Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.140
Filtrar
1.
Protein Expr Purif ; 225: 106584, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39178976

RESUMO

Lipases comprise the third most commercialized group of enzymes worldwide and those of microbial origin are sought for their multiple advantages. Agro-industrial waste can be an alternative culture medium for producing lipases, reducing production costs and the improper disposal of waste frying oil (WFO). This study aimed to produce yeast lipases through submerged fermentation (SF) using domestic edible oil waste as inducer and alternative culture medium. The optimal culture conditions, most effective inducer, and purification method for a new lipase from Moesziomyces aphidis BRT57 were identified. Yeast was cultured in medium containing green coconut pulp and WFO waste for 72 h. The maximum production of lipases in SF occurred in a culture medium containing WFO and yeast extract at 48 and 72 h of incubation, with enzyme activities of 8.88 and 11.39 U mL-1, respectively. The lipase was isolated through ultrafiltration followed by size exclusion chromatography, achieving a 50.46 % recovery rate. To the best of our knowledge, this is the first study to report the production and purification of lipases from M. aphidis, demonstrating the value of frying oil as inducer and alternative medium for SF, contributing to the production of fatty acids for biodiesel from food waste.


Assuntos
Cocos , Lipase , Lipase/isolamento & purificação , Lipase/química , Lipase/biossíntese , Lipase/metabolismo , Cocos/química , Óleos de Plantas/química , Fermentação , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/química , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética
2.
Food Chem ; 462: 140916, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39216372

RESUMO

Probiotic viability, metabolite concentrations, physicochemical parameters, and volatile compounds were characterized in Gueuze beers formulated with probiotic lactic acid bacteria (LAB) and yeast. Additionally, the sensory profile of the beers and the resistance of the probiotics to digestion were determined. The use of 2 International Bitterness Units resulted in high concentrations of probiotic LAB but a decline in probiotic yeast as pH decreased. Secondary fermentation led to the consumption of maltose, citric acid, and malic acid, and the production of lactic and propionic acids. Carbonation and storage at 4 °C had minimal impact on probiotic viability. The addition of probiotic LAB resulted in a distinct aroma profile with improved sensory characteristics. Our results demonstrate that sour beers produced with probiotic LAB and a probiotic yeast, and fermented using a two-step fermentation process, exhibited optimal physicochemical parameters, discriminant volatile compound profiles, promising sensory characteristics, and high probiotic concentrations after digestion.


Assuntos
Cerveja , Fermentação , Probióticos , Paladar , Compostos Orgânicos Voláteis , Cerveja/análise , Cerveja/microbiologia , Probióticos/metabolismo , Probióticos/análise , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Humanos , Digestão , Lactobacillales/metabolismo , Lactobacillales/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Viabilidade Microbiana
3.
J Environ Sci (China) ; 147: 414-423, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003059

RESUMO

The anaerobic acid production experiments were conducted with the pretreated kitchen waste under pH adjustment. The results showed that pH 8 was considered to be the most suitable condition for acid production, especially for the formation of acetic acid and propionic acid. The average value of total volatile fatty acid at pH 8 was 8814 mg COD/L, 1.5 times of that under blank condition. The average yield of acetic acid and propionic acid was 3302 mg COD/L and 2891 mg COD/L, respectively. The activities of key functional enzymes such as phosphotransacetylase, acetokinase, oxaloacetate transcarboxylase and succinyl-coA transferase were all enhanced. To further explore the regulatory mechanisms within the system, the distribution of microorganisms at different levels in the fermentation system was obtained by microbial sequencing, results indicating that the relative abundances of Clostridiales, Bacteroidales, Chloroflexi, Clostridium, Bacteroidetes and Propionibacteriales, which were great contributors for the hydrolysis and acidification, increased rapidly at pH 8 compared with the blank group. Besides, the proportion of genes encoding key enzymes was generally increased, which further verified the mechanism of hydrolytic acidification and acetic acid production of organic matter under pH regulation.


Assuntos
Ácidos Graxos Voláteis , Concentração de Íons de Hidrogênio , Ácidos Graxos Voláteis/metabolismo , Fermentação , Ácido Acético/metabolismo , Reatores Biológicos
4.
J Environ Sci (China) ; 148: 567-578, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095189

RESUMO

Erythromycin fermentation residue (EFR) represents a typical hazardous waste produced by the microbial pharmaceutical industry. Although electrolysis is promising for EFR disposal, its microbial threats remain unclear. Herein, metagenomics was coupled with the random forest technique to decipher the antibiotic resistance patterns of electrochemically treated EFR. Results showed that 95.75% of erythromycin could be removed in 2 hr. Electrolysis temporarily influenced EFR microbiota, where the relative abundances of Proteobacteria and Actinobacteria increased, while those of Fusobacteria, Firmicutes, and Bacteroidetes decreased. A total of 505 antibiotic resistance gene (ARG) subtypes encoding resistance to 21 antibiotic types and 150 mobile genetic elements (MGEs), mainly including plasmid (72) and transposase (52) were assembled in EFR. Significant linear regression models were identified among microbial richness, ARG subtypes, and MGE numbers (r2=0.50-0.81, p< 0.001). Physicochemical factors of EFR (Total nitrogen, total organic carbon, protein, and humus) regulated ARG and MGE assembly (%IncMSE value = 5.14-14.85). The core ARG, MGE, and microbe sets (93.08%-99.85%) successfully explained 89.71%-92.92% of total ARG and MGE abundances. Specifically, gene aph(3')-I, transposase tnpA, and Mycolicibacterium were the primary drivers of the resistance dissemination system. This study also proposes efficient resistance mitigation measures, and provides recommendations for future management of antibiotic fermentation residue.


Assuntos
Eritromicina , Fermentação , Metagenômica , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Farmacorresistência Bacteriana/genética
5.
Front Microbiol ; 15: 1433127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39234548

RESUMO

Kombucha, a fermented tea prepared with a symbiotic culture of bacteria and yeast (SCOBY), offers a unique and unpredictable home-brewed fermentation process. Therefore, the need for a controlled kombucha fermentation process has become evident, which requiring a thorough understanding of the microbial composition and its relationship with the metabolites produced. In this study, we investigated the dynamics of microbial communities and metabolites over a 12-day fermentation period of a conventional kombucha-making process. Our findings revealed similarities between the microbial communities in the early (0-2 days) and late (10-12 days) fermentation periods, supporting the principle of back-slopping fermentation. Untargeted metabolite analysis unveiled the presence of harmful biogenic amines in the produced kombucha, with concentrations increasing progressively throughout fermentation, albeit showing relatively lower abundance on days 8 and 12. Additionally, a contrasting trend between ethanol and caffeine content was observed. Canonical correspondence analysis highlighted strong positive correlations between specific bacterial/yeast strains and identified metabolites. In conclusion, our study sheds light on the microbial and metabolite dynamics of kombucha fermentation, emphasizing the importance of microbial control and quality assurance measures in the production process.

6.
Int J Biol Macromol ; 279(Pt 3): 135283, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39233163

RESUMO

Xanthan gum (XG) is a bacterial exopolysaccharide widely used in various industries due to its stability and rheological properties. Low-molecular-weight xanthan gum (LXG) exhibits enhanced properties and broader applications, but current degradation methods are limited. This study introduces an innovative coupled fermentation system for the efficient production of LXG. Endo-xanthanase from Microbacterium sp. XT11 was expressed in Pichia pastoris GS115, exhibiting optimal activity at pH 6.0 and 40 °C, with broad pH tolerance. The optimized coupled fermentation system used bean sprouts juice as nitrogen source, the inoculation quantity of X. campestris: P. pastoris was 1: 3, and the pH was controlled at 6.0. In the bioreactor, the total sugar concentration reached 12.12 g/L, the reducing sugar concentration reached 5.32 g/L, and the endo-xanthanase activity increased to 1150.26 U/L, which were 2.13, 2.3, and 3.71 times higher than those at the shake flask level, respectively. The prepared LXG had a molecular weight of 1093 Da and a monosaccharide ratio of 2.0:1.57:0.89 (glucose, mannose, and glucuronic acid). Bioactivity analysis revealed its antioxidant and prebiotic properties, promoting the growth of beneficial intestinal microbiota and metabolite production. This suggests the potential of LXG as a functional ingredient in intestinal health-focused foods and supplements.

7.
Appl Microbiol Biotechnol ; 108(1): 458, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230670

RESUMO

The advancement of fungal biocontrol agents depends on replacing cereal grains with low-cost agro-industrial byproducts for their economical mass production and development of stable formulations. We propose an innovative approach to develop a rice flour-based formulation of the beneficial biocontrol agent Trichoderma asperelloides CMAA1584 designed to simulate a micro-bioreactor within the concept of full biorefinery process, affording in situ conidiation, extended shelf-life, and effective control of Sclerotinia sclerotiorum, a devastating pathogen of several dicot agricultural crops worldwide. Rice flour is an inexpensive and underexplored byproduct derived from broken rice after milling, capable of sustaining high yields of conidial production through our optimized fermentation-formulation route. Conidial yield was mainly influenced by nitrogen content (0.1% w/w) added to the rice meal coupled with the fermentor type. Hydrolyzed yeast was the best nitrogen source yielding 2.6 × 109 colony-forming units (CFU)/g within 14 days. Subsequently, GControl, GLecithin, GBreak-Thru, GBentonite, and GOrganic compost+Break-Thru formulations were obtained by extrusion followed by air-drying and further assessed for their potential to induce secondary sporulation in situ, storage stability, and efficacy against Sclerotinia. GControl, GBreak-Thru, GBentonite, and GOrganic compost+Break-Thru stood out with the highest number of CFU after sporulation upon re-hydration on water-agar medium. Shelf-life of formulations GControl and GBentonite remained consistent for > 3 months at ambient temperature, while in GBentonite and GOrganic compost+Break-Thru formulations remained viable for 24 months during refrigerated storage. Formulations exhibited similar efficacy in suppressing the myceliogenic germination of Sclerotinia irrespective of their concentration tested (5 × 104 to 5 × 106 CFU/g of soil), resulting in 79.2 to 93.7% relative inhibition. Noteworthily, all 24-month-old formulations kept under cold storage successfully suppressed sclerotia. This work provides an environmentally friendly bioprocess method using rice flour as the main feedstock to develop waste-free granular formulations of Trichoderma conidia that are effective in suppressing Sclerotinia while also improving biopesticide shelf-life. KEY POINTS: • Innovative "bioreactor-in-a-granule" system for T. asperelloides is devised. • Dry granules of aerial conidia remain highly viable for 24 months at 4 °C. • Effective control of white-mold sclerotia via soil application of Trichoderma-based granules.


Assuntos
Ascomicetos , Reatores Biológicos , Fermentação , Oryza , Esporos Fúngicos , Reatores Biológicos/microbiologia , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/metabolismo , Oryza/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Nitrogênio/metabolismo , Hypocreales/metabolismo , Hypocreales/crescimento & desenvolvimento , Agentes de Controle Biológico/química , Trichoderma/metabolismo , Trichoderma/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
8.
Int J Food Microbiol ; 426: 110909, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39288569

RESUMO

Like in many developing countries, the traditional Ethiopian diet relies mainly on starchy staple foods and often lacks sufficient animal-sourced foods which are crucial for cobalamin intake. Furthermore, the concentration of folate in traditionally prepared injera, an Ethiopian cereal-based fermented staple food, is highly variable and injera contains biologically inactive corrinoids. This study aimed to improve the cobalamin and folate content of injera by using cobalamin-producing Propionibacterium freudenreichii and folate-producing Lactiplantibacillus plantarum strains, both individually and combined. Since injera is fermented using backslopping, we also assessed the ability of these strains to produce cobalamin and folate consistently across successive fermentation batches. Changes in the microbial ecosystem were monitored using real-time PCR. The theoretical contribution of the injera prepared using the selected strains to the cobalamin and folate intake of children and women of reproductive age was also calculated. Results showed that using the selected bacterial strains individually increased cobalamin (up to 19.2 µg/100 g of dry matter) and folate (up to 180.2 µg/100 g of dry matter) levels in the injera dough over several backslopping fermentation batches. Regular consumption of the injera with enhanced vitamin content produced using each strain alone would be capable of fulfilling the entire recommended nutrient intake for cobalamin and up to 29 % of the recommended intake for folate for children and women of reproductive age. However, when the strains were used together, the production of both vitamins was reduced. The presence of certain common endogenous bacterial species and genera exhibited significant variability, highlighting the complex response of the native microbiota to the different inoculation strategies employed. Future experiments should consider selecting a microbial consortium comprising non-competing microorganisms to ensure the simultaneous production of cobalamin and folate in fermented foods.

9.
Prep Biochem Biotechnol ; : 1-12, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302656

RESUMO

The Exopolysaccharide (EPS) producing novel strains of Enterococcus previously isolated from the vaginal source of pregnant women were selected based on ropy structure formation. The two selected strains, E.villorum SB-2 and E.rivorum S22-3, were found to be producing 2.87 g/l and 3.14 g/l EPS, respectively, in the minimal media (M17 media) after 24-hour fermentation under anaerobic condition. Both the strains have probiotic properties and have the potential to be used for industrial applications. The production media and fermentation conditions were optimized to enhance the EPS production using the one-factor method, Placket-Burman factorial designing and Central composite design (CCD) of Response surface methodology (RSM). The most relevant factors affecting the EPS yield were sucrose, yeast extract and pH for E.villorum SB2 and sucrose, yeast extract and magnesium sulfate for the E.rivorum S22-3 as determined by Placket-Burman design, whose concentrations were further optimized using CCD. The optimized fermentation conditions gave the total EPS of 9.76 g/l (4 times the initial production) from E.villorum SB-2 and 7.74 g/l (2.5 times the initial production) from E.rivorum S22-3, respectively, after 36-hour incubation at 37 °C. These optimization studies might be helpful during scale-up process for the industrial scale production of these exopolysaccharide.

10.
J Agric Food Chem ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39303156

RESUMO

The diet in early life is essential for the growth and intestinal health later in life. However, beneficial effects of a diet enriched in branched short-chain fatty acids (BSCFAs) for infants are ambiguous. This study aimed to develop a novel fermented protein food, enriched with BSCFAs and assess the effects of dry and wet ferment products on young pig development, nutrient absorption, intestinal barrier function, and gut microbiota and metabolites. A total of 18 young pigs were randomly assigned to three groups. The dry corn gluten-wheat bran mixture (DFCGW) and wet corn gluten-wheat bran mixture (WFCGW) were utilized as replacements for 10% soybean meal in the basal diet. Our results exhibited that the WFCGW diet significantly increased the growth performance of young pigs, enhanced the expression of tight junction proteins, and regulated associated cytokines expression in the colonic mucosa. Simultaneously, the WFCGW diet led to elevated levels of colonic isobutyric and isovaleric acid, as well as the activation of GPR41 and GPR109A. Furthermore, more potential probiotics including Lactobacillus, Megasphaera, and Lachnospiraceae_ND3007_group were enriched in the WFCGW group and positively associated with the beneficial metabolites such as 5-hydroxyindole-3-acetic acid. Differential metabolite KEGG pathway analysis suggested that WFCGW might exert gut health benefits by modulating tryptophan metabolism. In addition, the WFCGW diet significantly increased ghrelin concentrations in serum and hypothalamus and promoted the appetite of young pigs by activating hypothalamic NPY/AGRP neurons. This study extends the knowledge of BSCFAs and provides a reference for the fermented food application in the infant diet.

11.
Bioresour Technol ; 413: 131495, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39307475

RESUMO

Filamentous fungi's secondary metabolites (SMs) possess significant application owing to their distinct structure and diverse bioactivities, yet their restricted yield levels often hinder further research and application. The study developed a response surface methodology-artificial neural network (RSM-ANN) strategy with multi-parameter optimizations of the ANN model to optimize medium for the production of two high-value fungal SMs, echinocandin E and paraherquamide A. Multi-parameter optimization of the ANN model was achieved through stratifying experimental data, fully adjusting neural network internals, and evaluating metaheuristic algorithms for optimal initial weights and biases. Experimental validation of models revealed that ANN-genetic algorithm models outperformed traditional RSM models in terms of determination coefficients, accuracy, and mean squared errors. ANN models showed outstanding robustness across a variety of fungal species, mediums, and experimental designs (Central Composite Design or Box-Behnken Design). This work refines the RSM-ANN optimization technique to increase fungal SM production efficiency, enabling industrial-scale production and applications.

12.
Heliyon ; 10(18): e36860, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39315224

RESUMO

This study was conducted to confirm the effectiveness of kimchi starters (KSs) by investigating their growth characteristics. First, we assessed the growth characteristics of five lactic acid bacteria (LAB) strains (Lactococcus lactis WiKim0124; Companilactobacillus allii WiKim39; and Leuconostoc mesenteroides WiKim0121, WiKim33, and WiKim32) and assessed the effects of different parameters, including organic acids, salinity, acidity, and temperature, on the growth of these LAB. The findings showed that organic acids, particularly acetic and lactic acids that accumulated with the progress in fermentation, were the major players determining the microbial composition of kimchi and the growth of the KSs. Leuconostoc mesenteroides grew well in the presence of acetic and lactic acids than other starts, so it is confirmed that Leuconostoc mesenteroides can dominant in kimchi. In addition, malic acid, which is derived from kimchi ingredients, is used to induce malolactic fermentation by Lactobacillus species, and the progression of malolactic fermentation can be controlled through KSs. Our results suggest that KSs promote the production of organic acids, and the profiling of organic acids, as well as the progress of malolactic fermentation, can be controlled by selecting the suitable KS. Overall, this study demonstrates that kimchi fermentation can be controlled more effectively if the characteristics of KS are understood and used appropriately.

13.
J Environ Manage ; 370: 122581, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39303591

RESUMO

Alkaline anaerobic fermentation is an effective approach for resource utilization and reduction of waste activated sludge (WAS). Perfluorooctanoic acid (PFOA) is widespread in WAS, however, its potential impact on alkaline anaerobic fermentation of WAS remains largely unknown. Hence, this study focused on investigating the influence of PFOA on volatile fatty acids (VFAs) production and sludge reduction during alkaline anaerobic fermentation (pH = 10 ± 0.1), as well as the critical mechanisms. Results demonstrated that low PFOA concentration (5 mg/kg-TS) raised VFAs yield to 109.37%, while high levels of PFOA (25 and 50 mg/kg-TS) remarkably decreased VFAs production to 89.55% and 80.44% of the control. Mechanism exploration revealed that PFOA facilitated the solubilization process, and low PFOA level enhanced the accumulation of VFAs via increased bioavailable substrates and the activities of enzymes and microorganisms. On the contrary, high levels of PFOA were substantial biotoxicity, inducing excessive ROS production, causing oxidative damage, and reducing enzyme activity and functional microbial abundance, thereby decreasing VFAs production. Additionally, further analysis of sludge physicochemical properties confirmed that the effect of PFOA on WAS reduction exhibited the same trend as VFAs production. This work provides a basis for PFOA environmental risk assessment and WAS resource utilization.

14.
Microbiol Spectr ; : e0119424, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287451

RESUMO

Grapes have been cultivated for wine production for millennia. Wine production involves a complex biochemical process where sugars in grape must are converted into alcohol and other compounds by microbial fermentation, primarily by the yeast Saccharomyces cerevisiae. Commercially available S. cerevisiae strains are often used in winemaking, but indigenous (native) strains are gaining attention for their potential to contribute unique flavors. Recent advancements in high-throughput DNA sequencing have revolutionized our understanding of microbial communities during wine fermentation. Indeed, transcriptomic analysis of S. cerevisiae during wine fermentation has revealed a core gene expression program and provided insights into how this yeast adapts to fermentation conditions. Here, we assessed how the age of vines impacts the grape fungal microbiome and used transcriptomics to characterize microbial functions in grape must fermented with commercial and native S. cerevisiae. We discovered that ~130-year-old Zinfandel vines harbor higher fungal loads on their grapes compared to 20-year-old Zinfandel vines, but fungal diversity is similar. Additionally, a comparison of inoculated and uninoculated fermentations showed distinct fungal dynamics, with uninoculated fermentations harboring the yeasts Metschnikowia and Pichia. Transcriptomic analysis revealed significant differences in gene expression between fermentations inoculated and not inoculated with a commercial S. cerevisiae strain. Genes related to metabolism, stress response, and cell adhesion were differentially expressed, indicating varied functionality of S. cerevisiae in these fermentations. These findings provide insights into S. cerevisiae function during fermentation and highlight the potential for indigenous yeast to contribute to wine diversity. IMPORTANCE: Understanding microbial functions during wine fermentation, particularly the role of Saccharomyces cerevisiae, is crucial for enhancing wine quality. While commercially available S. cerevisiae strains are commonly used, indigenous strains can offer unique flavors, potentially reflecting vineyard terroir. By leveraging high-throughput DNA sequencing and transcriptomic analysis, we explored the impact of vine age on the grape mycobiome and characterized microbial functions during grape fermentation. Our findings revealed that older vines harbor higher fungal loads, but fungal diversity remains similar across vine ages. Additionally, uninoculated fermentations exhibited diverse fungal dynamics, including the beneficial wine yeasts Metschnikowia and Pichia. Transcriptomic analysis uncovered significant differences in S. cerevisiae gene expression between inoculated and uninoculated fermentations, highlighting the potential of indigenous yeast to enhance wine diversity and inform winemaking practices.

15.
J Agric Food Chem ; 72(38): 21089-21101, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39267592

RESUMO

To determine the effects of microbial proteins on Qingzhuan tea sensory quality during tea pile fermentation, tea leaf metabolomic and microorganism proteomic analyses were performed. In total, 1835 differential metabolites and 443 differentially expressed proteins of the microorganisms were identified. Correlation analysis between metabolomics and proteomics data revealed that the levels of microbial proteins EG II and CBH I cellulase may play important roles in cell wall construction and permeability, which were crucial for the interaction between tea leaves and microorganisms. Microbial proteins heat shock proteins (HSP), alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and CuAO related to detoxification and stress responses showed a positive correlation with tea theanine, glutamine, γ-aminobutyric acid, glutamic acid, catechin, (-)-gallocatechin gallate, and (-)-catechin gallate, suggesting their effects on tea characteristic compound accumulation, thus affecting Qingzhuan tea sensory quality.


Assuntos
Camellia sinensis , Fermentação , Chá , Camellia sinensis/química , Camellia sinensis/metabolismo , Chá/química , Paladar , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Humanos , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Catequina/metabolismo , Catequina/análise , Álcool Desidrogenase/metabolismo , Aldeído Desidrogenase/metabolismo , Aldeído Desidrogenase/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteômica , Glutamatos
16.
Curr Res Food Sci ; 9: 100838, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39309408

RESUMO

A recycled fermented shrimp paste made by adding old shrimp paste (Antarctic krill paste that has been fermented for 28 T in a room temperature location) and fermenting it again for 28 days. To investigate the changes in their physicochemical indices: water content, volatile salt base nitrogen, malondialdehyde content, protein content and total colony count during fermentation. The flavour substances of shrimp paste samples at the 28 T were investigated by GC-IMS, and the results showed that 31 volatile components were determined. Aldehydes isoamyl alcohol and dimethyl sulphide contributed more to the flavour of Antarctic krill paste. The microbial dynamics during fermentation were detected using high-throughput sequencing. It was found that the rate of dominant flora formation accelerated with the addition of more old shrimp paste. The higher the salinity was, the higher was the species richness. The dominant bacteria genera were more diversified.

17.
Heliyon ; 10(18): e37598, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39309899

RESUMO

The choice of the starchy ingredients as well as that of the yeasts strongly can represent a useful tool to differentiate the final beers. Our research investigated twelve white beers obtained applying a 2-factor mixed 3-level/4-level experimental design. The first factor was the cereal mixture, with 3 combinations of barley malt (65 %) and unmalted wheat (35 % of common, durum, or emmer). The second factor was the yeast used to carry out the fermentation trials, i.e.: a S. cerevisiae starter strain (WB06); an oenological S. cerevisiae strain (9502); two mixed starters made of an oenological Schizosaccharomyces pombe strain (6956) and, alternatively, one of the two S. cerevisiae strains. Most beer attributes were significantly (p < 0.05) influenced by the two considered factors with the following exceptions: the wheat species did not affect maltotriose, maltose, pH, total and volatile acidity, floral flavour, and sweetness; the yeast did not exert significant effects on foam colour, turbidity, overall olfactory intensity, yeast flavour, and body. The flavour of fruits and aromatic herbs were not influenced by the factors studied. Alcohol content was maximised using the unmalted durum wheat (∼7 %) and S. cerevisiae WB06 (∼6.8 %). The beer antioxidant content was increased by the use of emmer (566 mg/L) and by the application of the mixed inoculum (478-487 mg/L). The beers made with unmalted common wheat and fermented by the S. cerevisiae strains alone obtained the best overall sensory score (3.7). As shown by the Principal Component Analysis, the beers were better classified by the type of unmalted wheat than by the fermenting yeast. A multiple regression analysis was performed by fitting the analytical parameters that highlighted significant differences among the beers to a second-order polynomial model. Data concerning colour, glycerol concentration, FC-TPC, and antioxidant activity were satisfactorily predicted (R2 > 0.8) by the fitted models.

18.
Heliyon ; 10(18): e36975, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39309957

RESUMO

Wine is widely consumed throughout the world and represents a significant financial market, but production faces increasing challenges. While consumers progressively value more complex flavor profiles, regional authenticity, and decreased use of additives, winemakers strive for consistency among climate change, characterized by rising environmental temperatures and sun burn events. This often leads to grapes reaching phenolic maturity with higher sugar levels, and increased microbial spoilage risk. Herein, we addressed these dual concerns by investigating the use of autochthonous Saccharomyces cerevisiae strains for fermentations of grape musts resulting from these altered conditions. We characterized underexplored repositories of naturally-occurring strains isolated from different environments and geographical regions, regarding adequate enological properties (e.g., high cell growth, reduced production of H2S, ethanol and acetic acid, increased SO2 resistance, killer activity), and other less frequently investigated properties (resistance to osmotic stress, potassium and aluminium silicates and fungicides). The phenotypic data were organized in a biobank, and bioinformatic analysis grouped the strains according to their characteristics. Furthermore, we analyzed the potential of four Portuguese isolates to be used in fermentations of grape musts with high sugar levels, uncovering promising candidates. This research therefore contributes to ongoing efforts to increase sustainability and quality of wine production.

19.
Anim Nutr ; 18: 408-418, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39309973

RESUMO

This study aimed to investigate the effects of solid-state fermentation products of yeast (SFPY) on liver and intestinal health and disease resistance of common carp (Cyprinus carpio). A total of 200 common carp with an initial average weight of 2.55 ± 0.004 g were divided into 5 groups (4 replications per group and 10 fish per replication), and were fed with one of five diets, including a control diet and 4 diets supplemented with 2‰ (Y2), 3‰ (Y3), 4‰ (Y4), or 5‰ (Y5) SFPY, respectively, for 8 weeks. Results indicated that, the addition of SFPY to the diet of common carp did not affect the growth performance or survival rate of fish (P = 0.253). Interestingly, with the addition of SFPY, the triacylglycerol (TAG) content of the liver presented a linear decreasing tendency (P = 0.004), with significantly decreased in Y4 and Y5 groups (P = 0.035) compared with control. Serum lipopolysaccharide (LPS) content and diamine oxidase (DAO) activity presented a negative linear relationship with the addition of SFPY (P = 0.015, P = 0.030), while serum lipopolysaccharide binding protein (LBP) content first decreased and then increased (P < 0.001). The total antioxidant capacity (T-AOC) in the intestine of fish increased continuously with increasing SFPY supplementation (P = 0.026), reaching the highest level in Y5 group. The villus height in all experimental groups were significantly higher than that in the control group (P < 0.001). Furthermore, compared to the control, adding 3‰ SFPY to the control diet of common carp significantly increased the relative abundance of Fusobacteria (P = 0.018) and decreased that of Proteobacteria (P = 0.039) at phylum level, and increased the relative abundance of Cetobacterium (P= 0.018) and decreased that of Shewanella (P = 0.013) at genus level. Compared with the control, the relative mRNA expression level of spring viraemia of carp virus N protein (SVCV -n) in the kidney was lower than that of the control group without significance and bottomed out in Y4 group (P = 0.138). In conclusion, dietary SFPY enhanced the SVCV resistance capacity of common carp by improving liver and intestinal health and modulating the gut microbiota. Thus, SFPY is a potential feed additive to be used in aquaculture to reduce the huge economic loss of common carp due to SVCV disease. Based on liver TAG content and intestinal villus height, the optimal addition level of SFPY was 3.02‰ and 2.72‰, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA