Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Biochem Biophys Res Commun ; 719: 150096, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38749091

RESUMO

Protein S-nitrosylation, which is defined by the covalent attachment of nitric oxide (NO) to the thiol group of cysteine residues, is known to play critical roles in plant development and stress responses. NO promotes seedling photomorphogenesis and NO emission is enhanced by light. However, the function of protein S-nitrosylation in plant photomorphogenesis is largely unknown. E3 ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and transcription factor ELONGATED HYPOCOTYL 5 (HY5) antagonistically regulate seedling photomorphogenesis. COP1 inhibits plant photomorphogenesis by targeting photomorphogenic promoters like HY5 for 26S proteasome degradation. Here, we report that COP1 is S-nitrosylated in vitro. Mass spectrometry analyses revealed that two evolutionarily well conserved residues, cysteine 425 and cysteine 607, in the WD40 domain of COP1 are S-nitrosylated. S-nitrosylated glutathione (GSNO) is an important physiological NO donor for protein S-nitrosylation. The Arabidopsis (Arabidopsis thaliana) gsnor1-3 mutant, which accumulates higher level of GSNO, accumulated higher HY5 levels than wildtype (WT), indicating that COP1 activity is inhibited. Protein S-nitrosylation can be reversed by Thioredoxin-h5 (TRXh5) in plants. Indeed, COP1 interacts directly with TRXh5 and its close homolog TRXh3. Moreover, catalase 3 (CAT3) acts as a transnitrosylase that transfers NO to its target proteins like GSNO reductase (GSNOR). We found that CAT3 interacts with COP1 in plants. Taken together, our data indicate that the activity of COP1 is likely inhibited by NO via S-nitrosylation to promote the accumulation of HY5 and photomorphogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição de Zíper de Leucina Básica , Óxido Nítrico , Ubiquitina-Proteína Ligases , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Óxido Nítrico/metabolismo , Luz , Cisteína/metabolismo , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/genética , Aldeído Oxirredutases/metabolismo , Aldeído Oxirredutases/genética , Regulação da Expressão Gênica de Plantas
2.
J Exp Bot ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683181

RESUMO

COP1 (CONSTITUTIVE PHOTOMORPHOGENIC1), a repressor of seedling photomorphogenesis, is tightly controlled by light. In Arabidopsis, COP1 primarily acts as a part of large E3 ligase complexes and targets key light-signaling factors for ubiquitination and degradation. Upon light perception, the action of COP1 is precisely modulated by active photoreceptors. During seedling development, light plays a predominant role in modulating seedling morphogenesis, including inhibition of hypocotyl elongation, cotyledon opening and expansion, and chloroplast development. These visible morphological changes evidently are resulted from networks of molecular action. In this review, we summarize the current knowledge about the molecular role of COP1 in mediating light-controlled seedling development.

3.
J Exp Bot ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38660968

RESUMO

The exogenous light cues and the phytohormone Abscisic acid (ABA) regulate several aspects of plant growth and development. In recent years, the role of the crosstalk between the light and ABA signaling pathways in regulating different physiological processes has become increasingly evident. This includes the regulation of germination and early seedling development, control of stomatal development and conductance, growth and development of roots, buds, branches, and regulation of flowering. Light and ABA signaling cascades have various convergence points at both DNA and protein levels. The molecular crosstalk involves several light signaling factors like HY5, COP1, PIFs and BBXs that integrate with ABA signaling components like the PYL receptors and ABI5. Especially, ABI5 and PIF4 promoters serve as key "hotspots" for the integration of these two pathways. Plants acquired both light and ABA signaling pathways before they colonized land almost 500 million years ago. In this review, we discuss the recent advances in the interplay of light and ABA signaling regulating plant development and provide an overview of the evolution of these two pathways.

4.
Biochem Biophys Res Commun ; 706: 149764, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38484569

RESUMO

Recent studies propose that primary transcripts of miRNAs (pri-miRNAs) contain small Open Reading Frames (ORFs) capable of encoding miRNA-encoded peptides (miPEPs). These miPEPs can function as transcriptional regulators for their corresponding pri-miRNAs, ultimately enhancing mature miRNA accumulation. Notably, pri-miR408 encodes the functional peptide miPEP408, regulating expression of miR408 and its target genes, providing plant tolerance to stresses. While miPEPs are crucial regulators, the factors governing them are have not been studied in detail. Here, we explored the light-dependent regulation of miPEP408 in Arabidopsis. Expression analysis during dark-light transitions revealed light-induced transcription and accumulation of the miPEP408. As the promoter of miR408 contains cis-acting elements responsible for binding to the bZIP-type transcription factor ELONGATED HYPOCOTYL5 (HY5), known for light-mediated regulation in plants, we studied its involvement in the regulation of miR408. Analysis of HY5 mutant (hy5-215), complemented line (HY5OX/hy5), and CONSTITUTIVE PHOTOMORPHOGENIC 1 mutant (cop1-4) plants supported HY5's positive regulation of miPEP408. Grafting and GUS assays further suggested the role of HY5 as a shoot-root mobile signal inducing light-dependent miPEP408 expression. This study underscores the regulatory impact of light on small peptides, exemplified by miPEP408, mediated by the key transcription factor HY5.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica de Plantas
5.
J Biol Chem ; 300(4): 107135, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447796

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric pathogen of the coronavirus family and caused severe economic losses to the global swine industry. Previous studies have established that p53 is a host restriction factor for PEDV infection, and p53 degradation occurs in PEDV-infected cells. However, the underlying molecular mechanisms through which PEDV viral proteins regulate p53 degradation remain unclear. In this study, we found that PEDV infection or expression of the nucleocapsid protein downregulates p53 through a post-translational mechanism: increasing the ubiquitination of p53 and preventing its nuclear translocation. We also show that the PEDV N protein functions by recruiting the E3 ubiquitin ligase COP1 and suppressing COP1 self-ubiquitination and protein degradation, thereby augmenting COP1-mediated degradation of p53. Additionally, COP1 knockdown compromises N-mediated p53 degradation. Functional mapping using truncation analysis showed that the N-terminal domains of N protein were responsible for interacting with COP1 and critical for COP1 stability and p53 degradation. The results presented here suggest the COP1-dependent mechanism for PEDV N protein to abolish p53 activity. This study significantly increases our understanding of PEDV in antagonizing the host antiviral factor p53 and will help initiate novel antiviral strategies against PEDV.


Assuntos
Proteínas do Nucleocapsídeo , Vírus da Diarreia Epidêmica Suína , Proteólise , Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Vírus da Diarreia Epidêmica Suína/metabolismo , Animais , Humanos , Proteínas do Nucleocapsídeo/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Chlorocebus aethiops , Células HEK293 , Suínos , Células Vero
6.
J Exp Bot ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38525857

RESUMO

The photoreceptor UVR8 mediates many plant responses to UV-B and short wavelength UV-A light. UVR8 functions through interactions with other proteins which lead to extensive changes in gene expression. Interactions with particular proteins determine the nature of the response to UV-B. It is therefore important to understand the molecular basis of these interactions: how are different proteins able to bind to UVR8 and how is differential binding regulated? This concise review highlights recent developments in addressing these questions. Key advances are discussed with regard to: identification of proteins that interact with UVR8; the mechanism of UVR8 accumulation in the nucleus; the photoactivation of UVR8 monomer; the structural basis of interaction between UVR8 and CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and REPRESSOR OF UV-B PHOTOMORPHOGENESIS (RUP) proteins; the role of UVR8 phosphorylation in modulating interactions and responses to UV-B. Nevertheless, much remains to be understood and the need to extend future research to the growing list of interactors is emphasised.

7.
Plant Cell Environ ; 47(5): 1877-1894, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38343027

RESUMO

ETHYLENE RESPONSE FACTOR 1 (ERF1) plays an important role in integrating hormone crosstalk and stress responses. Previous studies have shown that ERF1 is unstable in the dark and its degradation is mediated by UBIQUITIN-CONJUGATING ENZYME 18. However, whether there are other enzymes regulating ERF1's stability remains unclear. Here, we use various in vitro and in vivo biochemical, genetic and stress-tolerance tests to demonstrate that both CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and SUMO-CONJUGATING ENZYME 1 (SCE1) regulate the stability of ERF1. We also performed transcriptomic analyses to understand their common regulatory pathways. We show that COP1 mediates ERF1 ubiquitination in the dark while SCE1 mediates ERF1 sumoylation in the light. ERF1 stability is positively regulated by SCE1 and negatively regulated by COP1. Upon abiotic stress, SCE1 plays a positive role in stress defence by regulating the expression of ERF1's downstream stress-responsive genes, whereas COP1 plays a negative role in stress response. Moreover, ERF1 also promotes photomorphogenesis and the expression of light-responsive genes. Our study reveals the molecular mechanism of how COP1 and SCE1 counteract to regulate ERF1's stability and light-stress signalling crosstalk.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Fotoperíodo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(6): e2317408121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285953

RESUMO

Light plays a central role in plant growth and development, providing an energy source and governing various aspects of plant morphology. Previous study showed that many polyadenylated full-length RNA molecules within the nucleus contain unspliced introns (post-transcriptionally spliced introns, PTS introns), which may play a role in rapidly responding to changes in environmental signals. However, the mechanism underlying post-transcriptional regulation during initial light exposure of young, etiolated seedlings remains elusive. In this study, we used FLEP-seq2, a Nanopore-based sequencing technique, to analyze nuclear RNAs in Arabidopsis (Arabidopsis thaliana) seedlings under different light conditions and found numerous light-responsive PTS introns. We also used single-nucleus RNA sequencing (snRNA-seq) to profile transcripts in single nucleus and investigate the distribution of light-responsive PTS introns across distinct cell types. We established that light-induced PTS introns are predominant in mesophyll cells during seedling de-etiolation following exposure of etiolated seedlings to light. We further demonstrated the involvement of the splicing-related factor A. thaliana PROTEIN ARGININE METHYLTRANSFERASE 5 (AtPRMT5), working in concert with the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a critical repressor of light signaling pathways. We showed that these two proteins orchestrate light-induced PTS events in mesophyll cells and facilitate chloroplast development, photosynthesis, and morphogenesis in response to ever-changing light conditions. These findings provide crucial insights into the intricate mechanisms underlying plant acclimation to light at the cell-type level.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteína-Arginina N-Metiltransferases , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Plântula/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Luz
9.
Mamm Genome ; 35(1): 56-67, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37980295

RESUMO

CCAAT/enhancer-binding protein beta (CEBPB) has been associated with sepsis. However, its role in sepsis-induced myocardial injury (SIMI) remains ill-defined. This research was designed to illustrate the involvement of CEBPB in SIMI and its upstream modifier. The transcriptomic changes in heart biopsies of mice that had undergone polymicrobial sepsis were downloaded from the GEO dataset for KEGG enrichment analysis. CEBPB, on the TNF signaling pathway, was significantly enhanced in the myocardial tissues of mice with SIMI. Downregulation of CEBPB alleviated SIMI, as evidenced by minor myocardial injury and inflammatory manifestations. Moreover, ubiquitination modification of CEBPB by constitutive photomorphogenesis protein 1 homolog (COP1) led to the degradation of CEBPB and inhibited inflammatory responses in macrophages. Upregulation of COP1 protected against SIMI in mice overexpressing CEBPB. Collectively, our findings demonstrated that COP1 protected the heart against SIMI through the ubiquitination modification of CEBPB, which might be a novel therapeutic approach in the future.


Assuntos
Proteínas de Arabidopsis , Sepse , Camundongos , Animais , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Macrófagos/metabolismo , Sepse/complicações , Sepse/genética
10.
Exp Hematol Oncol ; 12(1): 77, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679762

RESUMO

BACKGROUND: UTX (encoded by KDM6A), a histone demethylase for H3K27me2/3, is frequently mutated in human cancers. However, its functional and regulatory mechanisms in colorectal cancer (CRC) remain unclear. METHODS: Immunohistochemistry staining was used to investigate the clinical relevance of UTX in CRC. Additionally, we generated a spontaneous mouse CRC model with conditional Utx knockout to explore the role of UTX in the colorectal tumorigenesis. Post-translational regulation of UTX was determined by co-immunoprecipitation and immunoblot analyses. RESULTS: Herein, we identify that downregulation of UTX, mediated by the Cullin 4B-DNA Damage Binding Protein-1-Constitutive Photomorphogenesis Protein 1 (CUL4B-DDB1-COP1) complex, promotes CRC progression. Utx deletion in intestinal epithelial cells enhanced the susceptibility to tumorigenesis in AOM/DSS-induced spontaneous mouse CRC model. However, this effect is primarily alleviated by GSK126, an inhibitor of histone methyltransferase EZH2. Mechanistically, EMP1 and AUTS2 are identified as putative UTX target genes mediating UTX functions in limiting intestinal tumorigenesis. Notably, the CUL4B-DDB1-COP1 complex is identified as the functional E3 ligase responsible for targeting UTX for degradation in CRC cells. Thus, Cop1 deficiency in mouse intestinal tissue results in UTX accumulation and restricts tumorigenesis. Furthermore, patient cohort analysis reveals that UTX expression is negatively correlated with clinical stage, favorable disease outcomes, and COP1 expression. CONCLUSIONS: In the current study, the tumor suppressor function and regulation of UTX in CRC provide a molecular basis and the rationale to target EZH2 in UTX-deficient CRC.

11.
New Phytol ; 240(6): 2191-2196, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37715490

RESUMO

Leaves are the main photosynthetic organs in plants, and their anatomy is optimized for light interception and gas exchange. Although each species has a characteristic leaf anatomy, which depends on the genotype, leaves also show a large degree of developmental plasticity. Light and temperature regulate leaf development from primordia differentiation to late stages of blade expansion. While the molecular mechanisms of light and temperature signaling have been mostly studied in seedlings, in the latest years, research has focused on leaf development. Here, I will describe the latest work carried out in the environmental regulation of Arabidopsis leaf development, comparing signaling mechanisms between leaves and seedlings, highlighting the new discoveries, and pointing out the most exciting open questions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Temperatura , Folhas de Planta/fisiologia , Plântula , Morfogênese , Regulação da Expressão Gênica de Plantas
12.
Mol Cell ; 83(13): 2316-2331.e7, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37390815

RESUMO

The diabetes-cancer association remains underexplained. Here, we describe a glucose-signaling axis that reinforces glucose uptake and glycolysis to consolidate the Warburg effect and overcome tumor suppression. Specifically, glucose-dependent CK2 O-GlcNAcylation impedes its phosphorylation of CSN2, a modification required for the deneddylase CSN to sequester Cullin RING ligase 4 (CRL4). Glucose, therefore, elicits CSN-CRL4 dissociation to assemble the CRL4COP1 E3 ligase, which targets p53 to derepress glycolytic enzymes. A genetic or pharmacologic disruption of the O-GlcNAc-CK2-CSN2-CRL4COP1 axis abrogates glucose-induced p53 degradation and cancer cell proliferation. Diet-induced overnutrition upregulates the CRL4COP1-p53 axis to promote PyMT-induced mammary tumorigenesis in wild type but not in mammary-gland-specific p53 knockout mice. These effects of overnutrition are reversed by P28, an investigational peptide inhibitor of COP1-p53 interaction. Thus, glycometabolism self-amplifies via a glucose-induced post-translational modification cascade culminating in CRL4COP1-mediated p53 degradation. Such mutation-independent p53 checkpoint bypass may represent the carcinogenic origin and targetable vulnerability of hyperglycemia-driven cancer.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Glucose , Ubiquitina-Proteína Ligases/metabolismo , Carcinogênese/genética , Transformação Celular Neoplásica/genética
13.
Food Chem ; 425: 136465, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276671

RESUMO

Interest in colored rice has been increasing due to its health benefits. This study examined the metabolite profiling of CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) mutated rice seed (yel-mutant). The wild-type (WT) and the yel-mutant having yellow (y)- and purple (p)-pericarp variants from Chucheong (cc) and Samkwang (sk) cultivars were investigated for differences in bioactive metabolite profiles and free radical scavenging activity. The total fatty acid content decreased by >50% in the yel-mutant against the WT, while no significant difference was observed between yellow- and purple-pericarp variants (p < 0.05). The yel-mutant of both cultivars showed significantly higher flavone contents than their WT (non-detected). Most of the metabolites examined were highly produced in the yel-cc-p and the yel-sk-y than in the other phenotypic variants studied. This study provides further useful information for colored rice breeding by revealing the detailed biofunctional metabolic profile under COP1 mutation in colored rice.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Melhoramento Vegetal , Sementes/genética , Sementes/metabolismo , Radicais Livres/metabolismo
14.
Front Plant Sci ; 14: 1144273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360713

RESUMO

Anthocyanins have important physiological functions and are beneficial to the improvement of fruit quality in strawberry. Light is important for anthocyanin biosynthesis, and specific light quality was identified to promote anthocyanin accumulation in many fruits. However, research on the molecular mechanisms of anthocyanin accumulation regulated by light quality in strawberry remains limited. Here we described the effects of red- and blue-light irradiation on anthocyanin accumulation in strawberry. The results showed that blue light, rather than red light, could lead to the rapid accumulation of anthocyanins after exposure to light for 48 hours. The transcriptional levels of anthocyanin structural and regulatory genes displayed similar trend to the anthocyanin content. To investigate the mechanism of blue light-induced anthocyanin accumulation, the homologs of Arabidopsis blue light signal transduction components, including the blue light photoreceptor FaCRY1, an E3 ubiquitin ligase FaCOP1 and light-responsive factor FaHY5, were cloned from the strawberry cultivar 'Benihoppe'. The protein-protein interaction of FaCRY1-FaCOP1-FaHY5 was revealed by yeast two-hybrid and fluorescence signal assays. Functional complementation analysis showed that overexpression of either FaCOP1 or FaHY5 restored the anthocyanin content and hypocotyl length in corresponding Arabidopsis mutants under blue light. Moreover, dual-luciferase assays showed that FaHY5 could increase the activity of FaRAP (anthocyanin transport gene) promoter and that this function relied on other, likely B-box protein FaBBX22, factors. The overexpression of FaHY5-VP16 (chimeric activator form of FaHY5) and FaBBX22 promoted the accumulation of anthocyanins in transgenic strawberry plants. Further, transcriptomic profiling indicated that the genes involved in the phenylpropanoid biosynthesis pathway were enriched in both FaHY5-VP16-OX and FaBBX22-OX strawberry plants. In summary, our findings provide insights into a mechanism involving the regulation of blue light-induced anthocyanin accumulation via a FaCRY1-FaCOP1-FaHY5 signal transduction module in strawberry.

15.
Neurol Res ; 45(9): 858-866, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37356109

RESUMO

OBJECTIVE: Glioma is a heterogeneous group of brain tumors that remains largely incurable. Constitutive photomorphogenic 1 (COP1) acts as an E3 ligase for tumor regulation. This study explored the mechanism of COP1 in glioma cell proliferation, invasion, and migration. METHODS: COP1 and discs large homolog 3 (DLG3) expressions in glioma cells were determined using RT-qPCR or Western blotting, followed by transfection of si-COP1 or si-DLG3 into LN229 cells. Glioma cell proliferation, invasion, and migration were measured using CCK-8, EdU staining, and Transwell assays. The binding of COP1 and DLG3 was verified using co-immunoprecipitation. The ubiquitination level of DLG3 protein was tested after MG132 treatment. Functional rescue experiments were performed to validate the role of DLG3 in the regulation of glioma cells by COP1. RESULTS: COP1 was highly expressed in glioma cells. COP1 silencing repressed glioma cell proliferation, invasion, and migration. COP1 bound to DLG3 protein and enhanced the ubiquitination of DLG3. DLG3 silencing reversed the inhibitory effect of COP1 silencing on glioma cell proliferation, invasion, and migration. CONCLUSION: COP1 facilitated the proliferation, invasion, and migration of glioma cells by ubiquitination of DLG3 protein.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Ubiquitinação , Glioma/patologia , Ubiquitina-Proteína Ligases/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo
16.
Food Chem (Oxf) ; 6: 100161, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36691663

RESUMO

In the present study, l-tryptophan was applied in combination with blue light to modulate carotenoid biosynthesis in maize sprouts. The profiles of carotenoids, chlorophylls, and relative genes in carotenoid biosynthesis and light signaling pathways were studied. l-tryptophan and blue light both promoted the accumulation of carotenoids, and their combination further increased carotenoid content by 120%. l-tryptophan exerted auxin-like effects and stimulated PSY expression in blue light exposure maize sprouts, resulting in increased α- and ß- carotenes. l-tryptophan could also play a photoprotective role through the xanthophyll cycle under blue light. In addition, CRY in the light signaling pathway was critical for carotenoid biosynthesis. These findings provide new insights into the regulation of carotenoid biosynthesis and l-tryptophan could be used in conjunction with blue light to fortify carotenoids in maize sprouts.

17.
Plant Sci ; 328: 111578, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36608875

RESUMO

Chlorophyll metabolism and chloroplast biogenesis in tomato (Solanum lycopersicum) leaves contribute to photosynthesis; however, their molecular mechanisms are poorly understood. In this study, we found that overexpression of SlERF.J2 (ethylene transcription factor) resulted in a decrease in leaf chlorophyll content and reduced accumulation of starch and soluble sugar. The slerf.j2 knockout mutant showed no apparent change. Further observation of tissue sections and transmission electron microscopy (TEM) showed that SlERF.J2 was involved in chlorophyll accumulation and chloroplast formation. RNA-seq of mature SlERF.J2-OE leaves showed that many genes involved in chlorophyll biosynthesis and chloroplast formation were significantly downregulated compared with those in WT leaves. Genome global scanning of the ERF TF binding site combined with RNA-seq differential gene expression and qRT-PCR detection analysis showed that COP1 was a potential target gene of SlERF.J2. Tobacco transient expression technology, a dual-luciferase reporter system and Y1H technology were employed to verify that SlERF.J2 could bind to the COP1 promoter. Notably, overexpression of SlERF.J2 in Nr mutants resulted in impaired chloroplast biogenesis and development. Taken together, our findings demonstrated that SlERF.J2 plays an essential role in chlorophyll accumulation and chloroplast formation, laying a foundation for enhancing plant photosynthesis.


Assuntos
Clorofila , Solanum lycopersicum , Clorofila/metabolismo , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloroplastos/metabolismo , Fotossíntese/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
18.
Plant J ; 114(1): 159-175, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36710658

RESUMO

The Arabidopsis COP1/SPA ubiquitin ligase suppresses photomorphogenesis in darkness. In the light, photoreceptors inactivate COP1/SPA to allow a light response. While SPA genes are specific to the green lineage, COP1 also exists in humans. This raises the question of when in evolution plant COP1 acquired the need for SPA accessory proteins. We addressed this question by generating Physcomitrium Ppcop1 mutants and comparing their visible and molecular phenotypes with those of Physcomitrium Ppspa mutants. The phenotype of Ppcop1 nonuple mutants resembles that of Ppspa mutants. Most importantly, both mutants produce green chloroplasts in complete darkness. They also exhibit dwarfed gametophores, disturbed branching of protonemata and absent gravitropism. RNA-sequencing analysis indicates that both mutants undergo weak constitutive light signaling in darkness. PpCOP1 and PpSPA proteins form a complex and they interact via their WD repeat domains with the VP motif of the cryptochrome CCE domain in a blue light-dependent manner. This resembles the interaction of Arabidopsis SPA proteins with Arabidopsis CRY1, and is different from that with Arabidopsis CRY2. Taken together, the data indicate that PpCOP1 and PpSPA act together to regulate growth and development of Physcomitrium. However, in contrast to their Arabidopsis orthologs, PpCOP1 and PpSPA proteins execute only partial suppression of light signaling in darkness. Hence, additional repressors may exist that contribute to the repression of a light response in dark-exposed Physcomitrium.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Bryopsida , Humanos , Arabidopsis/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Proteínas de Arabidopsis/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Transdução de Sinal Luminoso/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Regulação da Expressão Gênica de Plantas
19.
Plant Commun ; 4(1): 100428, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36065466

RESUMO

The plant UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8) exists as a homodimer in its inactive ground state. Upon UV-B exposure, UVR8 monomerizes and interacts with a downstream key regulator, the CONSTITUTIVE PHOTOMORPHOGENIC 1/SUPPRESSOR OF PHYA (COP1/SPA) E3 ubiquitin ligase complex, to initiate UV-B signaling. Two WD40 proteins, REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and RUP2 directly interact with monomeric UVR8 and facilitate UVR8 ground state reversion, completing the UVR8 photocycle. Here, we reconstituted the RUP-mediated UVR8 redimerization process in vitro and reported the structure of the RUP2-UVR8W285A complex (2.0 Å). RUP2 and UVR8W285A formed a heterodimer via two distinct interfaces, designated Interface 1 and 2. The previously characterized Interface 1 is found between the RUP2 WD40 domain and the UVR8 C27 subregion. The newly identified Interface 2 is formed through interactions between the RUP2 WD40 domain and the UVR8 core domain. Disruption of Interface 2 impaired UV-B induced photomorphogenic development in Arabidopsis thaliana. Further biochemical analysis indicated that both interfaces are important for RUP2-UVR8 interactions and RUP2-mediated facilitation of UVR8 redimerization. Our findings suggest that the two-interface-interaction mode is adopted by both RUP2 and COP1 when they interact with UVR8, marking a step forward in understanding the molecular basis that underpins the interactions between UVR8 and its photocycle regulators.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Cromossômicas não Histona , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Transdução de Sinais , Raios Ultravioleta
20.
New Phytol ; 237(6): 2238-2254, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36513604

RESUMO

Submergence is an abiotic stress that limits agricultural production world-wide. Plants sense oxygen levels during submergence and postsubmergence reoxygenation and modulate their responses. Increasing evidence suggests that completely submerged plants are often exposed to low-light stress, owing to the depth and turbidity of the surrounding water; however, how light availability affects submergence tolerance remains largely unknown. Here, we showed that Arabidopsis thaliana MYB DOMAIN PROTEIN30 (MYB30) is an important transcription factor that integrates light signaling and postsubmergence stress responses. MYB DOMAIN PROTEIN30 protein abundance decreased upon submergence and accumulated during reoxygenation. Under submergence conditions, CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), a central regulator of light signaling, caused the ubiquitination and degradation of MYB30. In response to desubmergence, however, light-induced MYB30 interacted with MYC2, a master transcription factor involved in jasmonate signaling, and activated the expression of the VITAMIN C DEFECTIVE1 (VTC1) and GLUTATHIONE SYNTHETASE1 (GSH1) gene families to enhance antioxidant biosynthesis. Consistent with this, the myb30 knockout mutant showed increased sensitivity to submergence, which was partially rescued by overexpression of VTC1 or GSH1. Thus, our findings uncover the mechanism by which the COP1-MYB30 module integrates light signals with cellular oxidative homeostasis to coordinate plant responses to postsubmergence stress.


Assuntos
Arabidopsis , Estresse Fisiológico , Fatores de Transcrição , Antioxidantes/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Ascórbico , Regulação da Expressão Gênica de Plantas , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Fenômenos Fisiológicos Vegetais , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA