Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Water Res ; 266: 122373, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39265216

RESUMO

Glyphosate, the most widely used herbicide globally, is accumulating in the environment and poses significant potential eco- and bio-toxicity risks. While natural attenuation of glyphosate has been reported, the efficacy varies considerably and the dominant metabolite, aminomethylphosphonic acid (AMPA), is potentially more persistent and toxic. This study investigated the bioelectrochemical system (BES) for glyphosate degradation under anaerobic, reductive conditions. Atomistic simulations using density functional theory (DFT) predicted increased thermodynamic favorability for the non-dominant C-P lyase degradation pathway under external charge, which suppressed AMPA production. Experimental results confirmed that cathodic poised potential (-0.4 V vs. Ag/AgCl) enhanced glyphosate degradation (75 % in BES vs. ∼40 % in the control conditions after 37 days), and lowered the AMPA yield (0.52 mol AMPA yield per mol glyphosate removed in BES vs. 0.77-0.86 mol mol-1 in the control conditions). Geobacter lovleyi was likely the active species driving the C-P lyase pathway, as evidenced by the increase of its relative abundance, the upregulation of its extracellular electron transfer genes (most notably mtr) and the up-regulation of its phnJ and hcp genes (encoding C-P layse and hydroxylamine reductase respectively).

2.
Sci Total Environ ; 947: 174517, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38977104

RESUMO

In recent years, owing to the overuse and improper handling of antibiotics, soil antibiotic pollution has become increasingly serious and an environmental issue of global concern. It affects the quality and ecological balance of the soil and allows the spread of antibiotic resistance genes (ARGs), which threatens the health of all people. As a promising soil remediation technology, bioelectrochemical systems (BES) are superior to traditional technologies because of their simple operation, self-sustaining operation, easy control characteristics, and use of the metabolic processes of microorganisms and electrochemical redox reactions. Moreover, they effectively remediate antibiotic contaminants in soil. This review explores the application of BES remediation mechanisms in the treatment of antibiotic contamination in soil in detail. The advantages of BES restoration are highlighted, including the effective removal of antibiotics from the soil and the prevention of the spread of ARGs. Additionally, the critical roles played by microbial communities in the remediation process and the primary parameters influencing the remediation effect of BES were clarified. This study explores several strategies to improve the BES repair efficiency, such as adjusting the reactor structure, improving the electrode materials, applying additives, and using coupling systems. Finally, this review discusses the current limitations and future development prospects, and how to improve its performance and promote its practical applications. In summary, this study aimed to provide a reference for better strategies for BES to effectively remediate soil antibiotic contamination.


Assuntos
Antibacterianos , Resistência Microbiana a Medicamentos , Microbiologia do Solo , Poluentes do Solo , Resistência Microbiana a Medicamentos/genética , Técnicas Eletroquímicas , Recuperação e Remediação Ambiental/métodos , Solo/química , Biodegradação Ambiental
3.
Sci Total Environ ; 945: 173932, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38880133

RESUMO

Bio-electrochemical systems (BESs) have recently been proposed as an efficient treatment technology to remove organic micropollutants from water treatment plants. In this study, we aimed to differentiate between sorption, electrochemical transport/degradation, and biodegradation. Using electro-active microorganisms and electrodes, we investigated organic micropollutant removal at environmentally relevant concentrations, clarifying the roles of sorption and electrochemical and biological degradation. The role of anodic biofilms on the removal of 10 relevant organic micropollutants was studied by performing separate sorption experiments on carbon-based electrodes (graphite felt, graphite rod, graphite granules, and granular activated carbon) and electrochemical degradation experiments at two different electrode potentials (-0.3 and 0 V). Granular activated carbon showed the highest sorption of micropollutants; applying a potential to graphite felt electrodes increased organic micropollutant removal. Removal efficiencies >80 % were obtained for all micropollutants at high anode potentials (+0.955 V), indicating that the studied compounds were more susceptible to oxidation than to reduction. All organic micropollutants showed removal when under bio-electrochemical conditions, ranging from low (e.g. metformin, 9.3 %) to exceptionally high removal efficiencies (e.g. sulfamethoxazole, 99.5 %). The lower removal observed under bio-electrochemical conditions when compared to only electrochemical conditions indicated that sorption to the electrode is key to guarantee high electrochemical degradation. The detection of transformation products of chloridazon and metformin indicated that (bio)-electrochemical degradation occurred. This study confirms that BES can treat some organic micropollutants through several mechanisms, which merits further investigation.


Assuntos
Biodegradação Ambiental , Técnicas Eletroquímicas , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos , Biofilmes , Eletrodos , Purificação da Água/métodos , Adsorção
4.
Trends Biotechnol ; 42(9): 1128-1143, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38519307

RESUMO

Anaerobic ammonium oxidation (anammox) is an energy-efficient method for nitrogen removal that opens the possibility for energy-neutral wastewater treatment. Research on anammox over the past decade has primarily focused on its implementation in domestic wastewater treatment. However, emerging studies are now expanding its use to novel biotechnological applications and wastewater treatment processes. This review highlights recent advances in the anammox field that aim to overcome conventional bottlenecks, and explores novel and niche-specific applications of the anammox process. Despite the promising results and potential of these advances, challenges persist for their real-world implementation. This underscores the need for a transition from laboratory achievements to practical, scalable solutions for wastewater treatment which mark the next crucial phase in the evolution of anammox research.


Assuntos
Compostos de Amônio , Biotecnologia , Oxirredução , Compostos de Amônio/metabolismo , Compostos de Amônio/química , Anaerobiose , Biotecnologia/métodos , Biotecnologia/tendências , Águas Residuárias/microbiologia , Águas Residuárias/química , Purificação da Água/métodos , Reatores Biológicos/microbiologia
5.
Sci Total Environ ; 855: 158527, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36096221

RESUMO

Microbial electrodialysis cells (MEDCs) offer simultaneous wastewater treatment, water desalination, and hydrogen production. In a conventional design of MEDCs, the overall performance is retarded by the accumulation of protons on the anode due to the integration of an anion exchange membrane (AEM). The accumulation of protons reduces the anolyte pH to become acidic, affecting the microbial viability and thus limiting the charge carrier needed for the cathodic reaction. This study has modified the conventional MEDC with an internal proton migration pathway, known as the internal proton migration pathway-MEDC (IP-MEDC). Simulation tests under abiotic conditions demonstrated that the pH changes in the anolyte and catholyte of IP-MEDC were smaller than the pH changes in the anolyte and catholyte without the proton pathways. Under biotic conditions, the performance of the IP-MEDC agreed well with the simulation test, showing a significantly higher chemical oxygen demand (COD) removal rate, desalination rate, and hydrogen production than without the migration pathway. This result is supported by the lowest charge transfer resistance shown by EIS analysis and the abundance of microbes on the bioanode through field emission scanning electron microscopy (FESEM) observation. However, hydrogen production was diminished in the second-fed batch cycle, presumably due to the active diffusion of high Cl¯ concentrations from desalination to the anode chamber, which was detrimental to microbial growth. Enlarging the anode volume by threefold improved the COD removal rate and hydrogen production rate by 1.7- and 3.4-fold, respectively, owing to the dilution effect of Cl¯ in the anode. This implied that the dilution effect satisfies both the microbial viability and conductivity. This study also suggests that the anolyte and catholyte replacement frequencies can be reduced, typically at a prolonged hydraulic retention time, thus minimizing the operating cost (e.g., solution pumping). The use of a high concentration of NaCl (35 g L-1) in the desalination chamber and catholyte provides a condition that is close to practicality.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Prótons , Salinidade , Eletrodos , Águas Residuárias
6.
Front Microbiol ; 13: 959211, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590422

RESUMO

In single-chamber microbial electrolysis cells (MECs), organic compounds are oxidized at the anode, liberating electrons that are used for hydrogen evolution at the cathode. Microbial communities on the anode and cathode surfaces and in the bulk liquid determine the function of the MEC. The communities are complex, and their assembly processes are poorly understood. We investigated MEC performance and community composition in nine MECs with a carbon cloth anode and a cathode of carbon nanoparticles, titanium, or stainless steel. Differences in lag time during the startup of replicate MECs suggested that the initial colonization by electrogenic bacteria was stochastic. A network analysis revealed negative correlations between different putatively electrogenic Deltaproteobacteria on the anode. Proximity to the conductive anode surface is important for electrogens, so the competition for space could explain the observed negative correlations. The cathode communities were dominated by hydrogen-utilizing taxa such as Methanobacterium and had a much lower proportion of negative correlations than the anodes. This could be explained by the diffusion of hydrogen throughout the cathode biofilms, reducing the need to compete for space.

7.
Chemosphere ; 292: 133206, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34922956

RESUMO

Nitrogen (N) pollution in water has become a serious issue that cannot be ignored due to the harm posed by excessive nitrogen to environmental safety and human health; as such, N concentrations in water are strictly limited. The bioelectrochemical system (BES) is a new method to remove excessive N from water, and has attracted considerable attention. Compared with other methods, it is highly efficient and has low energy consumption. However, the BES has not been applied for N removal in practice due to lack of in-depth research on the mechanism and construction of high-performance electrodes, separators, and reactor configurations; this highlights a need to review and examine the efforts in this field. This paper provides a comprehensive review on the current BES research for N removal focusing on the reaction principles, reactor configurations, electrodes and separators, and treatment of actual wastewater; the corresponding performances in these realms are also discussed. Finally, the prospects for N removal in water using the BES are presented.


Assuntos
Nitrogênio , Águas Residuárias , Reatores Biológicos , Desnitrificação , Eletrodos , Humanos , Nitrogênio/análise
8.
Chemosphere ; 291(Pt 2): 132881, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34774907

RESUMO

A sequential reduction-oxidation for DCF degradation was proposed by alternating anaerobic/aerobic conditions at Ru/Fe-biocathode in a dual-chamber bioelectrochemical system (BES). Results showed that Ru/Fe-electrode was successfully fabricated by in-situ electro-deposition, which was rough and uniformly distributed with Ru0 and Fe0 particles. The morphologic changing and biocompatibility were favorable to increase the surface area and enhance microbial adhesion on Ru/Fe-electrode. At an applied voltage of 0.6 V, the potential and impedance of Ru/Fe-biocathode were -0.80 V and 26 Ω, respectively, lower than that of carbon-felt-biocathode. It led to a higher DCF degradation efficiency of 93.2% under anaerobic conditions, which was superior to that of 88.0% under aerobic conditions. Using NaHCO3 as carbon source, DCF removal efficiency increased with increasing applied voltage, but decreased with increasing initial DCF concentration. Thirteen intermediates were measured, and two degradation pathways were proposed, among which sequential reduction-oxidation of DCF was the main pathway, dechlorination intermediates were first generated by [H] attacked under anaerobic conditions, further oxidized by microbes and OH attacked under aerobic conditions, achieving 69.6% of mineralization. After 4 d of reaction, microcystis aeruginosa growth inhibition rate decreased from 22.9 to 8.0%, signifying a significant reduction in biotoxicity. Bacteria (e.g. Nitrobacter, Nitrosomonas, Pseudofulvimonas, Aquamicrobium, Sulfurvermis, Lentimicrobiaceae, Anaerobineaceae, Bacteroidales, Hydrogenedensaceae, Dethiosulfatibacter and Azoarcus) for DCF degradation were enriched in Ru/Fe-biocathode. Microbes in Ru/Fe-biocathode had established defense mechanisms to acclimate to the unfriendly environment, while Ru/Fe-biocathode possessed higher nitrification and denitrification activities than carbon-felt-biocathode, and Ru/Fe-biocathode might be of aerobic and anaerobic biodegradation activities. DCF could be mineralized by the synergistic reaction between Ru/Fe and bacteria under sequential anaerobic/aerobic conditions.


Assuntos
Diclofenaco , Nitrificação , Bactérias , Eletrodos , Oxirredução
9.
Bioresour Technol ; 342: 125959, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34852439

RESUMO

The large-scale application of the bioelectrochemical system (BES) is limited by the cost-effective electrode materials. In this study, five kinds of stainless-steel materials were used as the cathode of the BES coupled with anaerobic digestion (BES-AD) for the treatment of diluted N, N-dimethylacetamide (DMAC) wastewater. Compared with a carbon-cloth cathode, BES-AD with a stainless-steel cathode had more engineering due to its low cost, although the operating efficiencies were slightly inferior. Stainless-steel mesh with a 100 µm aperture (SSM-100 µm) was the most cost-effective electrode and the implanted BES exhibited better COD removal efficiency, electrochemical performance and biodegradability. Analysis of microbial community revealed the synergetic effect between exoelectrogen and fermentative bacteria had been strengthened in the SSM-100 µm cathode biofilm. Function analysis of the microbial community based on PICRUSt predicted metagenomes revealed that the metabolic pathways of xenobiotics biodegradation and metabolism in the SSM-100 µm cathode were stimulated.


Assuntos
Fontes de Energia Bioelétrica , Microbiota , Eletrodos , Aço Inoxidável , Águas Residuárias
10.
Water Res ; 206: 117740, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34688096

RESUMO

A sequential cathode-anode cascade mode bioelectrochemical system (BES) was designed and developed to achieve the "self-degradation" of 2-chlorophenol (2-CP). With the cooperation of cathode and anode, the electrons supplied for the cathode 2-CP dechlorination come from its own dechlorinated product in the anode, phenol. Separate degradation experiments of cathode 2-CP and anode phenol were firstly conducted. The optimum concentration ratio of anode acetate to phenolic compound (3.66/1.56) and the phenolic compound degradation ability of BES were investigated. With the formation of the bioanode able to degrade phenol, the sequential cathode-anode cascade mode BES was further developed, where 2-CP could achieve sequential dechlorination and ring-cleavage degradation. When applied voltage was 0.6 V and cathode influent pH was 7, 1.56 mM 2-CP reached 80.15% cathode dechlorination efficiency and 58.91% total cathode-anode phenolic compounds degradation efficiency. The bioanodes played a decisive role in BES. Different operating conditions would affect the overall performance of BES by changing the electrochemical activity and microbial community structure of the bioanodes. This study demonstrated the feasibility of the sequential cathode-anode cascade mode BES to degrade 2-CP wastewater and provided perspectives for the cooperation of cathode and anode, aiming to explore more potential of BES in wastewater treatment field.


Assuntos
Fontes de Energia Bioelétrica , Clorofenóis , Purificação da Água , Eletrodos , Águas Residuárias
11.
Environ Int ; 156: 106689, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34175779

RESUMO

Antibiotic contamination and the resulting resistance genes have attracted worldwide attention because of the extensive overuse and abuse of antibiotics, which seriously affects the environment as well as human health. Bioelectrochemical system (BES), a potential avenue to be explored, can alleviate antibiotic pollution and reduce antibiotic resistance genes (ARGs). This review mainly focuses on analyzing the possible reasons for the good performance of ARG reduction by BESs and potential ways to improve its performance on the basis of revealing the generation and transmission of ARGs in BES. This system reduces ARGs through two pathways: (1) the contribution of BES to the low selection pressure of ARGs caused by the efficient removal of antibiotics, and (2) inhibition of ARG transmission caused by low sludge yield. To promote the reduction of ARGs, incorporating additives, improving the removal rate of antibiotics by adjusting the environmental conditions, and controlling the microbial community in BES are proposed. Furthermore, this review also provides an overview of bioelectrochemical coupling systems including the BES coupled with the Fenton system, BES coupled with constructed wetland, and BES coupled with photocatalysis, which demonstrates that this method is applicable in different situations and conditions and provides inspiration to improve these systems to control ARGs. Finally, the challenges and outlooks are addressed, which is constructive for the development of technologies for antibiotic and ARG contamination remediation and blocking risk migration.


Assuntos
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Humanos , Esgotos , Tecnologia , Águas Residuárias
12.
Huan Jing Ke Xue ; 42(5): 2378-2384, 2021 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-33884808

RESUMO

Large amounts of wastewater containing residual antibiotics are produced in antibiotics production, but it is difficult for traditional biological wastewater treatment to efficiently treat this high concentration antibiotic wastewater. Coupled electrocatalytic and bioelectrochemical systems were proposed to treat typical ß-lactam antibiotics (penicillin) wastewater. The penicillin wastewater was oxidized by a boron-doped diamond (BDD) electrocatalytic electrode and then steadily treated by a bioelectrochemical system (BES). The penicillin removal rate of the electrocatalytic system was 89%, and 79% of the residual penicillin was further removed by the BES. The maximum power density of the BES with pretreated penicillin of (1124±28) mW·m-2 was increased by 473% compared with that of the BES with raw penicillin. The total penicillin removal rate was 98% in the electrocatalytic and bioelectrochemical system. The results of the BES anode biomass and biofacies showed that Acinetobacter was the dominant bacterial group on the anode before penicillin addition, and it was the main microorganism in the formation of the anode biofilm. Bacillus is an electricity-producing bacterium with a power generation function. Penicillin inhibited the biomass of the mixed anode bacteria and the biological activity of Proteus microorganisms, which were the main electricity-producing bacteria, and reduced the biomass of Acinetobacter and Bacillus. This was the main factor affecting the power generation performance and reactor treatment effect. The pretreatment of penicillin wastewater by electrocatalytic degradation can significantly decrease its concentration, efficiently alleviate the inhibition of the BES by penicillin, and improve the biodegradability of wastewater. The coupled electrocatalytic and bioelectrochemical system is a new technology for antibiotic wastewater treatment with a high efficiency and low energy consumption.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Eletricidade , Eletrodos , Penicilinas , Águas Residuárias
13.
Microorganisms ; 9(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668742

RESUMO

Bioelectrochemical systems are a promising technology capable of reducing CO2 emissions, a renewable carbon source, using electroactive microorganisms for this purpose. Purple Phototrophic Bacteria (PPB) use their versatile metabolism to uptake external electrons from an electrode to fix CO2. In this work, the effect of the voltage (from -0.2 to -0.8 V vs. Ag/AgCl) on the metabolic CO2 fixation of a mixed culture of PPB under photoheterotrophic conditions during the oxidation of a biodegradable carbon source is demonstrated. The minimum voltage to fix CO2 was between -0.2 and -0.4 V. The Calvin-Benson-Bassham (CBB) cycle is the main electron sink at these voltages. However, lower voltages caused the decrease in the current intensity, reaching a minimum at -0.8 V (-4.75 mA). There was also a significant relationship between the soluble carbon uptake in terms of chemical oxygen demand and the electron consumption for the experiments performed at -0.6 and -0.8 V. These results indicate that the CBB cycle is not the only electron sink and some photoheterotrophic metabolic pathways are also being affected under electrochemical conditions. This behavior has not been tested before in photoheterotrophic conditions and paves the way for the future development of photobioelectrochemical systems under heterotrophic conditions.

14.
Water Res ; 193: 116862, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33550168

RESUMO

Chlorophenols (CPs) are highly toxic and refractory contaminants which widely exist in various environments and cause serious harm to human and environment health and safety. This review provides comprehensive information on typical CPs biodegradation technologies, the most green and benign ones for CPs removal. The known aerobic and anaerobic degradative bacteria, functional enzymes, and metabolic pathways of CPs as well as several improving methods and critical parameters affecting the overall degradation efficiency are systematically summarized and clarified. The challenges for CPs mineralization are also discussed, mainly including the dechlorination of polychlorophenols (poly-CPs) under aerobic condition and the ring-cleavage of monochlorophenols (MCPs) under anaerobic condition. The coupling of functional materials and degraders as well as the operation of sequential anaerobic-aerobic bioreactors and bioelectrochemical system (BES) are promising strategies to overcome some current limitations. Future perspective and research gaps in this field are also proposed, including the further understanding of microbial information and the specific role of materials in CPs biodegradation, the potential application of innovative biotechnologies and new operating modes to optimize and maximize the function of the system, and the scale-up of bioreactors towards the efficient biodegradation of CPs.


Assuntos
Clorofenóis , Anaerobiose , Bactérias Anaeróbias , Biodegradação Ambiental , Reatores Biológicos , Humanos
15.
Bioresour Technol ; 320(Pt A): 124333, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33160214

RESUMO

Conventional photoheterotrophic H2 production by purple sulfur bacteria requires additional organic substrates as the carbon and energy sources. This study examined the novel photoautotrophic H2 production of Rhodobacter sphaeroides with concomitant CO2 uptake in microbial electrosynthesis (MES). Under an applied potential of -0.9 V vs. Ag/AgCl to the cathode, Rhodobacter sphaeroides produced hydrogen with CO2 as the sole carbon source under illumination. The initial planktonic cells decreased rapidly in suspension, whereas biomass formation on the cathode surface increased gradually during MES operation. The electron and carbon flow under photoautotrophic conditions in MES were estimated. Glutamate, as the nitrogen source, enhanced hydrogen production significantly (328 mL/L/day) compared to NH4Cl (67 mL/L/day) during seven days of operation. The photoautotrophic condition with 6000 lx presented CO2 consumption and simultaneous biomass formation on the cathode electrode. MES-driven electron and proton transfer enabled the simultaneous production of hydrogen and CO2 uptake.


Assuntos
Rhodobacter sphaeroides , Carbono , Dióxido de Carbono , Eletrodos , Hidrogênio , Nitrogênio
16.
Bioresour Technol ; 320(Pt A): 124272, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33142252

RESUMO

Microbial electrochemical conversion of CO2 to value-added products needs effectual biocathodes. In this study, three different working electrodes (biocathode) namely carbon cloth (CC, MES1), stainless steel mesh (SS, MES2) and hybrid electrode (CC + SS, MES3) were evaluated in membrane-less single-chambered Microbial electrosynthesis systems (MESs). Performance of MES was assessed by total volatile fatty acids (VFA) productivity and, reductive current generations upon continuous poised potential (-0.4 V vs. Ag/AgCl (3.5 M KCl)). MES3 showed higher VFA synthesis (CC + SS; 1.4 g VFA/L), followed by MES1 (CC; 1.1 g VFA/L) and MES2 (SS; 0.8 g VFA/L) with corresponding reductive current generation of -1.13 mA, -2.74 mA and -0.39 mA. Electro-kinetics revealed the biocathode efficacy towards enhanced electrotrophy with confined electron losses by regulating electron flux in the system. The study infers the potential of hybrid electrode as an efficient biocathode for the reduction of CO2 to VFA synthesis.


Assuntos
Fontes de Energia Bioelétrica , Dióxido de Carbono , Eletrodos , Ácidos Graxos , Ácidos Graxos Voláteis , Oxirredução
17.
J Hazard Mater ; 398: 122892, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32768818

RESUMO

Monoaromatic compounds (MACs) are typical refractory organic pollutants which are existing widely in various environments. Biodegradation strategies are benign while the key issue is the sustainable supply of electron acceptors/donors. Bioelectrochemical system (BES) shows great potential in this field for providing continuous electrons for MACs degradation. Phenol and BTEX (Benzene, Toluene, Ethylbenzene and Xylenes) can utilize anode to enhance oxidative degradation, while chlorophenols, nitrobenzene and antibiotic chloramphenicol (CAP) can be efficiently reduced to less-toxic products by the cathode. However, there still have several aspects need to be improved including the scale, electricity output and MACs degradation efficiency of BES. This review provides a comprehensive summary on the BES degradation of MACs, and discusses the advantages, future challenges and perspectives for BES development. Instead of traditional expensive dual-chamber configurations for MACs degradation, new single-chamber membrane-less reactors are cost-effective and the hydrogen generated from cathodes may promote the anode degradation. Electrode materials are the key to improve BES performance, approaches to increase the biofilm enrichment and conductivity of materials have been discussed, including surface modification as well as composition of carbon and metal-based materials. Besides, the development and introduction of functional microbes and redox mediators, participation of sulfur/hydrogen cycling may further enhance the BES versatility. Some critical parameters, such as the applied voltage and conductivity, can also affect the BES performance, which shouldn't be overlooked. Moreover, sequential cathode-anode cascaded mode is a promising strategy for MACs complete mineralization.


Assuntos
Clorofenóis , Xilenos , Biodegradação Ambiental , Eletrodos , Tolueno
18.
Bioresour Technol ; 306: 123115, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32160580

RESUMO

On account of the recalcitrant and highly toxicity of organonitrile substrates, traditional processes are limited by HCN poisoning thus inefficient. This article proposed a novel anaerobic fluidized bed reactor with electric field activation (AFBR-EFA) which had a 260-day continuous operation. The operation aims to explore the practicability of the enhanced reduction of isophthalonitrile (IPN), with emphasis on the optimum operation parameters and synergistic effect between electric field and anaerobic processes. The results showed that relatively higher voltage (1.0 V < V < 1.6 V) had a positive impact on reduction enhancement. High removal could be obtained at high initial concentration, low methanol dosage and short HRT which indicated that tolerance to shock loading was significantly enhanced in AFBR-EFA. Furthermore, EFA visibly motivated the enrichment of electrochemically active bacteria and various autotrophic IPN degradation-related species. The significantly efficient performance makes the potential for full-scale application of the AFBR-EFA markedly improved, particularly for treating hard-biodegraded contaminants.

19.
Water Res ; 167: 115097, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31563706

RESUMO

Nutrients removal and recovery from surface water are attracting wide attention as nutrients contamination can cause eutrophication even threaten human health. In this study, a novel in-situ photomicrobial nutrient recovery cell (PNRC) was developed, which employed the self-generated electric field to drive nutrient ions to migrate and subsequent recovery as microalgae biomass. At an external resistance of 200 Ω, the current density of the PNRC reactor reached 2.0 A m-2, more than 92% of ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N), and total phosphorus (TP) were separated from eutrophic water, which represented <0.19 mg L-1 of NH4+-N, <0.23 mg L-1 of NO3--N, <0.02 mg L-1 of TP were left in the eutrophic water effluent. Meanwhile these separated NH4+-N, NO3--N, and TP were highly enriched in the cathode and anode chambers, and further removed from the system with the removal efficiencies of 91.8%, 90.6%, and 94.4%. The analysis of microbial communities unraveled that high nitrate removal was attributed to the abundant denitrifying bacteria (Thauera, Paracoccus, Stappia, and Azoarcus). The removal of ammonia was attributed to the algae assimilation (69.3%) and nitrification process (22.5%), and the phosphorus removal was mainly attributed to C. vulgaris. The preliminary energy balance analysis indicated that the electricity generation and biodiesel production could achieve energy neutrality theoretically, further demonstrating the huge potential of the PNRC system in cost-effective nutrients recovery from eutrophic water.


Assuntos
Nutrientes , Água , Nitrogênio , Fósforo , Águas Residuárias
20.
Bioresour Technol ; 287: 121465, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31121448

RESUMO

The coupling of bioelectrochemical system with the biological denitrification process (R1) was constructed for nitrate removal in coal pyrolysis wastewater (CPW) and the effect of low-intensity direct current electric field was investigated. Compared with control reactor (R2), the total nitrogen (TN) removal efficiency in R1 at the optimized voltage of 0.9 V was 94.20 ±â€¯2.14%, which was 14.42% higher than that in R2. The biofilm on the cathode of R1 enhanced the nitrate reducing, however, nitrite was only reduced by bacteria in suspended activated sludge, which was confirmed by cyclic voltammetry measurement (CV). Microbial community network analysis revealed that exoelectrogenic bacteria of Pseudomonas was enriched on the anode of R1, and the "small world", including Zoogloea, Pseudomonas and Arenimonas, was established under the stimulation of voltage. Therefore, Pseudomonas transferred electron to anode, and Arenimonas could utilize electron from anode to reduce nitrate, which enhanced TN removal in R1.


Assuntos
Nitrogênio , Águas Residuárias , Reatores Biológicos , Carvão Mineral , Desnitrificação , Pirólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA