Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Physiol Genomics ; 56(4): 327-342, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38314698

RESUMO

This study investigated the interaction between genetic differences in stress reactivity/coping and environmental challenges, such as acute stress during adolescence on adult contextual fear memory and anxiety-like behaviors. Fischer 344 (F344) and the inbred F344;WKY-Stresp3/Eer congenic strain (congenic), in which chromosomal regions from the Wistar-Kyoto (WKY) strain were introgressed into the F344 background, were exposed to a modified forced swim test during adolescence, while controls were undisturbed. In adulthood, fear learning and memory, assessed by contextual fear conditioning, were significantly greater in congenic animals compared with F344 animals, and stress during adolescence increased them even further in males of both strains. Anxiety-like behavior, measured by the open field test, was also greater in congenic than F344 animals, and stress during adolescence increased it further in both strains of adult males. Whole genome sequencing of the F344;WKY-Stresp3/Eer strain revealed an enrichment of WKY genotypes in chromosomes 9, 14, and 15. An example of functional WKY sequence variations in the congenic strain, cannabinoid receptor interacting protein 1 (Cnrip1) had a Cnrip1 transcript isoform that lacked two exons. Although the original hypothesis that the genetic predisposition to increased anxiety of the WKY donor strain would exaggerate fear memory relative to the background strain was confirmed, the consequences of adolescent stress were strain independent but sex dependent in adulthood. Molecular genomic approaches combined with genetic mapping of WKY sequence variations in chromosomes 9, 14, and 15 could aid in finding quantitative trait genes contributing to the variation in fear memory.NEW & NOTEWORTHY This study found that 1) whole genome sequencing of congenic strains should be a criterion for their recognition; 2) sequence variations between Wistar-Kyoto and Fischer 344 strains at regions of chromosomes 9, 14, and 15 contribute to differences in contextual fear memory and anxiety-like behaviors; and 3) stress during adolescence affects these behaviors in males, but not females, and is independent of strain.


Assuntos
Ansiedade , Medo , Masculino , Ratos , Animais , Ratos Endogâmicos WKY , Ratos Endogâmicos F344 , Ansiedade/genética , Cromossomos , Animais Congênicos , Proteínas de Transporte/genética
2.
Brain Res Bull ; 181: 77-86, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35093468

RESUMO

Hormone therapy (HT) has failed to improve learning and memory in postmenopausal women according to recent clinical studies; however, the reason for failure of HT in improving cognitive performance is unknown. In our research, we found cognitive flexibility was improved by 17ß-Estradiol (E2) in mice 1 week after ovariectomy (OVXST), but not in mice 3 months after ovariectomy (OVXLT). Isobaric tags for relative and absolute quantitation (iTRAQ) revealed increased cannabinoid receptor interacting protein 1 (CNRIP1) in E2-treated OVXLT mice compared with E2-treated OVXST mice. Adeno-associated virus 2/9 (AAV2/9) delivery of Cnrip1 short-hairpin small interfering RNA (Cnrip1-shRNA) rescued the impaired cognitive flexibility in E2 treated OVXLT mice. This effect is dependent on CB1 function, which could be blocked by AM251-a CB1 antagonist. Our results indicated a new method to increasing cognitive flexibility in women receiving HT by disrupting CNRIP1.


Assuntos
Antagonistas de Receptores de Canabinoides/farmacologia , Proteínas de Transporte/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Estradiol/farmacologia , Terapia de Reposição Hormonal , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Ovariectomia , Piperidinas/farmacologia , Pós-Menopausa , Pirazóis/farmacologia , RNA Interferente Pequeno , Receptor CB1 de Canabinoide/antagonistas & inibidores
3.
Cells ; 9(8)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756411

RESUMO

Cannabinoid receptor-interacting protein 1a (CRIP1a) binds to the C-terminal domain of cannabinoid 1 receptor (CB1R) and regulates CB1R activities. In this study, we made Tat-CRIP1a fusion proteins to enhance CRIP1a penetration into neurons and brain and to evaluate the function of CRIP1a in neuroprotection following oxidative stress in HT22 hippocampal cells and transient forebrain ischemia in gerbils. Purified exogenous Tat-CRIP1a was penetrated into HT22 cells in a time and concentration-dependent manner and prevented H2O2-induced reactive oxygen species formation, DNA fragmentation, and cell damage. Tat-CRIP1a fusion protein also ameliorated the reduction of 14-3-3η expression by H2O2 treatment in HT22 cells. Ischemia-reperfusion damage caused motor hyperactivity in the open field test of gerbils; however, the treatment of Tat-CRIP1a significantly reduced hyperactivity 1 day after ischemia. Four days after ischemia, the administration of Tat-CRIP1a restored the loss of pyramidal neurons and decreased reactive astrocytosis and microgliosis induced by ischemic damage in the hippocampal cornu Ammonis (CA)1 region. Ischemic damage decreased 14-3-3η expression in all hippocampal sub-regions 4 days after ischemia; however, the treatment of Tat-CRIP1 ameliorated the reduction of 14-3-3η expression. These results suggest that Tat-CRIP1a attenuates neuronal damage and hyperactivity induced by ischemic damage, and it restores normal expression levels of 14-3-3η protein in the hippocampus.


Assuntos
Proteínas 14-3-3/genética , Produtos do Gene tat/genética , Isquemia/patologia , Proteínas de Membrana/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Proteínas 14-3-3/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Dano ao DNA , Gerbillinae , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Isquemia/tratamento farmacológico , Isquemia/metabolismo , Proteínas de Membrana/administração & dosagem , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Atividade Motora/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia
4.
Arch Med Sci ; 13(6): 1281-1294, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29181058

RESUMO

INTRODUCTION: The aim of the study was to investigate the effect of CNRIP1 promoter methylation on the proliferative, invasive and migration potential of colorectal cancer cells, including its potential use for the early detection and prognostic assessment of colorectal cancer. MATERIAL AND METHODS: Quantitative methylation-specific PCR (qMSP) was used to detect the methylation status of the CNRIP1 promoter region in peripheral blood samples drawn from patients with colorectal adenocarcinoma, benign colorectal adenoma, and matched healthy controls. Putative CpG methylation sites were then pyrosequenced. We subsequently suppressed CNRIP1 methylation within colon cancer cells via treatment with 5-azacytidine and overexpressed colon cancer cells by transfection with a CNRIP1-overexpression pcDNA3.0 plasmid. Thereafter, the CNRIP1 methylation status and mRNA and protein expressions levels were determined. Finally, the proliferative, invasive and migration abilities of cell lines were determined with the CCK-8 and Transwell cell assays. RESULTS: There were differences in the methylation status at loci 2216, 2226, 2231, 2245, and 2254 within the promoter region of CNRIP1 between patients with colorectal adenocarcinoma, colorectal adenoma, and healthy volunteers. The methylation status of CpG sequence 2245 significantly correlated with tumor diameter, invasion depth, TNM stage, grade, and lymph node metastasis (p < 0.05). The proliferative, invasive and migration abilities of colon cancer cells treated with 5-azaC or transfected with a CNRIP1-overexpression plasmid were significantly impaired relative to negative controls (p < 0.05). CONCLUSIONS: The methylation status at locus 2245 within the CNRIP1 promoter region has potential value for the early detection and prognostic evaluation of colorectal cancers. Demethylation of the CNRIP1 promoter or overexpression of CNRIP1 can reduce the proliferative and migration abilities of colon cancer cells.

5.
Biochim Biophys Acta Gen Subj ; 1861(12): 3142-3153, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28935605

RESUMO

BACKGROUND: In the present study, we investigated the effects of pyridoxine on hippocampal functions and changes in protein profiles based on the proteomic approach. METHODS: Eight-week-old mice received intraperitoneal injections of physiological saline (vehicle) or 350mg/kg pyridoxine twice a day for 21days. RESULTS: Phosphoglycerate mutase 1 was up-regulated, while CB1 cannabinoid receptor-interacting protein 1 (CRIP1) was down-regulated, in the pyridoxine-treated group. Additionally, the serotonin and tyrosine hydroxylase was increased in the hippocampus of the pyridoxine-treated group than in that of the vehicle-treated group. Furthermore, discrimination indices based on the novel object recognition test were significantly higher in the pyridoxine-treated group than in the vehicle-treated group. Administration of CRIP1a siRNA significantly increases the discrimination index as well as cell proliferation and neuroblast differentiation in the dentate gyrus. In addition, the administration of rimonabant, a CB1 cannabinoid receptor antagonist, for 3weeks significantly decreased the novel object recognition memory, the tyrosine hydroxylase level, the amount of cell proliferation, and neuroblast differentiation in the dentate gyrus. Treatment with pyridoxine significantly increased novel object recognition memory, but slightly ameliorated rimonabant-induced reduction in serotonin, the tyrosine hydroxylase level, the amount of cell proliferation, and neuroblast differentiation in the dentate gyrus. CONCLUSION: These results suggest that pyridoxine promotes hippocampal functions by increasing serotonin and tyrosine hydroylase immunoreactivity in the hippocampus. This positive effect may be associated with CRIP1a and CB1 cannabinoid receptor function. GENERAL SIGNIFICANCE: Vitamin-B6 enhances hippocampal functions and this is closely associated with CRIP1a and CB1 cannabinoid receptors.


Assuntos
Proteínas de Transporte/fisiologia , Cognição/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Proteínas com Domínio LIM/fisiologia , Piridoxina/farmacologia , Receptor CB1 de Canabinoide/fisiologia , Serotonina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Hipocampo/fisiologia , Imuno-Histoquímica , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Receptor CB1 de Canabinoide/análise , Tirosina 3-Mono-Oxigenase/análise
6.
Brain Struct Funct ; 221(4): 2061-74, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-25772509

RESUMO

The cannabinoid type 1 receptor (Cnr1, CB1R) mediates a plethora of physiological functions in the central nervous system as a presynaptic modulator of neurotransmitter release. The recently identified cannabinoid receptor-interacting protein 1a (Cnrip1a, CRIP1a) binds to the C-terminal domain of CB1R, a region known to be important for receptor desensitization and internalization. Evidence that CRIP1a and CB1R interact in vivo has been reported, but the neuroanatomical distribution of CRIP1a is unknown. Moreover, while alterations of hippocampal CRIP1a levels following limbic seizures indicate a role in controlling excessive neuronal activity, the physiological function of CRIP1a in vivo has not been investigated. In this study, we analyzed the spatial distribution of CRIP1a in the hippocampus and examined CRIP1a as a potential modulator of CB1R signaling. We found that Cnrip1a mRNA is co-expressed with Cnr1 mRNA in pyramidal neurons and interneurons of the hippocampal formation. CRIP1a protein profiles were largely segregated from CB1R profiles in mossy cell terminals but not in hippocampal CA1 region. CB1R activation induced relocalization to close proximity with CRIP1a. Adeno-associated virus-mediated overexpression of CRIP1a specifically in the hippocampus revealed that CRIP1a modulates CB1R activity by enhancing cannabinoid-induced G protein activation. CRIP1a overexpression extended the depression of excitatory currents by cannabinoids in pyramidal neurons of the hippocampus and diminished the severity of chemically induced acute epileptiform seizures. Collectively, our data indicate that CRIP1a enhances hippocampal CB1R signaling in vivo.


Assuntos
Proteínas de Transporte/metabolismo , Hipocampo/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais , Animais , Proteínas de Transporte/fisiologia , Dronabinol/administração & dosagem , Dronabinol/análogos & derivados , Potenciais Pós-Sinápticos Excitadores , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Hipocampo/fisiologia , Ácido Caínico/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Piramidais/fisiologia , RNA Mensageiro/metabolismo , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/fisiologia , Convulsões/induzido quimicamente , Convulsões/fisiopatologia
7.
Neuroscience ; 310: 723-30, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26475744

RESUMO

PURPOSE: Our previous study suggested that the coiled coil domain-containing 55 gene (CCDC55), also named as NSRP1 (nuclear speckle splicing regulatory protein 1 (NSRP1)), was encompassed in a haplotype block spanning over the serotonin transporter (5-HTT) gene in patients with schizophrenia (SCZ). However, the neurobiological function of CCDC55 gene remains unknown. This study aims to uncover the potential role of CCDC55 in SCZ-associated molecular pathways. EXPERIMENTAL DESIGN: Using molecular cloning, sequencing and immune blotting to identify basic properties, yeast two-hybrid screening and glutathione S-transferase (GST) pull-down assay to test protein-protein interaction, and confocal laser scanning microscopy (CSLM) to show intracellular interaction of proteins. PRINCIPAL FINDINGS: (i) CCDC55 is expressed as a nuclear protein in human neuronal cells; (ii) Protein-protein interaction analyses showed CCDC55 physically interacted with Ran binding protein 9 (RanBP9) and disrupted in schizophrenia 1 (DISC1); (iii) CCDC55 and RanBP9 co-localized in the nucleus of human neuronal cells; (iv) CCDC55 also interacted with the cannabinoid receptor 1 (CNR1), and with the brain cannabinoid receptor-interacting protein 1a (CNRIP1a); (v) CNR1 activation in differentiated human neuronal cells resulted in an altered RanBP9 localization. CONCLUSION: CCDC55 may be involved in a functional bridging between the CNR1 activation and the DISC1/RanBP9-associated pathways.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Esquizofrenia/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/metabolismo , Células HeLa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA