Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; : e202400724, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166360

RESUMO

Multipurpose applications of a newly developed homobimetallic Ru(II) complex, Ru-NDI[PF6]4, which incorporates 1,10-phenanthroline and triazole-pyridine ligands and linked via a (-CH2-)3 spacer to the reputed anion-π interacting NDI system, are described. Solution-state studies of the bimetallic complex, including EPR, PL, UV-vis, and NMR experiments, reveal two sequential one-electron transfers to the NDI unit, generating NDI·- and NDI2- in the presence of F- selectively. This process inhibits the primary electron transfer from Ru(II) to the NDI unit, thereby allowing the 3MLCT-based emission of the complex to be recovered, resulting in a corresponding ten-fold increase in luminescence intensity. DFT and TD-DFT computational studies further elucidate the experimentally observed absorption spectra of the complex. Secondly, CT-DNA binding studies with the complex are performed using various spectroscopic analyses such as UV-vis, PL, and CD. Comparative DNA binding studies employing EB and molecular docking reveal that the binding with CT-DNA occurs through both intercalative and groove binding modalities. Thirdly, the photocatalytic activities of the complex towards C-C, C-N, and C-O bond formation in organic cross-coupling reactions, including the amidation of α-keto acids to amines and the oxidation of alcohol to aldehydes, are also demonstrated.

2.
ChemMedChem ; 19(18): e202400288, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38895989

RESUMO

We recently discovered that sphaeropsidin A (SphA), a fungal metabolite from Diplodia cupressi, overcomes apoptosis resistance in cancer cells by inducing cellular shrinkage by impairing regulatory volume increase. Previously, we prepared a pyrene-conjugated derivative of SphA by a cross-metathesis reaction involving the phytotoxin's C15,C16-alkene. This derivative's evaluation in a cancer cell panel revealed a significant increase in potency, with the IC50 values 5-10× lower than those displayed by the original natural product. Herein, we describe the preparation and anticancer evaluation of fifteen novel C15,C16-alkene cross-metathesis analogues in which the pyrene moiety was replaced with other aromatic or non-aromatic hydrophobic groups. The idea for this replacement was to prepare a family of compounds that would not be predicted to be mutagenic compared with the original pyrene analogue. We predict several of our new compounds to be non-mutagenic, while retaining the high potency of the original pyrene-containing analogues. Examples of these potential lead compounds included those containing pentamethylphenyl and triphenylethylene pendant groups. As an additional feature of the current investigation, we prepared several deuterated pyrene-containing compounds to overcome intellectual property issues associated with non-patentability of the original pyrene derivative.


Assuntos
Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Estrutura Molecular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Pirenos/química , Pirenos/farmacologia , Pirenos/síntese química , Ascomicetos/química
3.
Curr Med Chem ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38934279

RESUMO

The clinical effectiveness of the available anticancer drugs has been reduced due to the development of drug resistance and serious adverse effects, which have restricted chemotherapy for cancer. Therefore, there is a persistent need for new anticancer medications with reduced side effects. Medical researchers are pursuing various methods to find new, potent, specifically targeted molecules for cancer treatment. Through various techniques, numerous molecules are discovered. However, among them, acridine stands out as a promising heterocycle that has captured the interest of medicinal chemists and acquired significant pharmacological value. The synthetic adaptability of acridine has enabled the creation of numerous derivatives with a wide range of architectural properties, further accelerating this broad spectrum of pharmacological activities. Recent studies have looked at the mechanisms by which acridine and its analogs inhibit tyrosine kinases, topoisomerases, telomerase, and DNA repair interaction. We have compiled our knowledge of acridine compounds for their anticancer activities, mechanisms of action, structure-activity relationship (SAR), and selective, specific activity against different cancer drug targets, as well as in vitro and in vivo anticancer activities of acridine and its analogs from the perspective of cancer drug discovery, in this review.

4.
Arch Pharm (Weinheim) ; 357(9): e2400217, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38864845

RESUMO

A series of tetrahydrobenzo[b]thiophene derivatives was designed and synthesized as dual topoisomerase (Topo) I/II inhibitors implicating potential DNA intercalation. Ethyl-2-amino-3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophene-4-carboxylate (1) was prepared by modification of the Gewald reaction procedure using a Fe2O3 nanocatalyst and then it was used as a building block for the synthesis of tetrahydrobenzo[b]thiophene candidates (2-14). Interestingly, compound 14 showed the best cytotoxic potential against hepatocellular, colorectal, and breast cancer cell lines (IC50 = 7.79, 8.10, and 3.53 µM), respectively, surpassing doxorubicin at breast cancer (IC50 = 4.17 µM). Meanwhile, the Topo I and II inhibition assay displayed that compound 3 could exhibit the best inhibitory potential among the investigated candidates (IC50 = 25.26 and 10.01 nM), respectively, in comparison to camptothecin (IC50 = 28.34 nM) and doxorubicin (IC50 = 11.01 nM), as reference standards. In addition, the DNA intercalation assay showed that compound 14 could display the best binding affinity with an IC50 value of 77.82 µM in comparison to doxorubicin (IC50 = 58.03 µM). Furthermore, cell cycle and apoptosis analyses described that compound 3 prompts the G1 phase arrest in michigan cancer foundation-7 cancer cells and increases the apoptosis ratio by 29.31% with respect to untreated cells (2.25%). Additionally, the conducted molecular docking assured the promising binding of the investigated members toward Topo I and II with potential DNA intercalation. Accordingly, the synthesized compounds could be treated as promising anticancer candidates for future optimization.


Assuntos
Antineoplásicos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Substâncias Intercalantes , Tiofenos , Inibidores da Topoisomerase I , Inibidores da Topoisomerase II , Humanos , Tiofenos/farmacologia , Tiofenos/síntese química , Tiofenos/química , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/química , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Relação Estrutura-Atividade , Substâncias Intercalantes/farmacologia , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/química , Estrutura Molecular , Simulação de Acoplamento Molecular , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Apoptose/efeitos dos fármacos , DNA , DNA Topoisomerases Tipo I/metabolismo , Farmacóforo
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124265, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38626674

RESUMO

In recent years, extensive research has been directed towards understanding the interactions between various zinc complexes with DNA, specifically delving into their intercalation and binding behaviors. The binding of zinc complexes to DNA is particularly intriguing due to their distinctive intercalating capabilities. This study unveils a remarkable phenomenon observed with a specific Zn complex, ([B-Zn-N3], where B is a Schiff base ligand), during DNA intercalation investigations in the popular DMSO-Water binary solvent mixture. An unanticipated observation revealed time-dependent changes in the UV-visible absorption spectroscopic studies, coupled with the existence of an isosbestic point. This observation questions the stability of the intercalating agent itself during the intercalation process. The emergence of a decomposed product during the intercalation study has been confirmed through various analytical techniques, including CHN analysis, MALDI mass, XPS, Raman spectroscopy, and Powder XRD. The change in the chemical species on intercalation is further substantiated by theoretical studies, adding depth to our understanding of the intricate dynamics at play during DNA intercalation with the [B-Zn-N3] complex in the DMSO-Water system.


Assuntos
DNA , Dimetil Sulfóxido , Substâncias Intercalantes , Água , Dimetil Sulfóxido/química , Substâncias Intercalantes/química , DNA/química , DNA/metabolismo , Água/química , Análise Espectral Raman , Zinco/química , Espectrofotometria Ultravioleta , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Bases de Schiff/química
6.
Life (Basel) ; 14(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38541608

RESUMO

Doxorubicin (DOX) is a prevalent anticancer agent; however, it is unfortunately characterized by high cardiotoxicity, myelosuppression, and multiple other side effects. To overcome DOX limitations, two novel pyridoxine-derived doxorubicin derivatives were synthesized (DOX-1 and DOX-2). In the present study, their antitumor activity and mechanism of action were investigated. Of these two compounds, DOX-2, in which the pyridoxine fragment is attached to the doxorubicin molecule via a C3 linker, revealed higher selectivity against specific cancer cell types compared to doxorubicin and a promising safety profile for conditionally normal cells. However, the compound with a C1 linker (DOX-1) was not characterized by selectivity of antitumor action. It was revealed that DOX-2 obstructs cell cycle progression, induces apoptosis via the mitochondrial pathway without the development of necrosis, and showcases antioxidant capabilities, underlining its cell-regulatory roles. In contrast to doxorubicin's DNA-centric mechanism, DOX-2 does not interact with nuclear DNA. Given these findings, DOX-2 presents a new promising direction in cancer therapeutics, which is deserving of further in vivo exploration.

7.
Photochem Photobiol Sci ; 23(4): 693-709, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38457118

RESUMO

Psoralens are eponymous for PUVA (psoralen plus UV-A radiation) therapy, which inter alia can be used to treat various skin diseases. Based on the same underlying mechanism of action, the synthetic psoralen amotosalen (AMO) is utilized in the pathogen reduction technology of the INTERCEPT® Blood System to inactivate pathogens in plasma and platelet components. The photophysical behavior of AMO in the absence of DNA is remarkably similar to that of the recently studied psoralen 4'-aminomethyl-4,5',8-trimethylpsoralen (AMT). By means of steady-state and time-resolved spectroscopy, intercalation and photochemistry of AMO and synthetic DNA were studied. AMO intercalates with a higher affinity into A,T-only DNA (KD = 8.9 × 10-5 M) than into G,C-only DNA (KD = 6.9 × 10-4 M). AMO covalently photobinds to A,T-only DNA with a reaction quantum yield of ΦR = 0.11. Like AMT, it does not photoreact following intercalation into G,C-only DNA. Femto- and nanosecond transient absorption spectroscopy reveals the characteristic pattern of photobinding to A,T-only DNA. For AMO and G,C-only DNA, signatures of a photoinduced electron transfer are recorded.


Assuntos
Ficusina , Furocumarinas , Ficusina/farmacologia , Ficusina/química , Furocumarinas/farmacologia , Furocumarinas/química , DNA/química , Análise Espectral
8.
Bioorg Chem ; 145: 107223, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387399

RESUMO

Herein, we envisioned the design and synthesis of novel pyrazolopyrimidines (confirmed by elemental analysis, 1H and 13C NMR, and mass spectra) as multitarget-directed drug candidates acting as EGFR/TOPO II inhibitors, DNA intercalators, and apoptosis inducers. The target diphenyl-tethered pyrazolopyrimidines were synthesized starting from the reaction of phenyl hydrazine and ethoxymethylenemalononitrile to give aminopyrazole-carbonitrile 2. The latter hydrolysis with NaOH and subsequent reaction with 4-chlorobenzaldhyde afforded the corresponding pyrazolo[3,4-d]pyrimidin-4-ol 4. Chlorination of 4 with POCl3 and sequential reaction with different amines afforded the target compounds in good yields (up to 73 %). The growth inhibition % of the new derivatives (6a-m) was investigated against different cancer and normal cells and the IC50 values of the most promising candidates were estimated for HNO97, MDA-MB-468, FaDu, and HeLa cancer cells. The frontier derivatives (6a, 6i, 6k, 6l, and 6m) were pursued for their EGFR inhibitory activity. Compound 6l decreased EGFR protein concentration by a 6.10-fold change, compared to imatinib as a reference standard. On the other side, compounds (6a, 6i, 6k, 6l, and 6m) underwent topoisomerase II (TOPO II) inhibitory assay. In particular, compounds 6a and 6l exhibited IC50s of 17.89 and 19.39 µM, respectively, surpassing etoposide with IC50 of 20.82 µM. Besides, the DNA fragmentation images described the great potential of both candidates 6a and 6l in inducing DNA degradation at lower concentrations compared to etoposide and doxorubicin. Moreover, compound 6l, with the most promising EGFR/TOPO II inhibition and DNA intercalation, was selected for further investigation for its apoptosis induction ability by measuring caspases 3, 7, 8, and 9, Bax, p53, MMP2, MMP9, and BCL-2 proteins. Additionally, molecular docking was used to explain the SAR results based on the differences in the molecular features of the investigated congeners and the target receptors' topology.


Assuntos
Antineoplásicos , Compostos de Bifenilo , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Antineoplásicos/química , Etoposídeo/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Proliferação de Células , Inibidores da Topoisomerase II , Apoptose , Receptores ErbB/metabolismo , DNA , Ensaios de Seleção de Medicamentos Antitumorais
9.
Zoolog Sci ; 40(6): 431-436, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38064369

RESUMO

To explore the physiological role and/or pharmacological effects of ommochrome, which is a natural organic pigment widely distributed in Protostomia, we attempted to investigate the influence of ommochrome on RT-PCR and activities of restriction enzymes. It was found that ommin, an ommochrome purified from the diapause eggs of Bombyx mori, inhibited the RT-PCR and restriction enzyme activities. The mechanism of these inhibitory reactions is assumed to be the direct binding of ommochrome to DNA rather than acting against the enzymes because, similarly to actinomycin D, there is a phenoxazine ring in the structure of ommin that is known to be intercalated to DNA. To reveal the ommin/DNA interaction, it was investigated by computational approaches such as molecular docking, molecular dynamics simulation, and free energy calculation. From the computational analyses, it was expected that ommin would bind to DNA with almost the same strength as actinomycin D and intercalate into DNA. This is the first report on the pharmacological effect of ommochrome and its inhibitory mechanism obtained from biochemical and computational analyses.


Assuntos
Bombyx , Animais , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Dactinomicina/farmacologia , Dactinomicina/metabolismo , Simulação de Acoplamento Molecular , Bombyx/genética , DNA/genética
10.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834037

RESUMO

Topoisomerases are interesting targets in cancer chemotherapy. Here, we describe the design and synthesis of a novel copper(II) indenoisoquinoline complex, WN198. The new organometallic compound exhibits a cytotoxic effect on five adenocarcinoma cell lines (MCF-7, MDA-MB-231, HeLa, HT-29, and DU-145) with the lowest IC50 (0.37 ± 0.04 µM) for the triple-negative MDA-MB-231 breast cancer cell line. Below 5 µM, WN198 was ineffective on non-tumorigenic epithelial breast MCF-10A cells and Xenopus oocyte G2/M transition or embryonic development. Moreover, cancer cell lines showed autophagy markers including Beclin-1 accumulation and LC3-II formation. The DNA interaction of this new compound was evaluated and the dose-dependent topoisomerase I activity starting at 1 µM was confirmed using in vitro tests and has intercalation properties into DNA shown by melting curves and fluorescence measurements. Molecular modeling showed that the main interaction occurs with the aromatic ring but copper stabilizes the molecule before binding and so can putatively increase the potency as well. In this way, copper-derived indenoisoquinoline topoisomerase I inhibitor WN198 is a promising antitumorigenic agent for the development of future DNA-damaging treatments.


Assuntos
Antineoplásicos , Inibidores da Topoisomerase I , Humanos , Inibidores da Topoisomerase I/farmacologia , Cobre/farmacologia , Proliferação de Células , Inibidores da Topoisomerase/farmacologia , Antineoplásicos/química , DNA/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Relação Estrutura-Atividade , Apoptose
11.
Nanomaterials (Basel) ; 13(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37630955

RESUMO

A novel voltammetric sensor based on a self-assembled composite formed by native DNA and electropolymerized N-phenyl-3-(phenylimino)-3H-phenothiazin-7-amine has been developed and applied for sensitive determination of doxorubicin, an anthracycline drug applied for cancer therapy. For this purpose, a monomeric phenothiazine derivative has been deposited on the glassy carbon electrode from the 0.4 M H2SO4-acetone mixture (1:1 v/v) by multiple potential cycling. The DNA aliquot was either on the electrode modified with electropolymerized film or added to the reaction medium prior to electropolymerization. The DNA entrapment and its influence on the redox behavior of the underlying layer were studied by scanning electron microscopy and electrochemical impedance spectroscopy. The DNA-doxorubicin interactions affected the charge distribution in the surface layer and, hence, altered the redox equilibrium of the polyphenothiazine coating. The voltametric signal was successfully applied for the determination of doxorubicin in the concentration range from 10 pM to 0.2 mM (limit of detection 5 pM). The DNA sensor was tested on spiked artificial plasma samples and two commercial medications (recovery of 90-95%). After further testing on real clinical samples, the electrochemical DNA sensor developed can find application in monitoring drug release and screening new antitumor drugs able to intercalate DNA.

12.
Mar Drugs ; 21(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37623705

RESUMO

Fascaplysin is a marine alkaloid which is considered to be a lead drug candidate due to its diverse and potent biological activity. As an anticancer agent, fascaplysin holds a great potential due to the multiple targets affected by this alkaloid in cancer cells, including inhibition of cyclin-dependent kinase 4 (CDK4) and induction of intrinsic apoptosis. At the same time, the studies on structural optimization are hampered by its rather high toxicity, mainly caused by DNA intercalation. In addition, the number of methods for the syntheses of its derivatives is limited. In the current study, we report a new two-step method of synthesis of fascaplysin derivatives based on low temperature UV quaternization for the synthesis of thermolabile 9-benzyloxyfascaplysin and 6-tert-butylfascaplysin. 9-Benzyloxyfascaplysin was used as the starting compound to obtain 9-hydroxyfascaplysin. However, the latter was found to be chemically highly unstable. 6-tert-Butylfascaplysin revealed a significant decrease in DNA intercalation when compared to fascaplysin, while cytotoxicity was only slightly reduced. Therefore, the impact of DNA intercalation for the cytotoxic effects of fascaplysin and its derivatives needs to be questioned.


Assuntos
Alcaloides , Antineoplásicos , Alcaloides/farmacologia , Antineoplásicos/farmacologia , Carbolinas , DNA
13.
Environ Res ; 236(Pt 2): 116801, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37558112

RESUMO

A novel and first electrochemical biosensor based on Deoxyribonucleic acid (DNA) as a biological component to measure an antimigraine drug, rizatriptan benzoate (RZB) for patients under treatment in biological samples was developed. A carbon paste electrode (CPE) was modified by calf thymus (CT) double-stranded (ds)-DNA, nickel ferrite magnetic nanoparticles (NiFe2O4NPs), and gold nanoparticles (AuNPs). The morphology of the CT-DNA/NiFe2O4NPs/AuNPs/CPE was characterized by Field emission scanning electron microscope (FESEM). The presence of NiFe2O4NPs and AuNPs was confirmed by energy-dispersive X-ray spectroscopy (EDS) image of the NiFe2O4NPs/AuNPs/CPE surface. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to determine the structure and electrochemical characteristics of the CT-DNA/NiFe2O4NPs/AuNPs/CPE. Differential pulse voltammetry (DPV) was used to investigate the electrochemical behavior of RZB. Chronoamperometry (CA) was applied to study the effect of CT-DNA immobilization time on the peak oxidation current of RZB accumulated on the surface of the CT-DNA/NiFe2O4NPs/AuNPs/CPE. The results showed that, under optimum conditions, the prepared electrode responded linearly to RZB concentrations between 0.01 and 2.0 µM, with a 0.0033 µM detection limit (LOD) and 0.01 µM limit of quantification (LOQ). The parameters influencing the biosensor performance (temperature, CT-DNA immobilization time, and RZB/CT-DNA accumulation time) were optimized. DPV showed the displacement of the peak potential towards positive values and the reduction of its current, indicating that the drug could intercalate between the guanine base pairs of CT-DNA. Our biosensor was successfully applied for RZB measurement in human urine, blood serum, plasma samples, and tablets. The presented biosensor was fast response, sensitive, selective, cost-effective, and easy-to-use for RZB determination in pharmaceutical formulations and biological samples.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Carbono/química , Ouro/química , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , DNA , Preparações Farmacêuticas , Eletrodos , Técnicas Biossensoriais/métodos , Tomografia Computadorizada por Raios X
14.
Biosens Bioelectron ; 237: 115543, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37499378

RESUMO

DNA intercalation has increasingly been studied for various scenario implementations due to the diverse functions of DNA/intercalators. Nascent organic photoelectrochemical transistor (OPECT) biosensing taking place in organic electronics and photoelectrochemical bioanalysis represents a promising technological frontier in the arena. In this work, we first devise DNA intercalation-enabled OPECT for miRNA detection with a superior gain up to 17100. Intercalation of [Ru(bpy)2dppz]2+ within the miRNA-initiated hybrid chain reaction (HCR)-derived duplex DNA is realized for producing anodic photocurrent upon light stimulation, causing the corresponding target-dependent alternation in gate voltage (VG) and hence the modulated channel current (IDS) of poly (3,4-ethylenedioxythiophene) doped with poly (styrene sulfonate) (PEDOT:PSS) under specific drain voltage (VDS) for quantitative miRNA-21 analysis, which shows a wide linear relationship and a low detection limit of 5.5 × 10-15 mol L-1. This study features the DNA intercalation-enabled organic electronics with superior gain and is envisaged to attract more attention to explore DNA adducts for innovative bioelectronics and biosensing, given the diverse DNA binders with multiple functions.


Assuntos
Técnicas Biossensoriais , MicroRNAs , DNA/análise , Estireno , Substâncias Intercalantes
15.
J Pharm Biomed Anal ; 231: 115410, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37087773

RESUMO

In this work, novel potential anthraquinone-temozolomide (TMZ) antitumor hybrids N-(2-((9,10-dioxo-9,10-dihydroanthracen-1-yl)amino)ethyl)-3-methyl-4-oxo-3,4-dihydroimidazo [5, 1-d][1,2,3,5]tetrazine-8-carboxamide (C-1) and 2-(9,10-dioxo-9,10-dihydroanthracen-1-yl)amino) ethyl-3-methyl-4-oxo-3,4-dihydroimidazo[5,1-d][1,2,3,5]tetrazine-8-carboxylate (C-9) were designed and synthesized successfully. The electrochemical behaviors of C-1 (C-9) involved the reversible processes of 9,10-anthraquinone ring, the irreversible reduction and oxidation processes of TMZ ring. Electrochemical biosensors were constructed with ctDNA, poly (dG) and poly (dA) modifying the surface of glassy carbon electrode (GCE) to evaluate the DNA oxidative damage caused by the interaction of C-1 (C-9) with DNA. Anthracycline skeleton and TMZ ring in C-1 (C-9) could exhibit bifunctional effects with both intercalating and alkylation modes toward DNA strands. The DNA biosensor had good practicability in mouse serum. The results of gel electrophoresis further demonstrated that C-1 (C-9) could effectively intercalated into ctDNA and disrupt plasmid conformation. Finally, anthraquinone-TMZ hybrid C-1 possessed high cytotoxicity toward A549 and GL261 cells, which could be a novel and optimal candidate for the clinic antitumor treatment.


Assuntos
Antraquinonas , Técnicas Biossensoriais , Animais , Camundongos , Temozolomida , Carbono , DNA/química , Eletrodos , Técnicas Eletroquímicas/métodos
16.
Chembiochem ; 24(8): e202200715, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36747378

RESUMO

The dynamic topological states of chromosomal DNA regulate many cellular fundamental processes universally in all three domains of life, that is, bacteria, archaea, and eukaryotes. DNA-binding proteins maintain the regional and global supercoiling of the chromosome and thereby regulate the chromatin architecture that ultimately influences the gene expression network and other DNA-centric molecular events in various microenvironments and growth phases. DNA-binding small molecules are pivotal weapons for treating a wide range of cancers. Recent advances in single-molecule biophysical tools have uncovered the fact that many DNA-binding ligands not only alter the regional DNA supercoiling but also modulate the overall morphology of DNA. Here we provide insight into recent advances in atomic force microscopy (AFM) acquired DNA structural change induced by therapeutically important mono- and bis-intercalating anticancer agents as well as DNA-adduct-forming anticancer drugs. We also emphasize the growing evidence of the mechanistic relevance of changes in DNA topology in the anticancer cellular responses of DNA-targeting chemotherapeutic agents.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Conformação de Ácido Nucleico , DNA/química , Cromatina , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Microscopia de Força Atômica , Microambiente Tumoral
17.
Arch Pharm (Weinheim) ; 356(5): e2200449, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36807372

RESUMO

A simple "click" protocol was employed in the quest of synthesizing 1,2,3-triazole-linked benzimidazoles as promising anticancer agents on various human cancer cell lines such as A549, HCT116, SK-Mel-28, HT-29, and MCF-7. Compound 12j demonstrated significant cytotoxic potential towards SK-Mel-28 cancer cells (IC50 : 4.17 ± 0.09 µM) and displayed no cytotoxicity (IC50 : > 100 µM) against normal human BEAS-2B cells inferring its safety towards normal healthy cells. Further to comprehend the underlying apoptosis mechanisms, AO/EB, dichlorodihydrofluorescein diacetate (DCFDA), and 4',6-diamidino-2-phenylindole (DAPI) staining were performed, which revealed the nuclear and morphological alterations. Compound 12j displayed impairment in cellular migration and inhibited colony formation. The annexin V binding assay and JC-1 were implemented to evaluate the scope of apoptosis and the loss of the mitochondrial transmembrane potential in SK-Mel-28 cells. Cell-cycle analysis revealed that compound 12j arrested the cells at the G2/M phase in a dose-dependent manner. Target-based assays established the inhibition of tubulin polymerization by 12j at an IC50 value of 5.65 ± 0.05 µM and its effective binding with circulating tumor DNA as a DNA intercalator. The detailed binding interactions of 12j with tubulin and DNA were examined by docking studies on PDB ID: 3E22 and DNA hexamer (PDB ID: 1NAB), respectively.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Humanos , Relação Estrutura-Atividade , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Substâncias Intercalantes/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Tubulina (Proteína)/metabolismo , Antineoplásicos/química , Apoptose , DNA , Simulação de Acoplamento Molecular , Polimerização
18.
Methods Mol Biol ; 2601: 283-301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36445590

RESUMO

Bacterial DNA primase DnaG is an attractive target for antibiotic discovery since it plays an essential role in DNA replication. Over the last 10 years, we have developed and optimized a robust colorimetric assay that enabled us to identify and validate inhibitors of bacterial primases. Here, we provide a detailed protocol for this colorimetric assay for DnaG from three different pathogenic bacteria (Mycobacterium tuberculosis, Bacillus anthracis, and Staphylococcus aureus), which can be performed in high throughput. We also describe secondary assays to characterize hits from this high-throughput screening assay. These assays are designed to identify inhibitors of the coupled enzyme inorganic pyrophosphatase, DNA binding agents, and elucidate the mode of inhibition of primase inhibitors.


Assuntos
DNA Primase , Mycobacterium tuberculosis , Colorimetria , Bioensaio , DNA Bacteriano
19.
Bioorg Chem ; 131: 106313, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36516521

RESUMO

In a quest for effective cancer targeted drug therapy, a series of new ß-carboline tethered indole-3-glyoxylamide derivatives, conjoining salient pharmacophoric properties with prominent cytotoxicity, were synthesized. The in vitro cytotoxic ability of the compounds was established, and many of the compounds exhibited remarkable cytotoxicity (IC50 < 10 µM) on human cancer cell lines like HCT116, A549, SK-MEL-28, and MCF7. Precisely, compound 12x expressed the best cytotoxic potential against melanoma cancer cell line (SK-MEL-28) with an IC50 value of 4.37 µM. In addition, cytotoxicity evaluation against normal kidney cell line (NRK52E) entrenched the cytospecificity and selectivity index of 12x. The traditional apoptosis assays advised morphological and nuclear alterations such as apoptotic body formation, condensed/horseshoe-shaped/fragmented nuclei, and generation of ROS. The flow cytometric analysis revealed significant early and slight late-stage induction of apoptosis. The target-based physiochemical assays indicated the ability of compound 12x to bind with DNA and inhibition of Topoisomerase II. Moreover, molecular modeling studies affirm the excellent DNA intercalation potential and stabilized interactions of 12x with DNA base pairs. In silico prediction of physicochemical parameters revealed the promising drug-like properties of the synthesized derivatives.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , DNA/química , Antineoplásicos/química , Carbolinas/farmacologia , Carbolinas/química , Simulação por Computador , DNA Topoisomerases Tipo II/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Apoptose , Linhagem Celular Tumoral
20.
Front Endocrinol (Lausanne) ; 13: 1029177, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568077

RESUMO

Y-encoded transcription factor SRY initiates male differentiation in therian mammals. This factor contains a high-mobility-group (HMG) box, which mediates sequence-specific DNA binding with sharp DNA bending. A companion article in this issue described sex-reversal mutations at box position 72 (residue 127 in human SRY), invariant as Tyr among mammalian orthologs. Although not contacting DNA, the aromatic ring seals the domain's minor wing at a solvent-exposed junction with a basic tail. A seeming paradox was posed by the native-like biochemical properties of inherited Swyer variant Y72F: its near-native gene-regulatory activity is consistent with the father's male development, but at odds with the daughter's XY female somatic phenotype. Surprisingly, aromatic rings (Y72, F72 or W72) confer higher transcriptional activity than do basic or polar side chains generally observed at solvated DNA interfaces (Arg, Lys, His or Gln). Whereas biophysical studies (time-resolved fluorescence resonance energy transfer and heteronuclear NMR spectroscopy) uncovered only subtle perturbations, dissociation of the Y72F complex was markedly accelerated relative to wild-type. Studies of protein-DNA solvation by molecular-dynamics (MD) simulations of an homologous high-resolution crystal structure (SOX18) suggest that Y72 para-OH anchors a network of water molecules at the tail-DNA interface, perturbed in the variant in association with nonlocal conformational fluctuations. Loss of the Y72 anchor among SRY variants presumably "unclamps" its basic tail, leading to (a) rapid DNA dissociation despite native affinity and (b) attenuated transcriptional activity at the edge of sexual ambiguity. Conservation of Y72 suggests that this water-mediated clamp operates generally among SRY and metazoan SOX domains.


Assuntos
Processos de Determinação Sexual , Fatores de Transcrição , Animais , Feminino , Humanos , Masculino , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Mamíferos/genética , Mamíferos/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Processos de Determinação Sexual/genética , Processos de Determinação Sexual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA