Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 150: 246-253, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306399

RESUMO

The electrochemical carbon dioxide reduction reaction (CO2RR) to high value-added fuels or chemicals driven by the renewable energy is promising to alleviate global warming. However, the selective CO2 reduction to C2 products remains challenge. Cu-based catalyst with the specific Cu0 and Cu+ sites is important to generate C2 products. This work used nitrogen (N) to tune amounts of Cu0 and Cu+ sites in Cu2O catalysts and improve C2-product conversion. The controllable Cu0/Cu+ ratio of Cu2O catalyst from 0.16 to 15.19 was achieved by adjusting the N doping amount using NH3/Ar plasma treatment. The major theme of this work was clarifying a volcano curve of the ethylene Faraday efficiency as a function of the Cu0/Cu+ ratio. The optimal Cu0/Cu+ ratio was determined as 0.43 for selective electroreduction CO2 to ethylene. X-ray spectroscopy and density functional theory (DFT) calculations were employed to elucidate that the strong interaction between N and Cu increased the binding energy of NCu bond and stabilize Cu+, resulting in a 92.3% reduction in the potential energy change for *CO-*CO dimerization. This study is inspiring in designing high performance electrocatalysts for CO2 conversion.


Assuntos
Dióxido de Carbono , Cobre , Etilenos , Oxirredução , Cobre/química , Etilenos/química , Dióxido de Carbono/química , Catálise , Nitrogênio/química , Técnicas Eletroquímicas/métodos , Modelos Químicos
2.
Angew Chem Int Ed Engl ; : e202413005, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302152

RESUMO

Engineering the microenvironment of electrode surface is one of the effective means to tune the reaction pathways in CO2RR. In this work, we prepared copper nanofibers with conductive polypyrrole coating by polymerization of pyrrole using polyvinyl pyrrolidone (PVP) as template. As a result, the obtained copper nanofibers Cu/Cu2+1O/SHNC, exhibited a superhydrophobic surface, which demonstrated very high selectivity for ethanol with a Faraday efficiency (FE) of 66.5% at -1.1 V vs reversible hydrogen electrode (RHE) in flow cell. However, the catalyst Cu/Cu2+1O/NC, which was prepared under the same conditions but without PVP, possessed a hydrophobic surface and exhibited high selectivity towards ethylene at the given potentials. The mechanism for switch of reaction pathways from ethylene to ethanol in CO2RR was studied. Incorporating pyrrolidone groups into the polymer coating results in the formation of a superhydrophobic surface. This surface weakens the hydrogen bonding interaction between interfacial water molecules and facilitates the transfer of CO2, thereby enhancing the local CO2/H2O ratio. The high coverage of *CO promotes the coupling of *CO and *CHO to form C2 intermediates, and reduces the reaction energy for the formation of *CHCHOH (ethanol path) at the interface. This ensures that the reaction pathway is directed towards ethanol.

3.
Angew Chem Int Ed Engl ; : e202412754, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39219249

RESUMO

Acidic CO2 electrolysis offers a promising strategy to achieve high carbon utilization and high energy efficiency. However, challenges remain in suppressing the competitive hydrogen evolution reaction (HER) and improving product selectivity. High concentrations of potassium ions (K+) can suppress HER and accelerate CO2 reduction, but they still inevitably suffer from salt precipitation problems. In this study, we demonstrate that the sulfonate-based polyelectrolyte, polystyrene sulfonate (PSS), enables to reconstruct the electrode-electrolyte interface to significantly enhance the acidic CO2 electrolysis. Mechanistic studies reveal that PSS induces high local K+ concentrations through electrostatic interaction between PSS anions and K+. In situ spectroscopy reveals that PSS reshapes the interfacial hydrogen-bond (H-bond) network, which is attributed to the H-bonds between PSS anions and hydrated proton as well as the steric hindrance of the additive molecules. This greatly weakens proton transfer kinetics and leads to the suppression of undesirable HER. As a result, a Faradaic efficiency of 93.9% for CO can be achieved at 250 mA cm-2, simultaneous with a high single-pass carbon efficiency of 72.2% on commercial Ag catalysts in acid. This study highlights the important role of the electrode-electrolyte interface induced by polyelectrolyte additives in promoting electrocatalytic reactions.

4.
Angew Chem Int Ed Engl ; : e202413832, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39221719

RESUMO

The multi-carbon (C2+) alcohols produced by electrochemical CO2 reduction, such as ethanol and n-propanol, are considered as indispensable liquid energy carriers. In most C-C coupling cases, however, the concomitant gaseous C2H4 product results in the low selectivity of C2+ alcohols. Here, we report rational construction of mesostructured CuO electrocatalysts, specifically mesoporous CuO (m-CuO) and cylindrical CuO (c-CuO), enables selective distribution of C2+ products. The m-CuO and c-CuO showed similar selectivity towards total C2+ products (≥76%), but the corresponding predominant products were C2+ alcohols (55%) and C2H4 (52%), respectively. The ordered mesostructure not only induced the surface hydrophobicity, but selectively tailored the adsorption configuration of *CO intermediate: m-CuO preferred bridged adsorption, whereas c-CuO favored top adsorption as revealed by in situ spectroscopies. Computational calculations unraveled that bridged *CO adsorbate is prone to deep protonation into *OCH3 intermediate, thus accelerating the coupling of *CO and *OCH3 intermediates to generate C2+ alcohols; by contrast, top *CO adsorbate is apt to undergo the favorable conventional C-C coupling process to produce C2H4. This work illustrates selective C2+ products distribution via mesostructure manipulation, and paves new path into the design of efficient electrocatalysts with tunable adsorption configuration of key intermediates for targeted products.

5.
ACS Appl Mater Interfaces ; 16(34): 45038-45048, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39162339

RESUMO

A bioinspired polymeric membrane capable of shifting the selectivity of a copper oxide electrocatalyst in the CO2 reduction reaction is described. The membrane is deposited on top of copper oxide thin films from wet deposition techniques under controlled conditions of humidity and self-assembles into an arranged network of micrometer-sized pores throughout the polymer cross-section. The membrane was composed of a block copolymer with a precisely controlled ratio of poly-4-vinylpyridine and poly(methyl methacrylate) blocks (PMMA-b-P4VP). The intrinsic hydrophobicity, together with the porous nature of the membrane's surface, induces a Cassie-Baxter wetting transition above neutral pH, resulting in water repulsion from the catalyst surface. As a consequence, the catalyst's surface is shielded from surrounding water molecules under CO2 electroreduction reaction conditions, and CO2 molecules are preferentially located in the vicinity of the catalytically active area. The CO2 reduction reaction is therefore kinetically favored over the hydrogen evolution reaction (HER).

6.
Angew Chem Int Ed Engl ; : e202412144, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169221

RESUMO

Thiolate-protected Cu clusters with well-defined structures and stable low-coordinated Cu+ species exhibit remarkable potential for the CO2RR and are ideal model catalysts for establishing structure-electrocatalytic property relationships at the atomic level. However, extant Cu clusters employed in the CO2RR predominantly yield 2e- products. Herein, two model Cu4(MMI)4 and Cu8(MMI)4(tBuS)4 clusters (MMI = 2-mercapto-1-methylimidazole) are prepared to investigate the synergistic effect of Cu+ and adjacent S sites on the CO2RR. Cu4(MMI)4 can reduce CO2 to deep-reduced products with a 91.0% Faradaic efficiency (including 53.7% for CH4) while maintaining remarkable stability. Conversely, Cu8(MMI)4(tBuS)4 shows a remarkable preference for C2+ products, achieving a maximum FE of 58.5% with a C2+ current density of 152.1 mA∙cm-2. In situ XAS and ex situ XPS spectra reveal the preservation of Cu+ species in Cu clusters during CO2RR, extensively enhancing the adsorption capacity of *CO intermediates. Moreover, kinetic analysis and theoretical calculations confirm that S sites facilitate H2O dissociation into *H species, which directly participate in the protonation process on adjacent Cu sites for the protonation of *CO to *CHO. This study highlights the important role of Cu-S dual sites in Cu clusters and provides mechanistic insights into the CO2RR pathway at the atomic level.

7.
Nanomicro Lett ; 16(1): 262, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115789

RESUMO

Surface functionalization of Cu-based catalysts has demonstrated promising potential for enhancing the electrochemical CO2 reduction reaction (CO2RR) toward multi-carbon (C2+) products, primarily by suppressing the parasitic hydrogen evolution reaction and facilitating a localized CO2/CO concentration at the electrode. Building upon this approach, we developed surface-functionalized catalysts with exceptional activity and selectivity for electrocatalytic CO2RR to C2+ in a neutral electrolyte. Employing CuO nanoparticles coated with hexaethynylbenzene organic molecules (HEB-CuO NPs), a remarkable C2+ Faradaic efficiency of nearly 90% was achieved at an unprecedented current density of 300 mA cm-2, and a high FE (> 80%) was maintained at a wide range of current densities (100-600 mA cm-2) in neutral environments using a flow cell. Furthermore, in a membrane electrode assembly (MEA) electrolyzer, 86.14% FEC2+ was achieved at a partial current density of 387.6 mA cm-2 while maintaining continuous operation for over 50 h at a current density of 200 mA cm-2. In-situ spectroscopy studies and molecular dynamics simulations reveal that reducing the coverage of coordinated K⋅H2O water increased the probability of intermediate reactants (CO) interacting with the surface, thereby promoting efficient C-C coupling and enhancing the yield of C2+ products. This advancement offers significant potential for optimizing local micro-environments for sustainable and highly efficient C2+ production.

8.
Small ; : e2405157, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39126174

RESUMO

Electrochemical oxygen reduction reaction (ORR) and carbon dioxide reduction reaction (CO2RR) are greatly significant in renewable energy-related devices and carbon-neutral closed cycle, while the development of robust and highly efficient electrocatalysts has remained challenges. Herein, a hybrid electrocatalyst, featuring axial N-coordinated Fe single atom sites on hierarchically N, P-codoped porous carbon support and Fe nanoclusters as electron reservoir (FeNCs/FeSAs-NPC), is fabricated via in situ thermal transformation of the precursor of a supramolecular polymer initiated by intermolecular hydrogen bonds co-assembly. The FeNCs/FeSAs-NPC catalyst manifests superior oxygen reduction activity with a half-wave potential of 0.91 V in alkaline solution, as well as high CO2 to CO Faraday efficiency (FE) of surpassing 90% in a wide potential window from -0.40 to -0.85 V, along with excellent electrochemical durability. Theoretical calculations indicate that the electron reservoir effect of Fe nanoclusters can trigger the electron redistribution of the atomic Fe moieties, facilitating the activation of O2 and CO2 molecules, lowering the energy barriers for rate-determining step, and thus contributing to the accelerated ORR and CO2RR kinetics. This work offers an effective design of electron coupling catalysts that have advanced single atoms coexisting with nanoclusters for efficient ORR and CO2RR.

9.
Angew Chem Int Ed Engl ; : e202411160, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192482

RESUMO

Air contains carbon, hydrogen, oxygen, and nitrogen elements that are essential for the constitution of amino acids. Converting the air into amino acids, powered with renewable electricity, provides a green and sustainable alternative to petrochemical-based methods that produce waste and pollution. Here, taking glycine as an example, we demonstrated the complete production chain for electrorefining amino acids directly from CO2, N2, and H2O. Such a prospective scheme was composed of three modules, linked by a spontaneous C-N bond formation process. The high-purity bridging intermediates, separated from the stepwise synthesis, boosted both the carbon selectivity from CO2 to glycine of 91.7% and nitrogen selectivity from N2 to glycine of 98.7%. Under the optimum condition, we obtained glycine with a partial current density of 160.8 mA cm-2. The high-purity solid glycine product was acquired with a separation efficiency of 98.4%. This work unveils a green and sustainable method for the abiotic creation of amino acids from the air components.

10.
ACS Appl Mater Interfaces ; 16(32): 42109-42117, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39088819

RESUMO

The electrochemical CO2 reduction reaction (ECO2RR) is a promising strategy for converting CO2 into high-value chemical products. However, the synthesis of effective and stable electrocatalysts capable of transforming CO2 into a specified product remains a huge challenge. Herein, we report a template-regulated strategy for the preparation of a Bi2O3-derived nanosheet catalyst with abundant porosity to achieve the expectantly efficient CO2-to-formate conversion. The resultant porous bismuth nanosheet (p-Bi) not only exhibited marked Faradaic efficiency of formate (FEformate), beyond 91% in a broad potential range from -0.75 to -1.1 V in the H-type cell, but also demonstrated an appreciable FEformate of 94% at a high current density of 262 mA cm-2 in the commercially important gas diffusion cell. State-of-the-art X-ray absorption near edge structure spectroscopy (XANES) and theoretical calculation unraveled the distinct formate production performance of the p-Bi catalyst, which was cocontributed by its smaller size, plentiful porous structure, and stronger Bi-O bond, thus accelerating the absorption of CO2 and promoting the subsequent formation of intermediates. This work provides an avenue to fabricate bismuth-based catalysts with high planar and porous morphologies for a broad portfolio of applications.

11.
Small ; : e2405051, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092657

RESUMO

Metal-organic frameworks (MOFs)-related Cu materials are promising candidates for promoting electrochemical CO2 reduction to produce valuable chemical feedstocks. However, many MOF materials inevitable undergo reconstruction under reduction conditions; therefore, exploiting the restructuring of MOF materials is of importance for the rational design of high-performance catalyst targeting multi-carbon products (C2). Herein, a facile solvent process is choosed to fabricate HKUST-1 with an anionic framework (a-HKUST-1) and utilize it as a pre-catalyst for alkaline CO2RR. The a-HKUST-1 catalyst can be electrochemically reduced into Cu with significant structural reconstruction under operating reaction conditions. The anionic HKUST-1 derived Cu catalyst (aHD-Cu) delivers a FEC2H4 of 56% and FEC2 of ≈80% at -150 mA cm-2 in alkaline electrolyte. The resulting aHD-Cu catalyst has a high electrochemically active surface area and low coordinated sites. In situ Raman spectroscopy indicates that the aHD-Cu surface displays higher coverage of *CO intermediates, which favors the production of hydrocarbons.

12.
ChemSusChem ; : e202400493, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115016

RESUMO

Integrating anodic biomass valorization with carbon dioxide electroreduction (CO2RR) can produce value-added chemicals on both the cathode and anode; however, anodic oxidation still suffers from high overpotential. Herein, a photothermal-assisted method was developed to reduce the potential of 5-hydroxymethyl furfural (HMF) electrooxidation. Capitalizing on the copious oxygen vacancies, defective Co3O4 (D-Co3O4) exhibited a stronger photothermal effect, delivering a local temperature of 175.47 oC under near infrared light illumination. The photothermal assistance decreased the oxidation potential of HMF from 1.7 V over pristine Co3O4 to 1.37 V over D-Co3O4 to achieve a target current density of 30 mA cm-2, with 2,5-furandicarboxylic acid as the primary product. Mechanistic analysis disclosed that the photothermal effect did not change the HMF oxidation route but greatly enhanced the adsorption capacity of HMF. Meanwhile, faster electron transfer for direct HMF oxidation and the surface conversion to cobalt (oxy)hydroxide, which contributed to indirect HMF oxidation, was observed. Thus, rapid HMF conversion was realized, as evidenced by in situ surface-enhanced infrared spectroscopy. Upon coupling cathodic CO2RR with an atomically dispersed Ni-N/C catalyst, the Faradaic efficiencies of CO (cathode) and 2,5-furandicarboxylic acid (FDCA, anode) exceeded 90.0% under a low cell potential of 1.77 V.

13.
Angew Chem Int Ed Engl ; : e202411591, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136330

RESUMO

Deeply electrolytic reduction of carbon dioxide (CO2) to high-value ethylene (C2H4) is very attractive. However, the sluggish kinetics of C-C coupling seriously results in the low selectivity of CO2 electroreduction to C2H4. Herein, we report a copper-based polyhedron (Cu2) that features uniformly distributed and atomically precise bi-Cu units, which can stabilize *OCCO dipole to facilitate the C-C coupling for high selective C2H4 production. The C2H4 faradaic efficiency (FE) reaches 51% with a current density of 469.4 mA cm-2, much superior to the Cu single site catalyst (Cu SAC) (~0%). Moreover, the Cu2 catalyst has a higher turnover frequency (TOF, ~520 h-1) compared to Cu nanoparticles (~9.42 h-1) and Cu SAC (~0.87 h-1). In situ characterizations and theoretical calculations revealed that the unique Cu2 structural configuration could optimize the dipole moments and stabilize the *OCCO adsorbate to promote the generation of C2H4.

14.
Angew Chem Int Ed Engl ; 63(38): e202409563, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38949085

RESUMO

Regulating the binding effect between the surface of an electrode material and reaction intermediates is essential in highly efficient CO2 electro-reduction to produce high-value multicarbon (C2+) compounds. Theoretical study reveals that lattice tensile strain in single-component Cu catalysts can reduce the dipole-dipole repulsion between *CO intermediates and promotes *OH adsorption, and the high *CO and *OH coverage decreases the energy barrier for C-C coupling. In this work, Cu catalysts with varying lattice tensile strain were fabricated by electro-reducing CuO precursors with different crystallinity, without adding any extra components. The as-prepared single-component Cu catalysts were used for CO2 electro-reduction, and it is discovered that the lattice tensile strain in Cu could enhance the Faradaic efficiency (FE) of C2+ products effectively. Especially, the as-prepared CuTPA catalyst with high lattice tensile strain achieves a FEC2+ of 90.9 % at -1.25 V vs. RHE with a partial current density of 486.1 mA cm-2.

15.
Sci Bull (Beijing) ; 69(18): 2881-2891, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38987090

RESUMO

Elastic strain in Cu catalysts enhances their selectivity for the electrochemical CO2 reduction reaction (eCO2RR), particularly toward the formation of multicarbon (C2+) products. However, the reasons for this selectivity and the effect of catalyst precursors have not yet been clarified. Hence, we employed a redox strategy to induce strain on the surface of Cu nanocrystals. Oxidative transformation was employed to convert Cu nanocrystals to CuxO nanocrystals; these were subsequently electrochemically reduced to form Cu catalysts, while maintaining their compressive strain. Using a flow cell configuration, a current density of 1 A/cm2 and Faradaic efficiency exceeding 80% were realized for the C2+ products. The selectivity ratio of C2+/C1 was also remarkable at 9.9, surpassing that observed for the Cu catalyst under tensile strain by approximately 7.6 times. In-situ Raman and infrared spectroscopy revealed a decrease in the coverage of K+ ion-hydrated water (K·H2O) on the compressively strained Cu catalysts, consistent with molecular dynamics simulations and density functional theory calculations. Finite element method simulations confirmed that reducing the coverage of coordinated K·H2O water increased the probability of intermediate reactants interacting with the surface, thereby promoting efficient C-C coupling and enhancing the yield of C2+ products. These findings provide valuable insights into targeted design strategies for Cu catalysts used in the eCO2RR.

16.
ACS Appl Mater Interfaces ; 16(28): 36453-36461, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38950003

RESUMO

Methanol is a valuable liquid C1 product in CO2 electroreduction (CO2ER); however, it is hard to achieve high selectivity and a large current density simultaneously. In this work, we construct Mn2+-doped VS2 multilayer nanowafers applied in a flow cell to yield methanol as a single liquid product to tackle this challenge. Mn doping adjusts the electronic structure of VS2 and concurrently introduces sulfur vacancies, forming a critical *COB intermediate and facilitating its sequential hydrogenation to methanol. The optimal Mn4.8%-VS2 exhibits methanol Faradic efficiencies of more than 60% over a wide potential range of -0.4 to -0.8 V in a flow cell, of which the maximal value is 72.5 ± 1.1% at -0.6 V along with a partial current density of 74.3 ± 1.1 mA cm-2. This work opens an avenue to rationally design catalysts for engineering C1 intermediates toward CO2ER to a single liquid methanol in a flow cell.

17.
Angew Chem Int Ed Engl ; : e202406030, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020457

RESUMO

Single Fe sites have been explored as promising catalysts for the CO2 reduction reaction to value-added CO. Herein, we introduce a novel molten salt synthesis strategy for developing axial nitrogen-coordinated Fe-N5 sites on ultrathin defect-rich carbon nanosheets, aiming to modulate the reaction pathway precisely. This distinctive architecture weakens the spin polarization at the Fe sites, promoting a dynamic equilibrium of activated intermediates and facilitating the balance between *COOH formation and *CO desorption at the active Fe site. Notably, the synthesized FeN5, supported on defect-rich in nitrogen-doped carbon (FeN5@DNC), exhibits superior performance in CO2RR, achieving a Faraday efficiency of 99% for CO production (-0.4 V vs. RHE) in an H-cell, and maintaining a Faraday efficiency of 98% at a current density of 270 mA cm-2 (-1.0 V vs. RHE) in the flow cell. Furthermore, the FeN5@DNC catalyst is assembled as a reversible Zn-CO2 battery with a cycle durability of 24 hours. In-situ IR spectroscopy and density functional theory (DFT) calculations reveal that the axial N coordination traction induces a transformation in the crystal field and local symmetry, therefore weakening the spin polarization of the central Fe atom and lowering the energy barrier for *CO desorption.

18.
Angew Chem Int Ed Engl ; : e202407612, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007237

RESUMO

The synthesis of multicarbon (C2+) products remains a substantial challenge in sustainable CO2 electroreduction owing to the need for sufficient current density and faradaic efficiency alongside carbon efficiency. Herein, we demonstrate ampere-level high-efficiency CO2 electroreduction to C2+ products in both neutral and strongly acidic (pH = 1) electrolytes using a hierarchical Cu hollow-fiber penetration electrode (HPE). High concentration of K+ could concurrently suppress hydrogen evolution reaction and facilitate C-C coupling, thereby promoting C2+ production in strong acid. By optimizing the K+ and H+ concentration and CO2 flow rate, a faradaic efficiency of 84.5% and a partial current density as high as 3.1 A cm-2 for C2+ products, alongside a single-pass carbon efficiency of 81.5% and stable electrolysis for 240 h were demonstrated in a strong acidic solution of H2SO4 and KCl (pH = 1). Experimental measurements and density functional theory simulations suggested that tensile-strained Cu HPE enhances the asymmetric C-C coupling to steer the selectivity and activity of C2+ products.

19.
ChemSusChem ; : e202400093, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979694

RESUMO

Electrochemical CO2 reduction to value-added chemicals by renewable energy sources is a promising way to implement the artificial carbon cycle. During the reaction, especially at high current densities for practical applications, the complex interaction between the key intermediates and the active sites would affect the selectivity, while the reconfiguration of electrocatalysts could restrict the stability. This paper describes the fabrication of Ag/C catalysts with a well-engineered interfacial structure, in which Ag nanoparticles are partially encapsulated by C supports. The obtained electrocatalyst exhibits CO Faradaic efficiencies (FEs) of over 90 % at current densities even as high as 1.1 A/cm2. The strong interfacial interaction between Ag and C leads to highly localized electron density that promotes the rate-determining electron transfer step by enhancing the adsorption and the stabilization of the key *COO- intermediate. In addition, the partially encapsulated structure prevents the reconfiguration of Ag during the reaction. Stable performance for over 600 h at 500 mA/cm2 is achieved with CO FE maintaining over 95 %, which is among the best stability with such a high selectivity and current density. This work provides a novel catalyst design showing the potential for the practical application of electrochemical reduction of CO2.

20.
Nano Lett ; 24(30): 9345-9352, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39011983

RESUMO

The electrochemical CO2 reduction reaction (eCO2RR) to multicarbon chemicals provides a promising avenue for storing renewable energy. Herein, we synthesized small Cu nanoparticles featuring enriched tiny grain boundaries (RGBs-Cu) through spatial confinement and in situ electroreduction. In-situ spectroscopy and theoretical calculations demonstrate that small-sized Cu grain boundaries significantly enhance the adsorption of the *CO intermediate, owing to the presence of abundant low-coordinated and disordered atoms. Furthermore, these grain boundaries, generated in situ under high current conditions, exhibit excellent stability during the eCO2RR process, thereby creating a stable *CO-rich microenvironment. This high local *CO concentration around the catalyst surface can reduce the energy barrier for C-C coupling and significantly increase the Faradaic efficiency (FE) for multicarbon products across both neutral and alkaline electrolytes. Specifically, the developed RGBs-Cu electrocatalyst achieved a peak FE of 77.3% for multicarbon products and maintained more than 134 h stability at a constant current density of -500 mA cm-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA