Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430766

RESUMO

GPR37L1 is an orphan G-protein-coupled receptor, which is implicated in neurological disorders, but its normal physiological role is poorly understood. Its close homologue, GPR37, is implicated in Parkinson's disease and affective disorders. In this study, we set out to characterize adult and middle-aged global GPR37L1 knock-out (KO) mice regarding emotional behaviors. Our results showed that GPR37L1KO animals, except adult GPR37L1KO males, exhibited impaired retention of aversive memory formation as assessed by the shorter retention latency in a passive avoidance task. Interestingly, the viral-mediated deletion of GPR37L1 in conditional knockout mice in the hippocampus of middle-aged mice also showed impaired retention in passive avoidance tasks, similar to what was observed in global GPR37L1KO mice, suggesting that hippocampal GPR37L1 is involved in aversive learning processes. We also observed that middle-aged GPR37L1KO male and female mice exhibited a higher body weight than their wild-type counterparts. Adult and middle-aged GPR37L1KO female mice exhibited a reduced level of serum corticosterone and middle-aged GPR37L1KO females showed a reduced level of epinephrine in the dorsal hippocampus in the aftermath of passive avoidance task, with no such effects observed in GPR37L1KO male mice, suggesting that lack of GPR37L1 influences behavior and biochemical readouts in age- and sex-specific manners.


Assuntos
Afeto , Transtornos da Memória , Animais , Camundongos , Masculino , Feminino , Camundongos Endogâmicos C57BL , Transtornos da Memória/genética , Camundongos Knockout , Hipocampo , Receptores Acoplados a Proteínas G/genética
2.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430934

RESUMO

Renal luminal sodium transport is essential for physiological blood pressure control, and abnormalities in this process are strongly implicated in the pathogenesis of essential hypertension. Renal G protein-coupled receptors (GPCRs) are critical for the regulation of the reabsorption of essential nutrients, ions, and water from the glomerular filtrate. Recently, we showed that GPCR 37L1 (GPR37L1) is expressed on the apical membrane of renal proximal tubules (RPT) and regulates luminal sodium transport and blood pressure by modulating the function of the sodium proton exchanger 3 (NHE3). However, little is known about GPR37L1 intracellular signaling. Here, we show that GPR37L1 is localized to the nuclear membrane, in addition to the plasma membrane in human RPT cells. Furthermore, GPR37L1 signals via the PI3K/AKT/mTOR pathway to decrease the expression of DNA (cytosine-5)-methyltransferase 1 (DNMT1) and enhance NHE3 transcription. Overall, we demonstrate the direct role of a nuclear membrane GPCR in the regulation of renal sodium through epigenetic gene regulation.


Assuntos
Fosfatidilinositol 3-Quinases , Trocadores de Sódio-Hidrogênio , Humanos , Trocador 3 de Sódio-Hidrogênio/genética , Trocador 3 de Sódio-Hidrogênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sódio/metabolismo , Epigênese Genética
3.
Cells ; 11(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35681509

RESUMO

Understanding the neurogenic causes of obesity may reveal novel drug targets to counter the obesity crisis and associated sequelae. Here, we investigate whether the deletion of GPR37L1, an astrocyte-specific orphan G protein-coupled receptor, affects whole-body energy homeostasis in mice. We subjected male Gpr37l1-/- mice and littermate wildtype (Gpr37l1+/+, C57BL/6J background) controls to either 12 weeks of high-fat diet (HFD) or chow feeding, or to 1 year of chow diet, with body composition quantified by EchoMRI, glucose handling by glucose tolerance test and metabolic rate by indirect calorimetry. Following an HFD, Gpr37l1-/- mice had similar glucose handling, body weight and fat mass compared with wildtype controls. Interestingly, we observed a significantly elevated respiratory exchange ratio in HFD- and chow-fed Gpr37l1-/- mice during daylight hours. After 1 year of chow feeding, we again saw no differences in glucose and insulin tolerance or body weight between genotypes, nor in energy expenditure or respiratory exchange ratio. However, there was significantly lower fat mass accumulation, and higher ambulatory activity in the Gpr37l1-/- mice during night hours. Overall, these results indicate that while GPR37L1 may play a minor role in whole-body metabolism, it is not a viable clinical target for the treatment of obesity.


Assuntos
Obesidade , Receptores Acoplados a Proteínas G , Animais , Peso Corporal , Glucose/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
4.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628339

RESUMO

Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare type of vacuolating leukodystrophy (white matter disorder), which is mainly caused by defects in MLC1 or glial cell adhesion molecule (GlialCAM) proteins. In addition, autoantibodies to GlialCAM are involved in the pathology of multiple sclerosis. MLC1 and GLIALCAM genes encode for membrane proteins of unknown function, which has been linked to the regulation of different ion channels and transporters, such as the chloride channel VRAC (volume regulated anion channel), ClC-2 (chloride channel 2), and connexin 43 or the Na+/K+-ATPase pump. However, the mechanisms by which MLC proteins regulate these ion channels and transporters, as well as the exact function of MLC proteins remain obscure. It has been suggested that MLC proteins might regulate signalling pathways, but the mechanisms involved are, at present, unknown. With the aim of answering these questions, we have recently described the brain GlialCAM interactome. Within the identified proteins, we could validate the interaction with several G protein-coupled receptors (GPCRs), including the orphan GPRC5B and the proposed prosaposin receptors GPR37L1 and GPR37. In this review, we summarize new aspects of the pathophysiology of MLC disease and key aspects of the interaction between GPR37 receptors and MLC proteins.


Assuntos
Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Megalencefalia , Malformações do Sistema Nervoso , Astrócitos/metabolismo , Canais de Cloreto/metabolismo , Cistos , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
5.
Int J Mol Sci ; 23(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35409385

RESUMO

Recent studies have shed light on the diverse and complex roles of G-protein coupled receptors (GPCRs) in the pathophysiology of stroke. These receptors constitute a large family of seven transmembrane-spanning proteins that play an intricate role in cellular communication mechanisms which drive both tissue injury and repair following ischemic stroke. Orphan GPCRs represent a unique sub-class of GPCRs for which no natural ligands have been found. Interestingly, the majority of these receptors are expressed within the central nervous system where they represent a largely untapped resource for the treatment of neurological diseases. The focus of this review will thus be on the emerging roles of two brain-expressed orphan GPCRs, GPR37 and GPR37 L1, in regulating various cellular and molecular processes underlying ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Encéfalo/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Acidente Vascular Cerebral/metabolismo
6.
Dev Neurobiol ; 81(8): 975-984, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34601807

RESUMO

Oligodendrocytes (OLs) continue to be generated from OL precursors (OPs) in the adult mammalian brain. Adult-born OLs are believed to contribute to neural plasticity, learning and memory through a process of "adaptive myelination," but how adult OL generation and adaptive myelination are regulated remains unclear. Here, we report that the glia-specific G protein-coupled receptor 37-like 1 (GPR37L1) is expressed in subsets of OPs and newly formed immature OLs in adult mouse brain. We found that OP proliferation and differentiation are inhibited in the corpus callosum of adult Gpr37l1 knockout mice, leading to a reduction in the number of adult-born OLs. Our data raise the possibility that GPR37L1 is mechanistically involved in adult OL generation and adaptive myelination, and suggest that GPR37L1 might be a useful functional marker of OPs that are committed to OL differentiation.


Assuntos
Oligodendroglia , Receptores Acoplados a Proteínas G , Animais , Encéfalo/metabolismo , Diferenciação Celular , Corpo Caloso/metabolismo , Mamíferos/metabolismo , Camundongos , Camundongos Knockout , Bainha de Mielina/fisiologia , Oligodendroglia/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
7.
Am J Physiol Heart Circ Physiol ; 321(4): H807-H817, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34533400

RESUMO

Multiple mouse lines lacking the orphan G protein-coupled receptor, GPR37L1, have elicited disparate cardiovascular phenotypes. The first Gpr37l1 knockout mice study to be published reported a marked elevation in systolic blood pressure (SBP; ∼60 mmHg), revealing a potential therapeutic opportunity. The phenotype differed from our own independently generated knockout line, where male mice exhibited equivalent baseline blood pressure to wild type. Here, we attempted to reproduce the first study by characterizing the cardiovascular phenotype of both the original knockout and transgenic lines alongside a C57BL/6J control line, using the same method of blood pressure measurement. The present study supports the findings from our independently developed Gpr37l1 knockout line, finding that SBP and diastolic blood pressure (DBP) are not different in the original Gpr37l1 knockout male mice (SBP: 130.9 ± 5.3 mmHg; DBP: 90.7 ± 3.0 mmHg) compared with C57BL/6J mice (SBP: 123.1 ± 4.1 mmHg; DBP: 87.0 ± 2.7 mmHg). Instead, we attribute the apparent hypertension of the knockout line originally described to comparison with a seemingly hypotensive transgenic line (SBP 103.7 ± 5.0 mmHg; DBP 71.9 ± 3.7 mmHg). Additionally, we quantified myocardial GPR37L1 transcript in humans, which was suggested to be downregulated in cardiovascular disease. We found that GPR37L1 has very low native transcript levels in human myocardium and that expression is not different in tissue samples from patients with heart failure compared with sex-matched healthy control tissue. These findings indicate that cardiac GPR37L1 expression is unlikely to contribute to the pathophysiology of human heart failure.NEW & NOTEWORTHY This study characterizes systolic blood pressure (SBP) in a Gpr37l1 knockout mouse line, which was previously reported to have ∼60 mmHg higher SBP compared with a transgenic line. We observed only a ∼27 mmHg SBP difference between the lines. However, when compared with C57BL/6J mice, knockout mice showed no difference in SBP. We also investigated GPR37L1 mRNA abundance in human hearts and observed no difference between healthy and failing heart samples.


Assuntos
Pressão Sanguínea , Insuficiência Cardíaca/metabolismo , Hipertensão/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adulto , Animais , Estudos de Casos e Controles , Feminino , Genótipo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Humanos , Hipertensão/genética , Hipertensão/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Fenótipo , Receptores Acoplados a Proteínas G/genética , Especificidade da Espécie
8.
Am J Physiol Renal Physiol ; 316(3): F506-F516, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30566002

RESUMO

G protein-coupled receptors (GPCRs) in the kidney regulate the reabsorption of essential nutrients, ions, and water from the glomerular filtrate. Abnormalities in renal epithelial ion transport play important roles in the pathogenesis of essential hypertension. The orphan G protein-coupled receptor 37L1 (GPR37L1), also known as endothelin receptor type B-like protein (ETBR-LP2), is expressed in several regions in the brain, but its expression profile and function in peripheral tissues are poorly understood. We found that GPR37L1 mRNA expression is highest in the brain, followed by the stomach, heart, testis, and ovary, with moderate expression in the kidney, pancreas, skeletal muscle, liver, lung, and spleen. Immunofluorescence analyses revealed the expression of GPR37L1 in specific regions within some organs. In the kidney, GPR37L1 is expressed in the apical membrane of renal proximal tubule cells. In human renal proximal tubule cells, the transient expression of GPR37LI increased intracellular sodium, whereas the silencing of GPR37LI decreased intracellular sodium. Inhibition of Na+/H+ exchanger isoform 3 (NHE3) activity abrogated the GPR37L1-mediated increase in intracellular sodium. Renal-selective silencing of Gpr37l1 in mice increased urine output and sodium excretion and decreased systolic and diastolic blood pressures. The renal-selective silencing of GPR37L1 decreased the protein expression of NHE3 but not the expression of Na+-K+-ATPase or sodium-glucose cotransporter 2. Our findings show that in the kidney, GPR37L1 participates in renal proximal tubule luminal sodium transport and regulation of blood pressure by increasing the renal expression and function of NHE3 by decreasing cAMP production. The role of GPR37L1, expressed in specific cell types in organs other than the kidney, remains to be determined.


Assuntos
Pressão Sanguínea/fisiologia , Transporte de Íons/fisiologia , Rim/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sódio/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular , AMP Cíclico/metabolismo , Humanos , Túbulos Renais Proximais/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Receptores Acoplados a Proteínas G/genética , Trocadores de Sódio-Hidrogênio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
9.
Exp Neurol ; 312: 33-42, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30452905

RESUMO

The G-protein coupled receptor 37-like 1 (Gpr37l1) is specifically expressed in most astrocytic glial cells, including cerebellar Bergmann astrocytes and interacts with patched 1 (Ptch1), a co-receptor of the sonic hedgehog (Shh)-smoothened (Smo) signaling complex. Gpr37l1 null mutant mice exhibit precocious post-natal cerebellar development, with altered Shh-Smo mitogenic cascade and premature down-regulation of granule cell precursor (GCP) proliferation. Gpr37l1 expression is downregulated in medulloblastoma (MB) and upregulated in glioma and glioblastoma tumors. Shh-associated MBs originate postnatally, from dysregulated hyperproliferation of GCPs in developing cerebellum's external granular layer (EGL), as shown in heterozygous Ptch1+/- knock-out mouse strains that model human MB occurrence and progression. This study investigates cerebellar MB phenotypes in newly produced Gpr37l1, Ptch1 double mutant mice. Natural history analysis shows that Gpr37l1 genetic ablation, in Ptch1+/- model animals, results in marked deferment of post-natal tumor occurrence and decreased incidence of more aggressive tumor types. It is also associated with the delayed and diminished presence of more severe types of hyperplastic lesions in Ptch1+/- mice. Consistently, during early post-natal development Gpr37l1-/-;Ptch1+/- pups exhibit reduction in cerebellar GCP proliferation and EGL thickness and a precocious, sustained expression of wingless-type MMTV integration site member 3 (Wnt3), a specific inhibitor of Shh-induced neuronal mitogenesis, in comparison with Ptch1+/- heterozygous single mutants. These findings highlight the specific involvement of Gpr37l1 in modulating postnatal cerebellar Shh-Ptch1-Smo mitogenic signaling in both normal and pathological conditions. The novel Gpr37l1-/-;Ptch1+/- mouse models may thus be instrumental in the detailed characterization of the initial phases of Shh-associated MB insurgence and development.


Assuntos
Carcinogênese/metabolismo , Neoplasias Cerebelares/metabolismo , Meduloblastoma/metabolismo , Receptor Patched-1/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Animais , Carcinogênese/genética , Proliferação de Células/fisiologia , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Feminino , Masculino , Meduloblastoma/genética , Meduloblastoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor Patched-1/genética , Receptores Acoplados a Proteínas G/genética
10.
Neuropharmacology ; 152: 51-57, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423289

RESUMO

Receptor-receptor interactions are essential to fine tune receptor responses and new techniques enable closer characterization of the interactions between involved proteins directly in the plasma membrane. Fluorescence cross-correlation spectroscopy (FCCS), which analyses concurrent movement of bound molecules with single-molecule detection limit, was here used to, in live N2a cells, study interactions between the Parkinson's disease (PD) associated orphan receptor GPR37, its homologue GPR37L1, and the two splice variants of the dopamine 2 receptor (D2R). An interaction between GPR37 and both splice forms of D2R was detected. 4-phenylbutyrate (4-PBA), a neuroprotective chemical chaperone known to increase GPR37 expression at the cell surface, increased the fraction of interacting molecules. The interaction was also increased by pramipexole, a D2R agonist commonly used in the treatment of PD, indicating a possible clinically relevance. Cross-correlation, indicating interaction between GPR37L1 and the short isoform of D2R, was also detected. However, this interaction was not changed with 4-PBA or pramipexole treatment. Overall, these data provide further evidence that heteromeric GPR37-D2R exist and can be pharmacologically modulated, which is relevant for the treatment of PD. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.


Assuntos
Receptores de Dopamina D2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Agonistas de Dopamina/farmacologia , Humanos , Camundongos , Pramipexol/farmacologia , Ligação Proteica/efeitos dos fármacos , Receptores de Dopamina D2/química , Receptores Acoplados a Proteínas G/química
11.
Glia ; 66(11): 2414-2426, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30260505

RESUMO

Discovery of neuroprotective pathways is one of the major priorities for neuroscience. Astrocytes are natural neuroprotectors and it is likely that brain resilience can be enhanced by mobilizing their protective potential. Among G-protein coupled receptors expressed by astrocytes, two highly related receptors, GPR37L1 and GPR37, are of particular interest. Previous studies suggested that these receptors are activated by a peptide Saposin C and its neuroactive fragments (prosaptide TX14(A)), which were demonstrated to be neuroprotective in various animal models by several groups. However, pairing of Saposin C or prosaptides with GPR37L1/GPR37 has been challenged and presently GPR37L1/GPR37 have regained their orphan status. Here, we demonstrate that in their natural habitat, astrocytes, these receptors mediate a range of effects of TX14(A), including protection from oxidative stress. The Saposin C/GPR37L1/GPR37 pathway is also involved in the neuroprotective effect of astrocytes on neurons subjected to oxidative stress. The action of TX14(A) is at least partially mediated by Gi-proteins and the cAMP-PKA axis. On the other hand, when recombinant GPR37L1 or GPR37 are expressed in HEK293 cells, they are not functional and do not respond to TX14(A), which explains unsuccessful attempts to confirm the ligand-receptor pairing. Therefore, this study identifies GPR37L1/GPR37 as the receptors for TX14(A), and, by extension of Saposin C, and paves the way for the development of neuroprotective therapeutics acting via these receptors.


Assuntos
Astrócitos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Saposinas/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Animais Recém-Nascidos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Colforsina/farmacologia , AMP Cíclico/análogos & derivados , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Embrião de Mamíferos , Células HEK293 , Humanos , L-Lactato Desidrogenase/metabolismo , Fatores de Crescimento Neural/farmacologia , Fármacos Neuroprotetores/química , Interferência de RNA/fisiologia , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Saposinas/química , Água/farmacologia , Ferimentos e Lesões/tratamento farmacológico
12.
Glia ; 66(1): 47-61, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28795439

RESUMO

We show that the G protein-coupled receptor GPR37-like 1 (GPR37L1) is expressed in most astrocytes and some oligodendrocyte precursors in the mouse central nervous system. This contrasts with GPR37, which is mainly in mature oligodendrocytes. Comparison of wild type and Gpr37l1-/- mice showed that loss of GPR37L1 did not affect the input resistance or resting potential of astrocytes or neurons in the hippocampus. However, GPR37L1-mediated signalling inhibited astrocyte glutamate transporters and - surprisingly, given its lack of expression in neurons - reduced neuronal NMDA receptor (NMDAR) activity during prolonged activation of the receptors as occurs in ischemia. This effect on NMDAR signalling was not mediated by a change in the release of D-serine or TNF-α, two astrocyte-derived agents known to modulate NMDAR function. After middle cerebral artery occlusion, Gpr37l1 expression was increased around the lesion. Neuronal death was increased by ∼40% in Gpr37l1-/- brain compared to wild type in an in vitro model of ischemia. Thus, GPR37L1 protects neurons during ischemia, presumably by modulating extracellular glutamate concentration and NMDAR activation.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Astrócitos/metabolismo , Infarto da Artéria Cerebral Média/terapia , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciais de Ação/genética , Animais , Animais Recém-Nascidos , Ácido Aspártico/farmacologia , Astrócitos/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Hipocampo/citologia , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , N-Metilaspartato/farmacologia , Neurônios/fisiologia , Receptores Acoplados a Proteínas G/genética , Reconhecimento Psicológico/fisiologia
13.
Cell Mol Neurobiol ; 37(1): 145-154, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26935062

RESUMO

Cellular primary cilia crucially sense and transduce extracellular physicochemical stimuli. Cilium-mediated developmental signaling is tissue and cell type specific. Primary cilia are required for cerebellar differentiation and sonic hedgehog (Shh)-dependent proliferation of neuronal granule precursors. The mammalian G-protein-coupled receptor 37-like 1 is specifically expressed in cerebellar Bergmann glia astrocytes and participates in regulating postnatal cerebellar granule neuron proliferation/differentiation and Bergmann glia and Purkinje neuron maturation. The mouse receptor protein interacts with the patched 1 component of the cilium-associated Shh receptor complex. Mice heterozygous for patched homolog 1 mutations, like heterozygous patched 1 humans, have a higher incidence of Shh subgroup medulloblastoma (MB) and other tumors. Cerebellar cells bearing primary cilia were identified during postnatal development and in adulthood in two mouse strains with altered Shh signaling: a G-protein-coupled receptor 37-like 1 null mutant and an MB-susceptible, heterozygous patched homolog 1 mutant. In addition to granule and Purkinje neurons, primary cilia were also expressed by Bergmann glia astrocytes in both wild-type and mutant animals, from birth to adulthood. Variations in ciliary number and length were related to the different levels of neuronal and glial cell proliferation and maturation, during postnatal cerebellar development. Primary cilia were also detected in pre-neoplastic MB lesions in heterozygous patched homolog 1 mutant mice and they could represent specific markers for the development and analysis of novel cerebellar oncogenic models.


Assuntos
Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Cílios/genética , Cílios/patologia , Meduloblastoma/genética , Meduloblastoma/patologia , Animais , Animais Recém-Nascidos , Cerebelo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética
14.
IBRO Rep ; 2: 31-40, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30135931

RESUMO

Prosaposin (PSAP), a highly conserved glycoprotein, is a precursor of saposins A-D. Accumulating evidence suggests that PSAP is a neurotrophic factor that induces differentiation and prevents death in a variety of neuronal cells through the active region within the saposin C domain both in vivo and in vitro. Recently, GPR37 and GPR37L1 were recognized as PSAP receptors. In this study, we examined the alteration in expression of PSAP and its receptors in the cerebellum using rats injected with kainic acid (KA). The results show that PSAP was strongly expressed in the cytoplasm of Purkinje cells and interneurons in the molecular layer, and that PSAP expression in both types of neurons was markedly enhanced following KA treatment. Immunoblotting revealed that the expression of GPR37 was diminished significantly three days after KA injection compared with control rats; however, no changes were observed through immunostaining. No discernable changes were found in GPR37L1. These findings may help us to understand the role of PSAP and the GPR37 and GPR37L1 receptors in alleviating the neural damage caused by KA.

15.
Front Pharmacol ; 6: 275, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635605

RESUMO

Orphan G protein-coupled receptors (GPCRs) represent a largely untapped resource for the treatment of a variety of diseases, despite sophisticated advances in drug discovery. Two promising orphan GPCRs are the endothelin B receptor-like proteins, GPR37 [ET(B)R-LP, Pael-R] and GPR37L1 [ET(B)R-LP-2]. Originally identified through searches for homologs of endothelin and bombesin receptors, neither GPR37 nor GPR37L1 were found to bind endothelins or related peptides. Instead, GPR37 was proposed to be activated by head activator (HA) and both GPR37 and GPR37L1 have been linked to the neuropeptides prosaposin and prosaptide, although these pairings are yet to be universally acknowledged. Both orphan GPCRs are widely expressed in the brain, where GPR37 has received the most attention for its link to Parkinson's disease and parkinsonism, while GPR37L1 deletion leads to precocious cerebellar development and hypertension. In this review, the existing pharmacology and physiology of GPR37 and GPR37L1 is discussed and the potential therapeutic benefits of targeting these receptors are explored.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA