Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 358: 142197, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692365

RESUMO

Microalgae, including cyanobacteria and eukaryotic algae, are hotspots of primary production and play a critical role in global carbon cycling. However, these species often form blooms that poses a threat to aquatic ecosystems. Although the use of bacteria-derived cyanocides is regarded as an environmentally friendly method for controlling cyanobacterial blooms, only a few studies have examined their potential impact on ecosystems. This study is the first to explore the response of particle-attached (PA) and free-living (FL) bacteria to the dynamics of microalgal communities induced by the biological cyanocide paucibactin A. The microalgal community dynamics were divided into two distinct phases [phase I (days 0-2) and phase II (days 3-7)]. In phase I, paucibactin A caused a sudden decrease in the cyanobacterial concentration. Phase II was characterized by increased growth of eukaryotic microalgae (Scenedesmus, Pediastrum, Selenastrum, and Coelastrum). The stability of the bacterial community and the contribution of stochastic processes to community assembly were more pronounced in phase II than in phase I. The microalgal dynamics triggered by paucibactin A coincided with the succession of the PA and FL bacterial communities. The lysis of cyanobacteria in phase I favored the growth of microbial organic matter degraders in both the PA (e.g., Aeromonas and Rheinheimera) and FL (e.g., Vogesella) bacterial communities. In phase II, Lacibacter, Phycisphaeraceae, and Hydrogenophaga in the PA bacterial community and Lacibacter, Peredibacter, and Prosthecobacter in the FL bacterial community showed increased relative abundances. Overall, the FL bacterial community exhibited greater sensitivity to the two sequential processes compared with the PA bacterial community. These results highlight the need for studies evaluating the impact of biological cyanocides on aquatic ecosystems when used to control natural cyanobacterial blooms.


Assuntos
Cianobactérias , Microalgas , Microalgas/metabolismo , Cianobactérias/metabolismo , Cianobactérias/crescimento & desenvolvimento , Ecossistema , Bactérias/metabolismo , Eutrofização , Microbiota
2.
Microorganisms ; 9(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34835385

RESUMO

Mitigation of harmful cyanobacterial blooms that constitute a serious threat to water quality, particularly in eutrophic water, such as in aquaculture, is essential. Thus, in this study, we tested the efficacy of selected cyanocides towards bloom control in laboratory and outdoor mesocosm experiments. Specifically, we focused on the applicability of a group of cationic disinfectants, alkyltrimethyl ammonium (ATMA) compounds and H2O2. The biocidal effect of four ATMA cations with different alkyl chain lengths was evaluated ex situ using Microcystis colonies collected from a fish pond. The most effective compound, octadecyl trimethyl ammonium (ODTMA), was further evaluated for its selectivity towards 24 cyanobacteria and eukaryotic algae species, including Cyanobacteria, Chlorophyta, Bacillariophyta, Euglenozoa and Cryptophyta. The results indicated selective inhibition of cyanobacteria by ODTMA-Br (C18) on both Chroccocales and Nostocales, but a minor effect on Chlorophytes and Bacillariophytes. The efficacy of ODTMA-Br (C18) (6.4 µM) in mitigating the Microcystis population was compared with that of a single low dose of H2O2 treatments (117.6 µM). ODTMA-Br (C18) suppressed the regrowth of Microcystis for a longer duration than did H2O2. The results suggested that ODTMA-Br (C18) may be used as an effective cyanocide and that it is worth further evaluating this group of cationic compounds as a treatment to mitigate cyanobacterial blooms in aquaculture.

3.
Environ Sci Technol ; 55(20): 14173-14184, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34590827

RESUMO

Selective inhibition of photosynthesis is a fundamental strategy to solve the global challenge caused by harmful cyanobacterial blooms. However, there is a lack of specificity of the currently used cyanocides, because most of them act on cyanobacteria by generating nontargeted oxidative stress. Here, for the first time, we find that the simplest ß-diketone, acetylacetone, is a promising specific cyanocide, which acts on Microcystis aeruginosa through targeted binding on bound iron species in the photosynthetic electron transport chain, rather than by oxidizing the components of the photosynthetic apparatus. The targeted binding approach outperforms the general oxidation mechanism in terms of specificity and eco-safety. Given the essential role of photosynthesis in both natural and artificial systems, this finding not only provides a unique solution for the selective control of cyanobacteria but also sheds new light on the ways to modulate photosynthesis.


Assuntos
Cianobactérias , Microcystis , Proliferação Nociva de Algas , Ferro , Oxirredução , Fotossíntese
4.
Sci Total Environ ; 792: 148413, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34153748

RESUMO

Macrophytes have often been considered as a prospective tool for the elimination of cyanobacterial bloom, because they may produce chemical compounds that outcompete bloom-forming cyanobacteria. However, a comprehensive, unbiased overview of evidence to support this is missing. Moreover, studies into the effects of individual macrophyte species have often used different methodologies and, thus, cannot be compared. Herein, we firstly carried out a systematic review of studies into the effects of macrophytes on the growth of bloom-forming cyanobacteria. Secondly, we carried out an experiment into the effects of aqueous and ethanol extracts from 19 macrophyte species on the growth of two of the most common cyanobacteria, Aphanizomenon gracile and Microcystis aeruginosa, using a uniform methodological approach. The systematic review revealed that most of the 69 macrophyte species previously studied have shown a combination of inhibitory, stimulatory, and neutral effects. In our own experiment, an inhibitory effect was exhibited only 15 times out of 532 experimental variants, specifically by Chara globularis, Ceratophyllum submersum, Elodea nuttallii, Hydrilla verticillata, Myriophyllum heterophyllum, M. spicatum, and Vallisneria americana. Put together, these results indicate that the practical application of chemical compounds produced by macrophytes to eliminate cyanobacterial bloom may have lower prospects than previously anticipated.


Assuntos
Aphanizomenon , Cianobactérias , Hydrocharitaceae , Microcystis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA