Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.319
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124959, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39151401

RESUMO

A series of x%Ho3+, 5 %Tm3+, y%Yb3+:Bi2WO6 (x = 0, 0.5, 1, 3, 5; y = 0.5, 1, 3) luminescent materials was prepared using a high-temperature solid-phase method. The microstructure, up-conversion luminescence, and temperature sensing properties of the synthesized powders were analyzed. X-ray diffraction patterns revealed that doping with Ho3+, Tm3+, and Yb3+ ions at certain concentrations did not affect the orthorhombic crystal structure of the Bi2WO6 host. Scanning electron microscopy revealed that the morphology of the sample consisted of lumpy particles with a particle size range of 1-5 µm and agglomeration. SEM mapping and energy-dispersive X-ray spectroscopy analyses revealed that each element was relatively uniformly distributed on the particle surface. Under 980 nm excitation (380 mW), the strongest luminescence of the sample was obtained when both Ho3+ and Yb3+ doping concentrations were 1 %. Compared with the luminescence of the 5 %Tm3+ and 1 %Yb3+:Bi2WO6 sample, with increasing Ho3+ concentrations, the luminescence intensity of Tm3+ was first enhanced and subsequently weakened, whereas the luminescence of Ho3+ was significantly weakened, which indicates the positive energy transfer from Ho3+ â†’ Tm3+. At 980 nm (80-380 mW), for the 1 %Ho3+, 5 %Tm3+, and 1 %Yb3+:Bi2WO6 sample, the 538 nm, 545 nm, 660 nm, and 804 nm emission peaks originated from the two-photon absorption. FIR660 nm/804 nm, FIR545 nm/804 nm, and FIR538 nm/804 nm were used to characterize the temperature and corresponded to temperature sensitivities Sr of 0.0046 K-1, 0.022 K-1 and 0.024 K-1 at 573 K, respectively. At 498 K, the minimum temperature resolution δT values were 0.03384 K, 0.03203 K and 0.04373 K. When the temperature increased from 298 K to 573 K, the powder sample luminescence gradually shifted from the yellow-green region to the red region. The results of environmental discoloration and thermochromic performance tests indicate that this sample has potential application in optical anti-counterfeiting. FIR804 nm /660 nm and FIR804 nm /538 nm were obtained for the 40 NTU turbidity suspension under identical excitation conditions. At 298 K, for the 40 NTU turbidity sample, the maximum Sr values were 0.0197 K-1 and 0.0405 K-1; at 340 K, the minimum temperature resolutions δT values were 0.54037 K and 0.66237 K. When the temperature decreased from 340 K to 298 K, the luminescence of the 40 NTU suspension samples gradually shifted from the yellow region to the green region.

2.
J Environ Sci (China) ; 150: 159-176, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306393

RESUMO

Conversion and capture of carbon pollutants based on carbon dioxide to valuable green oil-field chemicals are target all over the world for controlling the global warming. The present article used new room temperature amphiphilic imidazolium ionic liquids with superior surface activity in the aqueous solutions to convert carbon dioxide gas to superior amphiphilic calcium carbonate nanoparticles. In this respect, tetra-cationic ionic liquids 2-(4-dodecyldimethylamino) phenyl)-1,3-bis (3-dodecyldimethylammnonio) propyl) bromide-1-H-imidazol-3-ium acetate and 2-(4-hexyldimethylamino) phenyl)-1,3-bis(3-hexcyldimethylammnonio) propyl) bromide-1 H-imidazol-3-ium acetate were prepared. Their chemical structures, thermal as well as their carbon dioxide absorption/ desorption characteristics were evaluated. They were used as solvent and capping agent to synthesize calcium carbonate nanoparticles with controlled crystalline lattice, sizes, thermal properties and spherical surface morphologies. The prepared calcium carbonate nanoparticles were used as additives for the commercial water based drilling mud to improve their filter lose and rheology. The data confirm that the lower concentrations of 2-(4-dodecyldimethylamino) phenyl)-1,3-bis (3-dodecyldimethylammnonio) propyl) bromide-1-H-imidazol-3-ium acetate achieved lower seawater filter lose and improved viscosities.


Assuntos
Carbonato de Cálcio , Dióxido de Carbono , Imidazóis , Líquidos Iônicos , Nanopartículas , Líquidos Iônicos/química , Carbonato de Cálcio/química , Dióxido de Carbono/química , Nanopartículas/química , Imidazóis/química
3.
J Environ Sci (China) ; 148: 283-297, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095165

RESUMO

In the quest for effective solutions to address Environ. Pollut. and meet the escalating energy demands, heterojunction photocatalysts have emerged as a captivating and versatile technology. These photocatalysts have garnered significant interest due to their wide-ranging applications, including wastewater treatment, air purification, CO2 capture, and hydrogen generation via water splitting. This technique harnesses the power of semiconductors, which are activated under light illumination, providing the necessary energy for catalytic reactions. With visible light constituting a substantial portion (46%) of the solar spectrum, the development of visible-light-driven semiconductors has become imperative. Heterojunction photocatalysts offer a promising strategy to overcome the limitations associated with activating semiconductors under visible light. In this comprehensive review, we present the recent advancements in the field of photocatalytic degradation of contaminants across diverse media, as well as the remarkable progress made in renewable energy production. Moreover, we delve into the crucial role played by various operating parameters in influencing the photocatalytic performance of heterojunction systems. Finally, we address emerging challenges and propose novel perspectives to provide valuable insights for future advancements in this dynamic research domain. By unraveling the potential of heterojunction photocatalysts, this review contributes to the broader understanding of their applications and paves the way for exciting avenues of exploration and innovation.


Assuntos
Recuperação e Remediação Ambiental , Recuperação e Remediação Ambiental/métodos , Catálise , Energia Solar , Luz Solar , Semicondutores , Energia Renovável , Processos Fotoquímicos
4.
AWWA Water Sci ; 6(3)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-39296677

RESUMO

Chloraminated drinking water systems commonly use free chlorine conversions (FCCs) to prevent or control nitrification, but unintended water quality changes may occur, including increased disinfection by-product and metal concentrations. This study evaluated water quality in a chloraminated drinking water system and residential locations before, during, and after their annual, planned FCC. Water quality alternated between relatively consistent and variable periods when switching disinfectants. During the FCC, regulated four trihalomethane and five haloacetic acid concentrations increased by four and seven times, respectively, and exceeded corresponding maximum contaminant levels. Implications of disinfection by-product sampling during an FCC were assessed, and an approach to account for increased FCC disinfection by-product concentrations was proposed. For metals, the FCC had minor impacts on distribution system concentrations and did not appear to impact residential concentrations. Overall, observed variable water quality appeared primarily associated with switching disinfectants and depended on distribution system hydraulics.

5.
Sci Total Environ ; 954: 176236, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39299341

RESUMO

The simultaneous partial nitrification, anammox and denitrification (SNAD) process had received widespread attention as an advanced wastewater treatment process. In this study, the SNAD mainstream nitrogen removal process with the incorporation of polyurethane sponge packing under different C/N conditions was investigated. Results showed that the highest nitrogen removal efficiency of the system was achieved at the C/N of 2.0, while the high C/N (3.5) significantly deteriorate the nitrogen removal efficiency. Meanwhile, high C/N (3.5) significantly inhibited the activity and abundance of anammox bacteria (mainly Candidatus_Kuenenia), resulting in the decreased contribution of anammox (from 63.14 % to 48.09 %). The significant divergence of microbial interactions in the suspended sludge and biofilm was observed with increasing C/N. Compared with suspended sludge, biofilm facilitated higher abundance and activity of anammox bacteria, and the molecular ecological network of biofilm displayed better stability and more efficient mass transfer efficiency between microorganisms. The C/N of 3.5 simplified the subnetworks of Chloroflexi and Proteobacteria but increased the positive interactions between Planctomycetota and other microbes. Anammox bacteria were found as keystone species only in biofilm system. This study provided a theoretical basis and technical guidance for the application of SNAD process in municipal wastewater treatment.

6.
J Psychosom Res ; 186: 111909, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39236646

RESUMO

OBJECTIVE: We studied gene-environment, as well as gene-gene interaction to elucidate their effects on symptom severity and predict clinical outcomes in functional neurological disorders (FND). METHODS: Eighty-five patients with mixed FND were genotyped for ten single-nucleotide polymorphisms (SNP) from seven different stress-related genes. We tested cross-sectionally the association between genotype and the symptomatology of FND (symptom severity assessed with the examiner-based clinical global impression score [CGI] and age of onset). Clinical outcome was assessed in 52 patients who participated in a follow-up clinical visit after eight months (following their individual therapies as usual). We tested longitudinally the association between genotype and clinical outcome in FND. We examined the contribution of each SNP and their interaction between them to FND symptomatology and outcome. RESULTS: We identified a nominal association between tryptophan hydroxylase 1 (TPH1) rs1800532 and symptom severity (CGI1) in FND under a codominant model (T/T: ßT/T = 2.31, seT/T = 0.57; G/T: ßG/T = -0.18, seG/T = 0.29, P = 0.035), with minor allele (T) carriers presenting more severe symptoms. An association was identified between TPH1 and clinical outcome, suggesting that major allele (G) carriers were more likely to have an improved outcome under a codominant model (G/T: ORG/T = 0.18, CIG/T = [0.02-1.34]; T/T: ORT/T = 2.08, CIT/T = [0.30-14.53], P = 0.041). Our analyses suggested a significant gene-gene interaction for TPH2 (rs4570625) and OXTR (rs2254298) on symptom severity, and a significant gene-gene interaction for TPH1, TPH2 and BDNF (rs1491850) on clinical outcome. CONCLUSION: FND might arise from a complex interplay between individual predisposing risk genes involved in the serotonergic pathway and their gene-gene interactions.


Assuntos
Doenças do Sistema Nervoso , Polimorfismo de Nucleotídeo Único , Índice de Gravidade de Doença , Triptofano Hidroxilase , Humanos , Feminino , Masculino , Triptofano Hidroxilase/genética , Adulto , Polimorfismo de Nucleotídeo Único/genética , Pessoa de Meia-Idade , Doenças do Sistema Nervoso/genética , Interação Gene-Ambiente , Estudos Transversais , Genótipo , Idoso
7.
Front Microbiol ; 15: 1413973, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39318436

RESUMO

Land conversion to agriculture is an important factor affecting soil ecological processes in the desert grasslands of northern China. However, soil fungal-community structure and function in response to Land conversion remain unclear. In this study, desert grassland, artificial shrubland, and land conversion were investigated in the western part of the Mu Us Sandland (Yanchi, Ningxia; Dingbian, Shaanxi). We found that land conversion significantly increased soil total carbon, nitrogen, and phosphorus, and available phosphorous and potassium contents. In the early stage of conversion to agricultural (April), soil fungal operational taxonomic units and abundance-based coverage estimator were lower than those of dessert grasslands and shrubland plots and had significant correlations with pH, electric conductivity, and available phosphorus and potassium. The dominant phyla strongly correlated with soil physicochemical properties. Concomitantly, the relative abundance of Glomeromycota was significantly lower, and the complexity of the network in the land conversion plots was lower than that in the shrubland plots. In the late stage of land conversion (September), soil fungal operational taxonomic units and abundance-based coverage estimator were lower in the conversion plots than in the desert grassland plots, with more complex network relationships compared to the desert grassland or shrubland plots. Symbiotrophic groups, a functional group of desert grassland soil fungi, can be used as a predictor of environmental change; in addition, land conversion decreases the relative abundance of arbuscular mycorrhizal functional groups. Our study highlights the response of soil fungal communities and functions to human disturbances in desert grasslands. Considering the potential of land conversion to agriculture to influence soil secondary salinization, there is a need for continued observation of soil ecological health over the time continuum of land conversion to agriculture.

8.
Heliyon ; 10(17): e37235, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39319129

RESUMO

Heme-containing enzymes, critical across life's domains and promising for industrial use, face stability challenges. Despite the demand for robust industrial biocatalysts, the mechanisms underlying the thermal stability of heme enzymes remain poorly understood. Addressing this, our research utilizes a 'keystone cofactor heme-interaction approach' to enhance ligand binding and improve the stability of lignin peroxidase (LiP). We engineered mutants of the white-rot fungus PcLiP (Phanerochaete chrysosporium) to increase thermal stability by 8.66 °C and extend half-life by 29 times without losing catalytic efficiency at 60 °C, where typically, wild-type enzymes degrade. Molecular dynamics simulations reveal that an interlocked cofactor moiety contributes to enhanced structural stability in LiP variants. Additionally, a stability index developed from these simulations accurately predicts stabilizing mutations in other PcLiP isozymes. Using milled wood lignin, these mutants achieved triple the conversion yields at 40 °C compared to the wild type, offering insights for more sustainable white biotechnology through improved enzyme stability.

9.
Emerg Infect Dis ; 30(10): 2118-2127, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39320164

RESUMO

Chronic wasting disease (CWD) affects cervids in North America, Asia, and Scandinavia. CWD is unique in its efficient spread, partially because of contact with infectious prions shed in secreta. To assess temporal profiles of CWD prion shedding, we collected saliva, urine, and feces from white-tailed deer for 66 months after exposure to low oral doses of CWD-positive brain tissue or saliva. We analyzed prion seeding activity by using modified amyloid amplification assays incorporating iron oxide bead extraction, which improved CWD detection and reduced false positives. CWD prions were detected in feces, urine, and saliva as early as 6 months postinfection. More frequent and consistent shedding was observed in deer homozygous for glycine at prion protein gene codon 96 than in deer expressing alternate genotypes. Our findings demonstrate that improved amplification methods can be used to identify early antemortem CWD prion shedding, which might aid in disease surveillance of cervids.


Assuntos
Cervos , Príons , Doença de Emaciação Crônica , Doença de Emaciação Crônica/diagnóstico , Doença de Emaciação Crônica/epidemiologia , Animais , Príons/metabolismo , Príons/genética , Estudos Longitudinais , Estados Unidos/epidemiologia , Fezes/química , Saliva/química
10.
Small ; : e2406991, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324229

RESUMO

Hybrid organic-inorganic lead halide perovskite solar cells (PSCs) have rapidly emerged as a promising photovoltaic technology, with record efficiencies surpassing 26%, approaching the theoretical Shockley-Queisser limit. The advent of all-perovskite tandem solar cells (APTSCs), integrating Pb-based wide-bandgap (WBG) with mixed Sn-Pb narrow-bandgap (NBG) perovskites, presents a compelling pathway to surpass this limit. Despite recent innovations in hole transport layers (HTLs) that have significantly improved the efficiency and stability of lead-based PSCs, an effective HTL tailored for Sn-Pb NBG PSCs remains an unmet need. This review highlights the essential role of HTLs in enhancing the performance of Sn-Pb PSCs, focusing on their ability to mitigate non-radiative recombination and optimize the buried interface, thereby improving film quality. The distinct attributes of Sn-Pb perovskites, such as their lower energy levels and accelerated crystallization rates, necessitate HTLs with specialized properties. In this study, the latest advancements in HTLs are systematically examined for Sn-Pb PSCs, encompassing organic, self-assembled monolayer (SAM), inorganic materials, and HTL-free designs. The review critically assesses the inherent limitations of each HTL category, and finally proposes strategies to surmount these obstacles to reach higher device performance.

11.
Small ; : e2405367, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324312

RESUMO

Developing efficient electrocatalysts for CO2 reduction to CO within a broad potential range is meaningful for cascade application integration. In this work, hydrogen spillover is created and utilized to cultivate a proton-rich environment via the simple thermolysis of a Ni-doped Zn coordination polymer (Zn CPs (Ni)) to create asymmetric Ni single atoms co-located with adjacent Ni nanoclusters on nitrogen-doped carbon, termed as NiNC&SA/N-C, which expedites the hydrogenation of adsorbed CO2. Therefore, the sample demonstrates near-unity CO2-to-CO conversion efficiency under pH-universal conditions in ultra-wide potential windows: -0.39 to -2.05 V versus RHE with the current densities ranging from 0.1 to 1.0 A cm-2 in alkaline conditions, -0.83 to -2.40 V versus RHE from 0.1 to 0.9 A cm-2 in neutral environments, and -0.98 to -2.25 V versus RHE across 0.1 to 0.8 A cm-2 in acid conditions. Corresponding in situ measurements and density functional theory (DFT) calculations suggest that the enhanced H2O dissociation and more efficient hydrogen spillover on NiNC&SA/N-C (compared to NiSA/N-C) accelerate the protonation of adsorbed CO2 to form *COOH intermediates. This work emphasizes the significant role of proton spillover in CO2RR, opening novel avenues for designing high-performance catalysts applicable to various electrocatalytic processes.

12.
Alzheimers Dement ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324520

RESUMO

INTRODUCTION: Hearing loss is identified as one of the largest modifiable risk factors for cognitive impairment and dementia. Studies evaluating this relationship have yielded mixed results. METHODS: We investigated the longitudinal relationship between self-reported hearing loss and cognitive/functional performance in 695 cognitively normal (CN) and 941 participants with mild cognitive impairment (MCI) enrolled in the Alzheimer's Disease Neuroimaging Initiative. RESULTS: Within CN participants with hearing loss, there was a significantly greater rate of cognitive decline per modified preclinical Alzheimer's cognitive composite. Within both CN and MCI participants with hearing loss, there was a significantly greater rate of functional decline per the functional activities questionnaire (FAQ). In CN and MCI participants, hearing loss did not significantly contribute to the risk of progression to a more impaired diagnosis. DISCUSSION: These results confirm previous studies demonstrating a significant longitudinal association between self-reported hearing loss and cognition/function but do not demonstrate an increased risk of conversion to a more impaired diagnosis. CLINICAL TRIAL REGISTRATION INFORMATION: NCT00106899 (ADNI: Alzheimer's Disease Neuroimaging Initiative, clinicaltrials.gov), NCT01078636 (ADNI-GO: Alzheimer's Disease Neuroimaging Initiative Grand Opportunity, clinicaltrials.gov), NCT01231971 (ADNI2: Alzheimer's Disease Neuroimaging Initiative 2, clinicaltrials.gov), NCT02854033 (ADNI3: Alzheimer's Disease Neuroimaging Initiative 3, clinicaltrials.gov). HIGHLIGHTS: Hearing loss is a potential modifiable risk factor for dementia. We assessed the effect of self-reported hearing loss on cognition and function in the ADNI cohort. Hearing loss contributes to significantly faster cognitive and functional decline. Hearing loss was not associated with conversion to a more impaired diagnosis.

13.
EJNMMI Phys ; 11(1): 78, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325204

RESUMO

BACKGROUND: Quantitative imaging is a crucial step for dosimetry in radionuclide therapies. Traditionally, SPECT/CT imaging is quantified based on scanner-specific conversion factors or self-calibration, but recently absolute quantification methods have been introduced in commercial SPECT reconstruction software (Broad Quantification, Siemens Healthineers). In this phantom study we investigate the accuracy of three quantification methods for holmium-166 SPECT/CT imaging, and provide recommendations for clinical dosimetry. METHODS: One cylindrical phantom, filled with a homogeneous holmium-166-chloride activity concentration solution, was imaged at one time point to determine a scanner-specific conversion factor, and to characterize the spatial dependency of the activity concentration recovery. One Jaszczak phantom with six fillable spheres, 10:1 sphere-to-background ratio, was imaged over a large range of holmium-166 activities (61-3130 MBq). The images were reconstructed with either an ordered subset expectation maximization (OSEM, Flash3D-reconstruction; scanner-specific quantification or self-calibration quantification) or an ordered subset conjugate gradient (OSCG, xSPECT-reconstruction; Broad Quantification) algorithm. These three quantification methods were compared for the data of the Jaszczak phantom and evaluated based on whole phantom recovered activity, activity concentration recovery coefficients (ACRC), and recovery curves. RESULTS: The activity recovery in the Jaszczak phantom was 28-115% for the scanner-specific, and 57-97% for the Broad Quantification quantification methods, respectively. The self-calibration-based activity recovery is inherently always 100%. The ACRC for the largest sphere (Ø60 mm, ~ 113 mL) ranged over (depending on the activity level) 0.22-0.89, 0.76-0.86, 0.39-0.72 for scanner-specific, self-calibration and Broad Quantification, respectively. CONCLUSION: Of the three investigated quantification methods, the self-calibration technique produces quantitative SPECT images with the highest accuracy in the investigated holmium-166 activity range.

14.
Chemistry ; 30(54): e202402207, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39240026

RESUMO

The development of sustainable chemistry underlying the quest to minimize and/or valorize waste in the carbon-neutral manufacture of chemicals is followed over the last four to five decades. Both chemo- and biocatalysis have played an indispensable role in this odyssey. in particular developments in protein engineering, metagenomics and bioinformatics over the preceding three decades have played a crucial supporting role in facilitating the widespread application of both whole cell and cell-free biocatalysis. The pressing need, driven by climate change mitigation, for a drastic reduction in greenhouse gas (GHG) emissions, has precipitated an energy transition based on decarbonization of energy and defossilization of organic chemicals production. The latter involves waste biomass and/or waste CO2 as the feedstock and green electricity generated using solar, wind, hydroelectric or nuclear energy. The use of waste polysaccharides as feedstocks will underpin a renaissance in carbohydrate chemistry with pentoses and hexoses as base chemicals and bio-based solvents and polymers as environmentally friendly downstream products. The widespread availability of inexpensive electricity and solar energy has led to increasing attention for electro(bio)catalysis and photo(bio)catalysis which in turn is leading to myriad innovations in these fields.

15.
Ann Med ; 56(1): 2407066, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39311013

RESUMO

BACKGROUND: Tuberculosis (TB) is a bacterial infection that usually affects the lungs, although it can also affect other parts of the body. Vitamin D deficiency and response to treatment have been demonstrated in patients with active TB in several studies, but not in MDR-TB patients, which is a new observation in the present study. OBJECTIVE: To study the time to initial sputum culture conversion and to associate baseline vitamin D levels and response to treatment in patients with PTB Cat I and MDR-TB. METHODS: A total of 897 North Indian participants were recruited and divided into three groups: treatment-naïve PTB Cat I, MDR-TB, and healthy controls. Serum biochemistry, including 25-hydroxyvitamin D and calcium, was measured in all participants with PTB, Cat I, and MDR-TB. RESULTS: PTB Cat I patients had high bacillary load grading at baseline compared to 2nd month followed by 6th month of treatment. More severe chest radiographic features, such as cavitation and the presence of bilateral disease at baseline. Mean sputum smear conversion times were 0.95 ± 0.7 months and culture conversion to negative occurred at a mean time of 0.8 ± 0.7 in PTB Cat I patients compared to MDR-TB patients on average sputum smear and time of 2.4 ± 3 months. Significantly lower mean serum 25-hyroxyvitamin D concentration was found in the 6th month than in the 2nd month and baseline in PTB Cat I. CONCLUSION: Low serum vitamin D deficiency was observed in both groups during treatment and is one of the important factors responsible for susceptibility to TB in both groups; however, its significance is uncertain. Patients with continuous positive sputum for multidrug-resistant tuberculosis (MDR-TB) had a worse prognosis than those with sputum bacteriology conversion. Two months into a treatment regimen, sputum smear conversions may be a useful indicator of an MDR-TB patient's prognosis.


Assuntos
Antituberculosos , Escarro , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Pulmonar , Deficiência de Vitamina D , Vitamina D , Humanos , Feminino , Masculino , Vitamina D/sangue , Vitamina D/análogos & derivados , Vitamina D/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/sangue , Adulto , Índia/epidemiologia , Antituberculosos/uso terapêutico , Escarro/microbiologia , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/sangue , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/complicações , Pessoa de Meia-Idade , Resultado do Tratamento , Cálcio/sangue , Adulto Jovem , Estudos de Casos e Controles , Mycobacterium tuberculosis/isolamento & purificação
16.
Chemistry ; : e202402649, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315518

RESUMO

The catalytic conversion of biomass into high-value chemicals is an increasing field of research. This study uniquely investigates the use of various Keggin-type heteropoly salts (HPS) for the chemical conversion of sugars into lactic acid under mild conditions of 160°C and 20 bar N2. In the first phase, Nb- and V-substituted HPSs were employed to synthesize lactic acid from dihydroxyacetone, an intermediate in the conversion of sugars to lactic acid. Results indicated that increasing the Nb content within the Keggin structure enhances the yield of lactic acid while reducing the formation of the byproduct acetaldehyde. A correlation was established between the redox activity of the HPS and the catalytic performance. The most active catalyst, Na5[PNb2Mo10O40], (NaNb2) achieved a lactic acid yield of 20.9% after 1 h of reaction. In the second phase of the study, NaNb2 was applied for the conversion of different sugars including glucose, fructose, mannose, sucrose, xylose, and cellobiose. It was demonstrated that the catalyst remains active for complex hexoses, achieving lactic acid yields of up to 12%. Post-mortem analysis using infrared (IR) and Raman spectroscopy, nuclear magnetic resonance (NMR), and inductively coupled plasma optical emission spectrometry (ICP-OES) confirmed the stability of NaNb2.

17.
Philos Trans A Math Phys Eng Sci ; 382(2282): 20230269, 2024 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-39307161

RESUMO

Sustainable methanol formation from CO2/H2 is potentially a key process in the post-fossil chemical industry. In this study, Hf- and Zr-based metal-organic framework (MOF) materials with UiO-67 topology, functionalized with Pt nanoparticles, have been tested for CO2 hydrogenation at 30 bar and 170-240°C. The highest methanol formation rate, 14 molmethanol molPt-1 h-1, was obtained over a Hf-based catalyst, compared with the maximum of 6.2 molmethanol molPt-1 h-1 for the best Zr-based analogue. However, changing the node metal did not significantly affect product distribution or apparent activation energy for methanol formation (44-52 kJ mol-1), strongly indicating that the higher activity of the Hf-based analogues is associated with a higher number of active sites. Both catalysts showed stable catalytic performance during testing under kinetic conditions, but the addition of 2 vol% water to the feed induced catalyst deactivation, in particular the Hf-MOFs. Interestingly, mainly methanol and methane formation rates decreased, while CO formation rates were less affected by deactivation. No direct correlation was found between catalytic stability and framework stability (crystallinity, specific surface area). Experimental and computational studies suggest that water adsorption strength to the MOF node may affect the relative catalytic stability of Hf-UiO-67-Pt versus Zr-UiO-67-Pt methanol catalysts.This article is part of the discussion meeting issue 'Green carbon for the chemical industry of the future'.

18.
Artigo em Inglês | MEDLINE | ID: mdl-39307663

RESUMO

With the advances in transplant oncology in recent years, the role of liver transplantation has expanded to make curative treatment a possibility for a wider patient population. We highlight strategies in Hong Kong, China that have enabled preoperative prognostication for judicious patient selection, downstaging therapy to definitive treatment, and postoperative therapies that have provided a growing role for liver transplantation in patients with more advanced hepatocellular carcinoma.

19.
Bioresour Technol ; : 131530, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39321932

RESUMO

The pervasive generation of sewage sludge (SES) and deficiencies in its disposal methods have resulted in several significant environmental and human health challenges. This study explored the catalytic effect of nickel (Ni)-based CeO2, ZrO2, Zr0.8Ce0.2O2, Zr0.4Ce0.6O2, and γ-Al2O3 supports in fixed beds and foam reactors in the steam gasification of SES. A comparison of the hydrogen selectivity and gas yield of the synthesized catalysts confirmed that the metal composite support, especially Zr0.8Ce0.2O2, had a positive effect on the catalytic activity and stability. This can be attributed to the enhanced oxygen vacancies and oxygen mobility, resistance to coke deposition, uniform morphology, improved dispersion, and increased number of Ni sites on the Zr0.8Ce0.2O2 support. Furthermore, foam reactors offer unique advantages in improving hydrogen production. This study provides an advanced strategy for SES valorization that fulfills the requirements of an economically and environmentally sustainable technology.

20.
Bioresour Technol ; : 131524, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39321937

RESUMO

The methanation efficiency and operational stability of a 2 m3 pilot-scale in-situ biomethanation reactor were investigated using on-site sewage sludge as the substrate, at a wastewater treatment plant. In parallel, a laboratory-scale study was conducted. Hydrogen conversion efficiencies of 96.7 and 97.5 %, and average methane contents of 84.2 and 83.2 % were obtained, for the laboratory and pilot experiments, respectively. The pilot-scale digester was operated at various conditions for 137 d, of which the last 30 d were stable with a high biomethanation efficiency and an average pH of 8.2. Gas recirculation increased the hydrogen conversion efficiency. When hydrogen injection and gas recirculation were applied separately, a 96 % lower gas recirculation rate was needed to achieve the same hydrogen conversion efficiency, compared to a mixture of hydrogen injection and gas recirculation in the same line. These findings may facilitate the selection of suitable gas recirculation concepts for practical biomethanation applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA