biannual calls for peer-reviewed proposals, and proprietary work is arranged by Diamond's Industrial Liaison group. This workflow has already been routinely applied to over a hundred targets from diverse therapeutic areas, and effectively identifies weak binders (1%-30% hit rate), which both serve as high-quality starting points for compound design and provide extensive structural information on binding sites. The resilience of the process was demonstrated by continued screening of SARS-CoV-2 targets during the COVID-19 pandemic, including a 3-week turn-around for the main protease.


Assuntos
Cristalografia por Raios X/métodos , Descoberta de Drogas/métodos , Proteínas/química , Humanos
10.
Cell Chem Biol ; 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34174194

RESUMO

Designing covalent inhibitors is increasingly important, although it remains challenging. Here, we present covalentizer, a computational pipeline for identifying irreversible inhibitors based on structures of targets with non-covalent binders. Through covalent docking of tailored focused libraries, we identify candidates that can bind covalently to a nearby cysteine while preserving the interactions of the original molecule. We found âˆ¼11,000 cysteines proximal to a ligand across 8,386 complexes in the PDB. Of these, the protocol identified 1,553 structures with covalent predictions. In a prospective evaluation, five out of nine predicted covalent kinase inhibitors showed half-maximal inhibitory concentration (IC50) values between 155 nM and 4.5 µM. Application against an existing SARS-CoV Mpro reversible inhibitor led to an acrylamide inhibitor series with low micromolar IC50 values against SARS-CoV-2 Mpro. The docking was validated by 12 co-crystal structures. Together these examples hint at the vast number of covalent inhibitors accessible through our protocol.

11.
Nat Commun ; 12(1): 3201, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045440

RESUMO

Fragment-based drug design has introduced a bottom-up process for drug development, with improved sampling of chemical space and increased effectiveness in early drug discovery. Here, we combine the use of pharmacophores, the most general concept of representing drug-target interactions with the theory of protein hotspots, to develop a design protocol for fragment libraries. The SpotXplorer approach compiles small fragment libraries that maximize the coverage of experimentally confirmed binding pharmacophores at the most preferred hotspots. The efficiency of this approach is demonstrated with a pilot library of 96 fragment-sized compounds (SpotXplorer0) that is validated on popular target classes and emerging drug targets. Biochemical screening against a set of GPCRs and proteases retrieves compounds containing an average of 70% of known pharmacophores for these targets. More importantly, SpotXplorer0 screening identifies confirmed hits against recently established challenging targets such as the histone methyltransferase SETD2, the main protease (3CLPro) and the NSP3 macrodomain of SARS-CoV-2.


Assuntos
Proteases 3C de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/química , Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Histona-Lisina N-Metiltransferase/química , Animais , Sobrevivência Celular , Chlorocebus aethiops , Química Computacional , Cristalografia por Raios X , Bases de Dados de Proteínas , Desenho de Fármacos , Células HEK293 , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Ligação Proteica , Receptores Acoplados a Proteínas G/química , SARS-CoV-2/química , SARS-CoV-2/genética , Bibliotecas de Moléculas Pequenas , Células Vero
12.
Sci Adv ; 7(16)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33853786

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) macrodomain within the nonstructural protein 3 counteracts host-mediated antiviral adenosine diphosphate-ribosylation signaling. This enzyme is a promising antiviral target because catalytic mutations render viruses nonpathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of 2533 diverse fragments resulted in 214 unique macrodomain-binders. An additional 60 molecules were selected from docking more than 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several fragment hits were confirmed by solution binding using three biophysical techniques (differential scanning fluorimetry, homogeneous time-resolved fluorescence, and isothermal titration calorimetry). The 234 fragment structures explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.


Assuntos
Domínio Catalítico/fisiologia , Ligação Proteica/fisiologia , Proteínas não Estruturais Virais/metabolismo , COVID-19/tratamento farmacológico , Domínio Catalítico/genética , Cristalografia por Raios X , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Proteínas não Estruturais Virais/genética
13.
ACS Chem Biol ; 16(4): 586-595, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33724769

RESUMO

Classic galactosemia is caused by loss-of-function mutations in galactose-1-phosphate uridylyltransferase (GALT) that lead to toxic accumulation of its substrate, galactose-1-phosphate. One proposed therapy is to inhibit the biosynthesis of galactose-1-phosphate, catalyzed by galactokinase 1 (GALK1). Existing inhibitors of human GALK1 (hGALK1) are primarily ATP-competitive with limited clinical utility to date. Here, we determined crystal structures of hGALK1 bound with reported ATP-competitive inhibitors of the spiro-benzoxazole series, to reveal their binding mode in the active site. Spurred by the need for additional chemotypes of hGALK1 inhibitors, desirably targeting a nonorthosteric site, we also performed crystallography-based screening by soaking hundreds of hGALK1 crystals, already containing active site ligands, with fragments from a custom library. Two fragments were found to bind close to the ATP binding site, and a further eight were found in a hotspot distal from the active site, highlighting the strength of this method in identifying previously uncharacterized allosteric sites. To generate inhibitors of improved potency and selectivity targeting the newly identified binding hotspot, new compounds were designed by merging overlapping fragments. This yielded two micromolar inhibitors of hGALK1 that were not competitive with respect to either substrate (ATP or galactose) and demonstrated good selectivity over hGALK1 homologues, galactokinase 2 and mevalonate kinase. Our findings are therefore the first to demonstrate inhibition of hGALK1 from an allosteric site, with potential for further development of potent and selective inhibitors to provide novel therapeutics for classic galactosemia.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Galactoquinase/antagonistas & inibidores , Galactosemias/tratamento farmacológico , Cristalografia por Raios X , Galactoquinase/química , Humanos , Conformação Proteica
14.
J Biol Chem ; 296: 100521, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33684443

RESUMO

The human dedicator of cytokinesis (DOCK) family consists of 11 structurally conserved proteins that serve as atypical RHO guanine nucleotide exchange factors (RHO GEFs). These regulatory proteins act as mediators in numerous cellular cascades that promote cytoskeletal remodeling, playing roles in various crucial processes such as differentiation, migration, polarization, and axon growth in neurons. At the molecular level, DOCK DHR2 domains facilitate nucleotide dissociation from small GTPases, a process that is otherwise too slow for rapid spatiotemporal control of cellular signaling. Here, we provide an overview of the biological and structural characteristics for the various DOCK proteins and describe how they differ from other RHO GEFs and between DOCK subfamilies. The expression of the family varies depending on cell or tissue type, and they are consequently implicated in a broad range of disease phenotypes, particularly in the brain. A growing body of available structural information reveals the mechanism by which the catalytic DHR2 domain elicits nucleotide dissociation and also indicates strategies for the discovery and design of high-affinity small-molecule inhibitors. Such compounds could serve as chemical probes to interrogate the cellular function and provide starting points for drug discovery of this important class of enzymes.


Assuntos
Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Domínio Catalítico , GTP Fosfo-Hidrolases/metabolismo , Conformação Proteica , Fatores de Troca de Nucleotídeo Guanina Rho/química
15.
Biochimie ; 185: 96-104, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33746066

RESUMO

Cancer cells exhibit an altered metabolic phenotype, consuming higher levels of the amino acid glutamine. This metabolic reprogramming depends on increased mitochondrial glutaminase activity to convert glutamine to glutamate, an essential precursor for bioenergetic and biosynthetic processes in cells. Mammals encode the kidney-type (GLS) and liver-type (GLS2) glutaminase isozymes. GLS is overexpressed in cancer and associated with enhanced malignancy. On the other hand, GLS2 is either a tumor suppressor or an oncogene, depending on the tumor type. The GLS structure and activation mechanism are well known, while the structural determinants for GLS2 activation remain elusive. Here, we describe the structure of the human glutaminase domain of GLS2, followed by the functional characterization of the residues critical for its activity. Increasing concentrations of GLS2 lead to tetramer stabilization, a process enhanced by phosphate. In GLS2, the so-called "lid loop" is in a rigid open conformation, which may be related to its higher affinity for phosphate and lower affinity for glutamine; hence, it has lower glutaminase activity than GLS. The lower affinity of GLS2 for glutamine is also related to its less electropositive catalytic site than GLS, as indicated by a Thr225Lys substitution within the catalytic site decreasing the GLS2 glutamine concentration corresponding to half-maximal velocity (K0.5). Finally, we show that the Lys253Ala substitution (corresponding to the Lys320Ala in the GLS "activation" loop, formerly known as the "gating" loop) renders a highly active protein in stable tetrameric form. We conclude that the "activation" loop, a known target for GLS inhibition, may also be a drug target for GLS2.


Assuntos
Ativação Enzimática , Glutaminase/química , Fígado/enzimologia , Substituição de Aminoácidos , Catálise , Glutaminase/genética , Glutaminase/metabolismo , Humanos , Mutação de Sentido Incorreto , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade
16.
Acta Crystallogr D Struct Biol ; 77(Pt 1): 62-74, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33404526

RESUMO

Despite the tremendous success of X-ray cryo-crystallography in recent decades, the transfer of crystals from the drops in which they are grown to diffractometer sample mounts remains a manual process in almost all laboratories. Here, the Shifter, a motorized, interactive microscope stage that transforms the entire crystal-mounting workflow from a rate-limiting manual activity to a controllable, high-throughput semi-automated process, is described. By combining the visual acuity and fine motor skills of humans with targeted hardware and software automation, it was possible to transform the speed and robustness of crystal mounting. Control software, triggered by the operator, manoeuvres crystallization plates beneath a clear protective cover, allowing the complete removal of film seals and thereby eliminating the tedium of repetitive seal cutting. The software, either upon request or working from an imported list, controls motors to position crystal drops under a hole in the cover for human mounting at a microscope. The software automatically captures experimental annotations for uploading to the user's data repository, removing the need for manual documentation. The Shifter facilitates mounting rates of 100-240 crystals per hour in a more controlled process than manual mounting, which greatly extends the lifetime of the drops and thus allows a dramatic increase in the number of crystals retrievable from any given drop without loss of X-ray diffraction quality. In 2015, the first in a series of three Shifter devices was deployed as part of the XChem fragment-screening facility at Diamond Light Source, where they have since facilitated the mounting of over 120 000 crystals. The Shifter was engineered to have a simple design, providing a device that could be readily commercialized and widely adopted owing to its low cost. The versatile hardware design allows use beyond fragment screening and protein crystallography.


Assuntos
Desenho de Equipamento , Microscopia , Proteínas/química , Software , Cristalização , Cristalografia por Raios X
17.
bioRxiv ; 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33269349

RESUMO

The SARS-CoV-2 macrodomain (Mac1) within the non-structural protein 3 (Nsp3) counteracts host-mediated antiviral ADP-ribosylation signalling. This enzyme is a promising antiviral target because catalytic mutations render viruses non-pathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of diverse fragment libraries resulted in 214 unique macrodomain-binding fragments, out of 2,683 screened. An additional 60 molecules were selected from docking over 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several crystallographic and docking fragment hits were validated for solution binding using three biophysical techniques (DSF, HTRF, ITC). Overall, the 234 fragment structures presented explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.

18.
Curr Opin Struct Biol ; 65: 209-216, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33171388

RESUMO

Understanding allosteric regulation of proteins is fundamental to our study of protein structure and function. Moreover, allosteric binding pockets have become a major target of drug discovery efforts in recent years. However, even though the function of almost every protein can be influenced by allostery, it remains a challenge to discover, rationalise and validate putative allosteric binding pockets. This review examines how the discovery and analysis of putative allosteric binding sites have been influenced by the availability of centralised facilities for crystallographic fragment screening, along with newly developed computational methods for modelling low occupancy features. We discuss the experimental parameters required for success, and how new methods could influence the field in the future. Finally, we reflect on the general problem of how to translate these findings into actual ligand development programs.

19.
Nat Commun ; 11(1): 5047, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028810

RESUMO

COVID-19, caused by SARS-CoV-2, lacks effective therapeutics. Additionally, no antiviral drugs or vaccines were developed against the closely related coronavirus, SARS-CoV-1 or MERS-CoV, despite previous zoonotic outbreaks. To identify starting points for such therapeutics, we performed a large-scale screen of electrophile and non-covalent fragments through a combined mass spectrometry and X-ray approach against the SARS-CoV-2 main protease, one of two cysteine viral proteases essential for viral replication. Our crystallographic screen identified 71 hits that span the entire active site, as well as 3 hits at the dimer interface. These structures reveal routes to rapidly develop more potent inhibitors through merging of covalent and non-covalent fragment hits; one series of low-reactivity, tractable covalent fragments were progressed to discover improved binders. These combined hits offer unprecedented structural and reactivity information for on-going structure-based drug design against SARS-CoV-2 main protease.


Assuntos
Betacoronavirus/química , Cisteína Endopeptidases/química , Fragmentos de Peptídeos/química , Proteínas não Estruturais Virais/química , Betacoronavirus/enzimologia , Sítios de Ligação , Domínio Catalítico , Proteases 3C de Coronavírus , Cristalografia por Raios X , Cisteína Endopeptidases/metabolismo , Desenho de Fármacos , Espectrometria de Massas , Modelos Moleculares , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , SARS-CoV-2 , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Eletricidade Estática , Proteínas não Estruturais Virais/metabolismo
20.
ChemMedChem ; 15(24): 2513-2520, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32812371

RESUMO

Combined photochemical arylation, "nuisance effect" (SN Ar) reaction sequences have been employed in the design of small arrays for immediate deployment in medium-throughput X-ray protein-ligand structure determination. Reactions were deliberately allowed to run "out of control" in terms of selectivity; for example the ortho-arylation of 2-phenylpyridine gave five products resulting from mono- and bisarylations combined with SN Ar processes. As a result, a number of crystallographic hits against NUDT7, a key peroxisomal CoA ester hydrolase, have been identified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...