Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Front Vet Sci ; 11: 1422408, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091389

RESUMO

Although not registered for feline infectious peritonitis (FIP) in Japan, nucleoside analogs have shown efficacy and we have been offering them to owners of cats with FIP at our clinic since January 2020. The aim of this study was to investigate outcomes in cats with FIP who received GS-441524 or molnupiravir. Diagnosis of FIP was based on clinical signs, laboratory test results, and the presence of feline coronavirus RNA in blood or effusion aspirate. After providing verbal and written information, owners of cats with a presumptive diagnosis of FIP with a were offered antiviral treatment with commercially sourced GS-441524 from June 2020, and either GS-441524 or compounded molnupiravir from January 2022. Dosing was 12.5-25 mg/kg/day for GS-441524 and 20-40 mg/kg/day for molnupiravir, depending on the presence of effusion and neurological and/or ocular signs, and continued for 84 days. Overall, 118 cats with FIP (effusive in 76) received treatment, 59 with GS-4421524 and 59 with molnupiravir. Twenty cats died, 12/59 (20.3%) in the GS-441524 group and 8/59 (13.6%) in the molnupiravir group (p = 0.326), with most deaths within the first 10 days of starting treatment. Among survivors, neurological and ocular signs resolved in all but one cat, who had persistent seizures. Of the cats completing treatment, 48/48 in the GS-441524 group and 51/52 in the molnupiravir group achieved remission. Laboratory parameters normalized within 6 to 7 weeks of starting drug administration. Adverse events, such as primarily hepatic function abnormalities, were transient and resolved without specific intervention. Our data indicate that GS-441524 and molnupiravir show similar effects and safety in cats with FIP.

3.
Biomed Chromatogr ; : e5965, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039650

RESUMO

The aim of this study was to assess the pharmacokinetics of the existing remdesivir intravenous formulation (100 mg dose) against the newly developed oral formulation (20 mg dose) for remdesivir and its active nucleoside metabolite (GS-441524) in beagle dogs followed by healthy human volunteers. A quantification method for remdesivir and its active nucleoside metabolite (GS-441524) in beagle dog and human plasma has been developed and validated using liquid chromatography coupled to triple quadrupole mass spectrometry detection. The analytical methods for beagle dogs and human differ in the calibration curve range, plasma matrix, processing volume, reconstitution volume and injection volume; however all other parameters were same in both methods. A simple protein precipitation extraction was carried out using acetonitrile containing the internal standard remdesivir D5. Remdesivir and GS-441524 were separated on an Endurus C-18P, 100 × 4.6 mm, 3 µm column and detected using a mass spectrometer with electrospray ionization in positive ion mode. The ion transitions used were m/z 603.1 → m/z 200.0 for remdesivir, m/z 292.0 → m/z 202.2 for GS-441524 and m/z 608.2 → m/z 205.1 for remdesivir D5. The calibration curve results were linear in beagle dog plasma (2.0-2,000.8 ng/ml range for remdesivir and 2.0-1,500.4 ng/ml for GS-441524) and human plasma (30.0-4,503.9 ng/ml range for remdesivir and 2.0-200.4 ng/ml for GS-441524). The recovery was >90% in beagle dog and human plasma. These methods were successfully used to determine the pharmacokinetic parameters of the intravenous injection and subcutaneous tablets dosage forms in beagle dogs and healthy humans.

4.
Viruses ; 16(7)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39066306

RESUMO

In the past, feline infectious peritonitis (FIP) caused by feline coronavirus (FCoV) was considered fatal. Today, highly efficient drugs, such as GS-441524, can lead to complete remission. The currently recommended treatment duration in the veterinary literature is 84 days. This prospective randomized controlled treatment study aimed to evaluate whether a shorter treatment duration of 42 days with oral GS-441524 obtained from a licensed pharmacy is equally effective compared to the 84-day regimen. Forty cats with FIP with effusion were prospectively included and randomized to receive 15 mg/kg of GS-441524 orally every 24h (q24h), for either 42 or 84 days. Cats were followed for 168 days after treatment initiation. With the exception of two cats that died during the treatment, 38 cats (19 in short, 19 in long treatment group) recovered with rapid improvement of clinical and laboratory parameters as well as a remarkable reduction in viral loads in blood and effusion. Orally administered GS-441524 given as a short treatment was highly effective in curing FIP without causing serious adverse effects. All cats that completed the short treatment course successfully were still in complete remission on day 168. Therefore, a shorter treatment duration of 42 days GS-441524 15 mg/kg can be considered equally effective.


Assuntos
Antivirais , Coronavirus Felino , Peritonite Infecciosa Felina , Carga Viral , Animais , Gatos , Peritonite Infecciosa Felina/tratamento farmacológico , Peritonite Infecciosa Felina/virologia , Estudos Prospectivos , Coronavirus Felino/efeitos dos fármacos , Feminino , Administração Oral , Masculino , Antivirais/administração & dosagem , Antivirais/uso terapêutico , Carga Viral/efeitos dos fármacos , Resultado do Tratamento , Adenosina/análogos & derivados
5.
J Pharm Biomed Anal ; 247: 116248, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823223

RESUMO

GS-441524 is an adenosine nucleoside antiviral demonstrating significant efficacy in the treatment of feline infectious peritonitis (FIP), an otherwise fatal illness, resulting from infection with feline coronavirus. However, following the emergence of COVID-19, veterinary development was halted, and Gilead pursued clinical development of a GS-441524 pro-drug, resulting in the approval of Remdesivir under an FDA emergency use authorization. Despite lack of regulatory approval, GS-441524 is available without a prescription through various unlicensed online distributors and is commonly purchased by pet owners for the treatment of FIP. Herein, we report data obtained from the analytical characterization of two feline renal calculi, demonstrating the propensity for GS-441524 to cause renal toxicity through drug-induced crystal nephropathy in vivo. As definitive diagnosis of drug-induced crystal nephropathy requires confirmation of the lithogenic material to accurately attribute a mechanism of toxicity, renal stone composition and crystalline matrix were characterized using ultra-performance liquid chromatography photodiode array detection (UPLC-PDA), ultra-performance liquid chromatography mass spectrometry (LCMS), nuclear magnetic resonance (NMR) spectroscopy, X-ray powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). This work serves to provide the first analytical confirmation of GS-441524-induced crystal nephropathy in an effort to support toxicologic identification of adverse renal effects caused by administration of GS-441524 or any pro-drug thereof.


Assuntos
Monofosfato de Adenosina , Alanina , Antivirais , Animais , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/análise , Gatos , Cálculos Renais/induzido quimicamente , Tratamento Farmacológico da COVID-19 , Adenosina/análogos & derivados , Doenças do Gato/induzido quimicamente , Doenças do Gato/tratamento farmacológico , Cromatografia Líquida de Alta Pressão/métodos , Espectroscopia de Ressonância Magnética/métodos
6.
J Infect Dis ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839047

RESUMO

BACKGROUND: Pregnant people with COVID-19 experience higher risk for severe disease and adverse pregnancy outcomes, but no pharmacokinetic (PK) data exist to support dosing of COVID-19 therapeutics during pregnancy. We report PK and safety data for intravenous remdesivir in pregnancy. METHODS: IMPAACT 2032 was a phase IV prospective, open-label, non-randomized opportunistic study of hospitalized pregnant and non-pregnant women receiving intravenous remdesivir as part of clinical care. Intensive PK sampling was performed on infusion days 3, 4, or 5 with collection of plasma and peripheral blood mononuclear cells (PBMCs). Safety data were recorded from first infusion through 4 weeks post-last infusion and at delivery. Geometric mean ratios (GMR) (90% confidence intervals [CI]) of PK parameters between pregnant and non-pregnant women were calculated. RESULTS: Fifty-three participants initiated remdesivir (25 pregnant; median (IQR) gestational age 27.6 (24.9, 31.0) weeks). Plasma exposures of remdesivir, its two major metabolites (GS-704277 and GS-441524), and the free remdesivir fraction were similar between pregnant and non-pregnant participants. Concentrations of the active triphosphate (GS-443902) in PBMCs increased 2.04-fold (90% CI 1.35, 3.03) with each additional infusion in non-pregnant versus pregnant participants. Three adverse events in non-pregnant participants were related to treatment (one Grade 3; two Grade 2 resulting in treatment discontinuation). There were no treatment-related adverse pregnancy outcomes or congenital anomalies detected. CONCLUSIONS: Plasma remdesivir PK parameters were comparable between pregnant and non-pregnant women, and no safety concerns were identified based on our limited data. These findings suggest no dose adjustments are indicated for intravenous remdesivir during pregnancy.

7.
Viruses ; 16(5)2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38793672

RESUMO

Until recently, the diagnosis of feline infectious peritonitis (FIP) in cats usually led to euthanasia, but recent research has revealed that antiviral drugs, including the nucleoside analog GS-441524, have the potential to effectively cure FIP. Alpha-1-acid glycoprotein (AGP) has been suggested as a diagnostic marker for FIP. However, AGP quantification methods are not easily accessible. This study aimed to establish a Spatial Proximity Analyte Reagent Capture Luminescence (SPARCLTM) assay on the VetBio-1 analyzer to determine the AGP concentrations in feline serum and effusion samples. Linearity was found in serial dilutions between 1:2000 and 1:32,000; the intra-run and inter-run precision was <5% and <15%, respectively; and AGP was stable in serum stored for at least 8 days at room temperature, at 4 °C and at -20 °C. Cats with confirmed FIP had significantly higher serum AGP concentrations (median: 2954 µg/mL (range: 200-5861 µg/mL)) than those with other inflammatory diseases (median: 1734 µg/mL (305-3449 µg/mL)) and clinically healthy cats (median 235 µg/mL (range: 78-616 µg/mL); pKW < 0.0001). The AGP concentrations were significantly higher in the effusions from cats with FIP than in those from diseased cats without FIP (pMWU < 0.0001). The AGP concentrations in the serum of cats with FIP undergoing GS-441524 treatment showed a significant drop within the first seven days of treatment and reached normal levels after ~14 days. In conclusion, the VetBio-1 SPARCLTM assay offers a precise, fast and cost-effective method to measure the AGP concentrations in serum and effusion samples of feline patients. The monitoring of the AGP concentration throughout FIP treatment provides a valuable marker to evaluate the treatment's effectiveness and identify potential relapses at an early stage.


Assuntos
Biomarcadores , Peritonite Infecciosa Felina , Medições Luminescentes , Animais , Gatos , Feminino , Masculino , Antivirais/uso terapêutico , Biomarcadores/sangue , Coronavirus Felino/isolamento & purificação , Peritonite Infecciosa Felina/sangue , Peritonite Infecciosa Felina/diagnóstico , Peritonite Infecciosa Felina/tratamento farmacológico , Medições Luminescentes/métodos , Prognóstico
8.
Vet Q ; 44(1): 1-13, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38712855

RESUMO

Feline infectious peritonitis (FIP) is a fatal illness caused by a mutated feline coronavirus (FCoV). This disease is characterized by its complexity, resulting from systemic infection, antibody-dependent enhancement (ADE), and challenges in accessing effective therapeutics. Extract derived from Vigna radiata (L.) R. Wilczek (VRE) exhibits various pharmacological effects, including antiviral activity. This study aimed to investigate the antiviral potential of VRE against FCoV, addressing the urgent need to advance the treatment of FIP. We explored the anti-FCoV activity, antiviral mechanism, and combinational application of VRE by means of in vitro antiviral assays. Our findings reveal that VRE effectively inhibited the cytopathic effect induced by FCoV, reduced viral proliferation, and downregulated spike protein expression. Moreover, VRE blocked FCoV in the early and late infection stages and was effective under in vitro ADE infection. Notably, when combined with VRE, the polymerase inhibitor GS-441524 or protease inhibitor GC376 suppressed FCoV more effectively than monotherapy. In conclusion, this study characterizes the antiviral property of VRE against FCoV in vitro, and VRE possesses therapeutic potential for FCoV treatment.


Assuntos
Antivirais , Coronavirus Felino , Peritonite Infecciosa Felina , Lactamas , Leucina/análogos & derivados , Extratos Vegetais , Ácidos Sulfônicos , Vigna , Coronavirus Felino/efeitos dos fármacos , Antivirais/farmacologia , Animais , Extratos Vegetais/farmacologia , Gatos , Peritonite Infecciosa Felina/tratamento farmacológico , Peritonite Infecciosa Felina/virologia , Vigna/química , Replicação Viral/efeitos dos fármacos , Linhagem Celular
9.
J Am Vet Med Assoc ; 262(4): 489-497, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38324994

RESUMO

OBJECTIVE: To analyze the content of unlicensed GS-441524-like products being used as a largely successful at-home treatment for cats suspected to have FIP. The remdesivir content and pH were also measured. SAMPLE: 127 injectable and oral samples from 30 of the most popular brands of black market producers. METHODS: Unlicensed GS-441524-like products were procured through donations and tested for GS-441524 and remdesivir content by liquid chromatography with tandem mass spectrometry. A pH meter measured the pH of injectable samples. RESULTS: Of the 87 injectable formulations, 95% contained more (on average 39% more) GS-441524 than expected based on the producer's marketed concentrations. The average pH (1.30 pH) was well below the physiologic pH conditions recommended for SC injections. The oral formulations were more variable, with 43% containing more GS-441524 (on average 75% more) than expected and 58% containing less (on average 39% less) than the expected content. There was minimal variability in GS-441524 content between replicate samples in the injectables formulations (measured by coefficient of variation). One injectable and 2 oral samples additionally contained remdesivir. CLINICAL RELEVANCE: All unlicensed products used for the at-home treatment of FIP that we tested contain GS-441524. The injectables generally contain significantly more drug than advertised at a below-physiologic pH. Unlicensed oral products vary more widely in drug content and suffer from unconventional dosing and labeling. These data should highlight the need for regulation of these products and the development of legal pathways to procure GS-441524.


Assuntos
Adenosina/análogos & derivados , Doenças do Gato , Peritonite Infecciosa Felina , Gatos , Animais , Adenosina/uso terapêutico , Antivirais/uso terapêutico , Doenças do Gato/tratamento farmacológico
10.
Vet Q ; 44(1): 1-9, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38288972

RESUMO

Feline infectious peritonitis (FIP) is a potentially fatal coronavirus-driven disease of cats. Treatment with nucleoside analogue GS-441524 and or prodrug remdesivir (RDV) have produced remission in both experimentally induced and naturally occurring FIP, yet information regarding metabolism of RDV into GS-441524 in cats is scarce. This study assessed possible phase I metabolism of RDV in cats, utilising an in vitro feline microsome model with in vitro t1/2 and in vitro Clint calculated using the substrate depletion method. A previously validated high-performance liquid chromatography (HPLC) fluorescence method was utilised for detection and analysis of RDV and GS-441524. Qualitative yield of RDV and intermediate metabolite GS-441524 were determined following microsome incubation, then compared to whole blood and plasma incubations. In vitro microsome incubation resulted in rapid depletion of RDV, though it did not appear to resemble a conventional phase I-dependent reaction in cats, as it is in humans and dogs. Depletion of RDV into GS-441524 was demonstrated in whole blood in vitro, suggesting cats convert RDV to GS-441524, likely via blood esterases, as observed in mice and rats. RDV metabolism is unlikely to be impacted by impaired liver function in cats. Furthermore, as RDV depletes within minutes, whereas GS-441524 is very stable, whole blood or plasma GS-441524 concentrations, rather than plasma RDV concentrations, are more appropriate for therapeutic drug monitoring (TDM) in cats receiving RDV.


Assuntos
Monofosfato de Adenosina , Adenosina , Alanina , Doenças do Gato , Infecções por Coronavirus , Peritonite Infecciosa Felina , Animais , Gatos , Adenosina/análogos & derivados , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Doenças do Gato/tratamento farmacológico , Infecções por Coronavirus/veterinária , Peritonite Infecciosa Felina/tratamento farmacológico , Plasma
11.
Am J Vet Res ; : 1-9, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38271816

RESUMO

OBJECTIVE: Feline infectious peritonitis is fatal, and due to lack of approved treatments, unregulated antiviral drugs are used to treat this disease. This study set out to determine the purity of various batches of these drugs from several companies, characterize them, and note any impurities or other unusual characteristics. We also developed a method to qualitatively assess the primary components before administration. SAMPLES: We tested 30 vials from 17 brands of GS-441524 and 5 vials from 1 brand of GC376. We compared the GS-441524 to a control standard from Ambeed and the GC376 to a standard from Cayman Chemical. METHODS: We recorded physical appearance, pH, absorbance, HPLC retention times, and thin-layer chromatography retention factors for all of the samples. Some samples were used for nuclear magnetic resonance and mass spectrometric analysis. RESULTS: Some of the GS-441524 vials were 10% to 25% more concentrated than advertised, but most of the GS-441524 samples tested were similar in purity and composition, both between batches and between brands. We also tested 5 vials of GC376 and found that 1 of the 5 vials contained GS-441524 rather than GC376 and the other 4 vials contained molnupiravir. CLINICAL RELEVANCE: While all of the GS-441524 vials contained GS-441524, none of the GC376 vials tested contained GC376. GC376 is used in cats that are unresponsive to GS-441524, and use of the wrong antiviral can cause serious side effects. We provide suggested methods for distinguishing one drug from the other in new batches.

12.
J Vet Intern Med ; 38(1): 370-374, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38032049

RESUMO

Feline infectious peritonitis (FIP) historically has been a fatal disease in cats. Recent unlicensed use of antiviral medication has been shown to markedly improve survival of this infection. An 8-month-old female spayed domestic short-haired cat undergoing treatment for presumptive FIP with the antiviral nucleoside analog GS-441524 developed acute progressive azotemia. Abdominal ultrasound examination identified multifocal urolithiasis including renal, ureteral, and cystic calculi. Unilateral ureteral obstruction progressed to suspected bilateral ureteral obstruction and subcutaneous ureteral bypass (SUB) was performed along with urolith removal and submission for analysis. A 2-year-old male neutered domestic medium-haired cat undergoing treatment for confirmed FIP with GS-441524 developed dysuria (weak urine stream, urinary incontinence, and difficulty expressing the urinary bladder). This cat also was diagnosed sonographically with multifocal urolithiasis requiring temporary tube cystostomy after cystotomy and urolith removal. In both cases, initial urolith analysis showed unidentified material. Additional testing confirmed the calculi in both cats to be 98% consistent with GS-441524. Additional clinical studies are required to determine best screening practices for cats presented for urolithiasis during treatment with GS-441524.


Assuntos
Adenosina/análogos & derivados , Doenças do Gato , Coronavirus Felino , Peritonite Infecciosa Felina , Obstrução Ureteral , Cálculos Urinários , Urolitíase , Masculino , Gatos , Feminino , Animais , Peritonite Infecciosa Felina/tratamento farmacológico , Peritonite Infecciosa Felina/cirurgia , Obstrução Ureteral/veterinária , Cálculos Urinários/veterinária , Urolitíase/tratamento farmacológico , Urolitíase/cirurgia , Urolitíase/veterinária , Antivirais/uso terapêutico , Doenças do Gato/diagnóstico por imagem , Doenças do Gato/tratamento farmacológico , Doenças do Gato/cirurgia
13.
Antiviral Res ; 219: 105718, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37758067

RESUMO

Broad spectrum oral antivirals are urgently needed for the early treatment of many RNA viruses of clinical concern. We previously described the synthesis of 1-O-octadecyl-2-O-benzyl-glycero-3-phospho-RVn (V2043), an orally bioavailable lipid prodrug of remdesivir nucleoside (RVn, GS-441524) with broad spectrum antiviral activity against viruses with pandemic potential. Here we compared the relative activity of V2043 with new RVn lipid prodrugs containing sn-1 alkyl ether or sn-2 glycerol modifications. We found that 3-F-4-MeO-Bn, 3-CN-Bn, and 4-CN-Bn sn-2 glycerol modifications improved antiviral activity compared to V2043 when tested in vitro against clinically important RNA viruses from 5 virus families. These results support the continued development of V2043 and sn-2 glycerol modified RVn lipid prodrugs for the treatment of a broad range of RNA viruses for which there are limited therapies.


Assuntos
Antivirais , Pró-Fármacos , Antivirais/farmacologia , Pró-Fármacos/farmacologia , Nucleosídeos/farmacologia , Glicerol , Lipídeos/farmacologia
14.
J Feline Med Surg ; 25(8): 1098612X231183250, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37548535

RESUMO

OBJECTIVES: Feline infectious peritonitis (FIP), a common disease in cats caused by feline coronavirus (FCoV), is usually fatal once clinical signs appear. Successful treatment of FIP with oral GS-441524 for 84 days was demonstrated recently by this research group. The aim of this study was to evaluate the long-term outcome in these cats. METHODS: A total of 18 successfully treated cats were followed for up to 1 year after treatment initiation (9 months after completion of the antiviral treatment). Follow-up examinations were performed at 12-week intervals, including physical examination, haematology, serum biochemistry, abdominal and thoracic ultrasound, FCoV ribonucleic acid (RNA) loads in blood and faeces by reverse transciptase-quantitative PCR and anti-FCoV antibody titres by indirect immunofluorescence assay. RESULTS: Follow-up data were available from 18 cats in week 24, from 15 cats in week 36 and from 14 cats in week 48 (after the start of treatment), respectively. Laboratory parameters remained stable after the end of the treatment, with undetectable blood viral loads (in all but one cat on one occasion). Recurrence of faecal FCoV shedding was detected in five cats. In four cats, an intermediate short-term rise in anti-FCoV antibody titres was detected. In total, 12 cats showed abdominal lymphadenomegaly during the follow-up period; four of them continuously during the treatment and follow-up period. Two cats developed mild neurological signs, compatible with feline hyperaesthesia syndrome, in weeks 36 and 48, respectively; however, FCoV RNA remained undetectable in blood and faeces, and no increase in anti-FCoV antibody titres was observed in these two cats, and the signs resolved. CONCLUSIONS AND RELEVANCE: Treatment with GS-441524 proved to be effective against FIP in both the short term as well as the long term, with no confirmed relapse during the 1-year follow-up period. Whether delayed neurological signs could be a long-term adverse effect of the treatment or associated with a 'long FIP syndrome' needs to be further evaluated.


Assuntos
Doenças do Gato , Coronavirus Felino , Peritonite Infecciosa Felina , Gatos , Animais , Peritonite Infecciosa Felina/diagnóstico , Seguimentos , Reação em Cadeia da Polimerase/veterinária , RNA Viral/análise , Coronavirus Felino/genética , Doenças do Gato/tratamento farmacológico
15.
Molecules ; 28(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37570604

RESUMO

SARS-CoV-2 is a highly contagious and pathogenic virus that first appeared in late December 2019 and caused a global pandemic in a short period. The virus is a single-stranded RNA virus belonging to the Coronaviridae family. Numerous treatments have been developed and tested in response to the pandemic, particularly antiviral drugs. Among them, GS441524 (GS441), a nucleoside antiviral drug, has demonstrated promising results in inhibiting SARS-CoV-2. Nevertheless, the limited oral bioavailability of GS441 restricts its application to patients with the virus. In this study, a novel prodrug of GS441 (NGP-1) with an isobutyl ester and cyclic carbonate structure was designed and synthesized. Its purity and the stability in different artificial digestive juices of NGP-1 was determined with HPLC-DAD methods. The pharmacokinetics of NGP-1 and GS441 were studied in rats via gavage administration. A new LC-MS/MS method was developed to quantitatively analyze GS441 in plasma samples. The results showed that the ka, Cmax, and MRT of converted GS441 from NGP-1 were 5.9, 3, and 2.5 times greater than those of GS441 alone. The Frel of NGP-1 was approximately four-fold that of GS441, with an AUC0-∞ of 9716.3 h·ng mL-1. As a prodrug of GS441, NGP-1 increased its lipophilicity, absorption, and bioavailability, indicating that it holds promise in improving the clinical efficacy of anti-SARS-CoV-2 medications.


Assuntos
COVID-19 , Pró-Fármacos , Ratos , Animais , Cromatografia Líquida , Pró-Fármacos/química , SARS-CoV-2 , Espectrometria de Massas em Tandem/métodos , Antivirais/farmacologia , Antivirais/química
16.
Vet Sci ; 10(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37624300

RESUMO

Feline infectious peritonitis (FIP), caused by feline coronavirus (FcoV), is considered one of the most enigmatic diseases in cats. Developing effective drugs for FIP is crucial due to its global prevalence and severity. In this study, six antiviral drugs were tested for their cytotoxicity, cell viability, and antiviral efficacies in Crandell-Reese feline kidney cells. A cytotoxicity assay demonstrated that these drugs were safe to be used with essentially no cytotoxicity with concentrations as high as 250 µM for ruxolitinib; 125 µM for GS441524; 63 µM for teriflunomide, molnupiravir, and nirmatrelvir; and 16 µM for ritonavir. GS441524 and nirmatrelvir exhibited the least detrimental effects on the CRFK cells, with 50% cytotoxic concentration (CC50) values of 260.0 µM and 279.1 µM, respectively, while ritonavir showed high toxicity (CC50 = 39.9 µM). In the dose-response analysis, GS441524, nirmatrelvir, and molnupiravir demonstrated promising results with selectivity index values of 165.54, 113.67, and 29.27, respectively, against FIPV. Our study suggests that nirmatrelvir and molnupiravir hold potential for FIPV treatment and could serve as alternatives to GS441524. Continued research and development of antiviral drugs are essential to ensure the well-being of companion animals and improve our preparedness for future outbreaks of coronaviruses affecting animals and humans alike.

17.
Vet Q ; 43(1): 1-9, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37556736

RESUMO

The adenosine analogue GS-441524 has demonstrated efficacy in treatment of feline infectious peritonitis (FIP). With no commercially registered formulations of GS-441524 available, global focus shifted to its pro-drug remdesivir, as it became more accessible throughout the COVID-19 pandemic. This study developed and validated a simple liquid chromatography equipped with a fluorescence detector to quantify plasma concentrations of GS-441524 applicable for routine therapeutic monitoring of remdesivir or GS-441524 therapy for FIP infected cats. A Waters X-Bridge C18, 5 µm, 150 × 4.6 mm, column was used and mixtures of 20 mM ammonium acetate (pH 4.5) with acetonitrile of 5% and 70% were prepared for gradient mobile phase. With a simple protein precipitation using methanol to clean plasma sample, GS-441524 was monitored at excitation and emission wavelengths of 250 nm and 475 nm, respectively. Using an external standard, the lowest and highest limits of quantification were 19.5 ng/mL to 10,000 ng/mL, respectively. The intra- and inter day trueness of the quality controls (QCs) were within 10% of their nominal concentrations and intra- and inter day precision of the QCs (expressed as the coefficient of variation) ranged from 1.7 to 5.7%, This assay was able to quantify plasma trough levels of GS-441524 (23.7-190.1 ng/mL) after the administration of remdesivir (9.9-15.0 mg/kg BW, IV or SC) in FIP cats (n = 12). Accordingly, this study generated an alternative and cost-effective way to quantify GS-441524 in feline biological fluids at least up to 24 hr after administrations of remdesivir.


Assuntos
COVID-19 , Doenças do Gato , Peritonite Infecciosa Felina , Gatos , Animais , Cromatografia Líquida de Alta Pressão/veterinária , Cromatografia Líquida de Alta Pressão/métodos , COVID-19/veterinária , Pandemias , Peritonite Infecciosa Felina/tratamento farmacológico
19.
Int J Antimicrob Agents ; 62(2): 106892, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37339712

RESUMO

OBJECTIVES: Remdesivir (RDV) is the cornerstone for treating coronavirus disease 2019 (COVID-19). The active metabolite of RDV, GS-441524 (a nucleoside analogue), has high interindividual variability in plasma concentrations; however, its concentration-response relationship is still unclear. This study investigated the target GS-441524 trough concentration for symptom improvement in COVID-19 pneumonia. METHODS: This single-center, retrospective, observational study included Japanese patients (age ≥15 years) with COVID-19 pneumonia who were administered RDV for ≥3 days from May 2020 to August 2021. To determine the cut-off value of GS-441524 trough concentration on Day 3, achievement of the National Institute of Allergy and Infectious Disease Ordinal Scale (NIAID-OS) ≤3 after RDV administration was evaluated using the cumulative incidence function (CIF) with the Gray test and time-dependent receiver operating characteristic (ROC) analysis. Multivariate logistic regression analysis was performed to determine factors influencing GS-441524 target trough concentrations. RESULTS: The analysis comprised 59 patients. The CIF revealed that GS-441524 trough concentration ≥70 ng/mL was associated with the achievement of NIAID-OS ≤3 (P = 0.047), which was significant based on the time-dependent ROC analysis. Factors influencing GS-441524 trough concentration ≥70 ng/mL included a decrease in estimated glomerular filtration rate (eGFR) [adjusted odds ratio (aOR) = 0.96, 95% confidence interval (CI) 0.92-0.99; P = 0.027] and BMI ≥25 kg/m2 (aOR = 0.26, 95% CI 0.07-0.86; P = 0.031). CONCLUSION: GS-441524 trough concentration ≥70 ng/mL is a predictor of efficacy in COVID-19 pneumonia. The presence of lower eGFR or BMI ≥25 kg/m2 was associated with achieving GS-441524 trough concentration ≥70 ng/mL.


Assuntos
COVID-19 , Humanos , Adolescente , SARS-CoV-2 , Adenosina , Estudos Retrospectivos , Antivirais/uso terapêutico
20.
Vet Microbiol ; 283: 109781, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37269714

RESUMO

FIP is a fatal feline disease caused by FIPV. Two drugs (GS441524 and GC376) target FIPV and have good therapeutic effect when administered by subcutaneous injection. However, subcutaneous injection has limitations compared with oral administration. Additionally, the oral efficacy of the two drugs has not been determined. Here, GS441524 and GC376 were shown to efficiently inhibit FIPV-rQS79 (recombination virus with a full-length field type I FIPV and the spike gene replaced with type II FIPV) and FIPV II (commercially available type II FIPV 79-1146) at a noncytotoxic concentration in CRFK cells. Moreover, the effective oral dose was determined via the in vivo pharmacokinetics of GS441524 and GC376. We conducted animal trials in three dosing groups and found that while GS441524 can effectively reducing the mortality of FIP subjects at a range of doses, GC376 only reducing the mortality rate at high doses. Additionally, compared with GC376, oral GS441524 has better absorption, slower clearance and a slower rate of metabolism. Furthermore, there was no significant difference between the oral and subcutaneous pharmacokinetic parameters. Collectively, our study is the first to evaluate the efficacy of oral GS441524 and GC376 using a relevant animal model. We also verified the reliability of oral GS441524 and the potential of oral GC376 as a reference for rational clinical drug use. Furthermore, the pharmacokinetic data provide insights into and potential directions for the optimization of these drugs.


Assuntos
Coronavirus Felino , Peritonite Infecciosa Felina , Gatos , Animais , Reprodutibilidade dos Testes , Administração Oral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA