Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.745
Filtrar
1.
J Ethnopharmacol ; 336: 118760, 2025 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-39216772

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Huanglian Jiedu Decoction (HLJDD) is an ancient formula of traditional Chinese medicine that is commonly utilized in a range of disorders, and it has been shown to have pharmacological effects on glucose and lipid metabolism. However, the specific mechanism of HLJDD for the treatment of obesity and related metabolic disorders remains to be further investigated. AIM OF THE STUDY: It has been thought that encouraging adipose thermogenesis to raise the body's energy expenditure is a useful tactic for improving metabolic abnormalities and losing weight. In this study, we investigated the ability and underlying mechanisms of HLJDD to regulate fat cell thermogenesis to improve energy expenditure in obesity. METHODS: The obese mouse model was established on a high-fat diet for 12 weeks. All mice were divided into NC, HFD, HFD with HLJDD of a low dose (2.25 g/kg/d), and HFD with HLJDD of a high dose (4.5 g/kg/d) groups and kept for 4 weeks. In vitro experiments were conducted to evaluate the effects of 5% and 10% HLJDD-containing serum on differentiated 3T3-L1 cells and HDAC3-knocking-down 3T3-L1 cells. RESULTS: The results showed that HLJDD treatment significantly improved glucose and insulin tolerance and decreased the adipocyte radius of WATs, as well as increased energy consumption in obese mice. Besides, HLJDD treatment dramatically increased the levels of thermogenic genes UCP-1 and PGC-1α while suppressing HDAC3 levels in WATs and 3T3-L1 adipocytes. Importantly, the effects of HLJDD on PGC-1α and UCP-1 were blocked in HDAC3 knockdown adipocytes. CONCLUSIONS: Therefore, these results suggest that HLJDD enhanced adipose thermogenesis and improved energy expenditure by inhibiting HDAC3, thereby increasing UCP-1 and PGC-1α expression. These findings amplified the mechanisms of HLJDD and its potential to treat obesity and related metabolic disorders.


Assuntos
Células 3T3-L1 , Dieta Hiperlipídica , Medicamentos de Ervas Chinesas , Histona Desacetilases , Obesidade , Termogênese , Animais , Masculino , Camundongos , Medicamentos de Ervas Chinesas/farmacologia , Metabolismo Energético/efeitos dos fármacos , Histona Desacetilases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/tratamento farmacológico , Termogênese/efeitos dos fármacos , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética
2.
Eur J Pharmacol ; 983: 177001, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39284403

RESUMO

Modulation of estrogen receptor (ER) and progesterone receptor (PR) expression, as well as their emerging functional crosstalk, remains a potential approach for enhancing the response to hormonal therapy in breast cancer. Aberrant epigenetic alterations induced by histone deacetylases (HDACs) were massively implicated in dysregulating the function of hormone receptors in breast cancer. Although much is known about the regulation of ER signaling by HDAC, the precise role of HDAC in modulating the expression of PR and its impact on the outcomes of hormonal therapy is poorly defined. Here, we demonstrate the involvement of HDAC6 in regulating PR expression in breast cancer cells. The correlation between HDAC6 and hormone receptors was investigated in patients' tissues by immunohistochemistry (n = 80) and publicly available data (n = 3260) from breast cancer patients. We explored the effect of modulating the expression of HDAC6 as well as its catalytic inhibition on the level of hormone receptors by a variety of molecular analyses, including Western blot, immunofluorescence, Real-time PCR, RNA-seq analysis and chromatin immunoprecipitation. Based on our in-silico and immunohistochemistry analyses, HDAC6 levels were negatively correlated with PR status in breast cancer tissues. The downregulation of HDAC6 enhanced the expression of PR-B in hormone receptor-positive and triple-negative breast cancer (TNBC) cells. The selective targeting of HDAC6 by tubacin resulted in the enrichment of the H3K9 acetylation mark at the PGR-B gene promoter region and enhanced the expression of PR-B. Additionally, transcriptomic analysis of tubacin-treated cells revealed enhanced activity of acetyltransferase and growth factor signaling pathways, along with the enrichment of transcription factors involved in the transcriptional activity of ER, underscoring the crucial role of HDAC6 in regulating hormone receptors. Notably, the addition of HDAC6 inhibitor potentiated the effects of anti-ER and anti-PR drugs mainly in TNBC cells. Together, these data highlight the role of HDAC6 in regulating PR expression and provide a promising therapeutic approach for boosting breast cancer sensitivity to hormonal therapy.

3.
Toxicol In Vitro ; 101: 105934, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39237058

RESUMO

Folates are essential nutrients for fetal development during pregnancy. Valproic acid (VPA), an inhibitor of histone deacetylases (HDACs), alters the expression of folate carriers in placental cells; however, the underlying mechanisms remain unclear. Here, we aimed to determine the profiles of folate carriers (folate receptor alpha [FOLR1], solute carrier [SLC]-19A1, and SLC46A1) after inhibition of HDACs, especially class I and IIa HDACs, using different inhibitors and gene knockdown tests. Quantitative polymerase chain reaction revealed that BeWo cells (a trophoblast model) expressed HDACs and folate carriers, similar to human placental villi. FOLR1 expression was upregulated by VPA, apicidin, and trichostatin A, but downregulated by MS-275 after 24 h treatment. VPA and apicidin upregulated the expression of SLC46A1. These inhibitors downregulated SLC19A1 expression. TMP269 (a class IIa inhibitor) did not affect folate carrier levels. HDAC1/2 knockdown upregulated FOLR1 and SLC46A1 levels, whereas HDAC1/3 knockdown downregulated FOLR1 levels. Our findings suggest that the pharmacological inhibition of class I HDACs alters the expression of folate carriers in BeWo cells. By contrast, HDAC inhibitors exert different regulatory effects on folate carriers. Moreover, HDAC1/2 inhibition may be a potential mechanism involved in altering FOLR1 and SLC46A1 levels.

4.
Diagn Pathol ; 19(1): 120, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237939

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) remains one of the most lethal urological malignancies even though a great number of improvements in diagnosis and management have achieved over the past few decades. Accumulated evidence revealed that histone deacetylases (HDACs) play vital role in cell proliferation, differentiation and apoptosis. Nevertheless, the biological functions of histone deacetylation modification related genes in ccRCC remains poorly understood. METHOD: Bulk transcriptomic data and clinical information of ccRCC patients were obtained from the TCGA database and collected from the Chinese PLA General Hospital. A total of 36 histone deacetylation genes were selected and studied in our research. Univariate cox regression analysis, least absolute shrinkage and selection operator (LASSO) regression, random forest (RF) analysis, and protein-protein interaction (PPI) network analysis were applied to identify key genes affecting the prognosis of ccRCC. The 'oncoPredict' algorithm was utilized for drug-sensitive analysis. Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to explore the potential biological function. The ssGSEA algorithm was used for tumor immune microenvironment analysis. The expression levels of HDAC10 were validated by RT-PCR and immunohistochemistry (IHC). 5-ethynyl-2'-deoxyuridine (EdU assay), CCK-8 assay, cell transwell migration and invasion assay and colony formation assay were performed to detect the proliferation and invasion ability of ccRCC cells. A nomogram incorporating HDAC10 and clinicopathological characteristics was established to predict the prognosis of ccRCC patients. RESULT: Two machine learning algorithms and PPI analysis identified four histone deacetylation genes that have a significant association with the prognosis of ccRCC, with HDAC10 being the key gene among them. HDAC10 is highly expressed in ccRCC and its high expression is associated with poor prognosis for ccRCC patients. Pathway enrichment and the experiments of EdU staining, CCK-8 assay, cell transwell migration and invasion assay and colony formation assay demonstrated that HDAC10 mediated the proliferation and metastasis of ccRCC cells and involved in reshaping the tumor microenvironment (TME) of ccRCC. A clinically reliable prognostic predictive model was established by incorporating HDAC10 and other clinicopathological characteristics ( https://nomogramhdac10.shinyapps.io/HDAC10_Nomogram/ ). CONCLUSION: Our study found the increased expression of HDAC10 was closely associated with poor prognosis of ccRCC patients. HDAC10 showed a pro-tumorigenic effect on ccRCC and promote the proliferation and metastasis of ccRCC, which may provide new light on targeted therapy for ccRCC.


Assuntos
Carcinoma de Células Renais , Proliferação de Células , Histona Desacetilases , Neoplasias Renais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Proliferação de Células/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Prognóstico , Microambiente Tumoral/genética , Linhagem Celular Tumoral , Mapas de Interação de Proteínas , Oncogenes/genética , Idoso
5.
Brain Tumor Pathol ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316272

RESUMO

Diffuse intrinsic pontine glioma (DIPG) remains a significant therapeutic challenge due to the lack of effective and safe treatment options. This study explores the potential of combining histone deacetylase (HDAC) and carbonic anhydrase 9 (CA9) inhibitors in treating DIPG. Analysis of RNA sequencing data and tumor tissue from patient samples for the expression of the carbonic anhydrase family and hypoxia signaling pathway activity revealed clinical relevance for targeting CA9 in DIPG. A synergy screen was conducted using CA9 inhibitor SLC-0111 and HDAC inhibitors panobinostat, vorinostat, entinostat, and pyroxamide. The combination of SLC-0111 and pyroxamide demonstrated the highest synergy and was selected for further analysis. Combining SLC-0111 and pyroxamide effectively inhibited DIPG cell proliferation, reduced cell migration and invasion potential, and enhanced histone acetylation, leading to decreased cell population in S Phase. Additionally, the combination therapy induced a greater reduction in intracellular pH than either agent alone. Data from this study suggest that the combination of SLC-0111 and pyroxamide holds promise for treating experimental DIPG, and further investigation of this combination therapy in preclinical models is warranted to evaluate its potential as a viable treatment for DIPG.

6.
Eur J Med Chem ; 279: 116884, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39321690

RESUMO

Triple negative breast cancer (TNBC) is a highly aggressive breast cancer subtype characterized by the lack in the expression of estrogen and progesterone receptors, and human epidermal growth factor receptors 2. TNBC stands out among other breast cancers subtypes for its high aggressiveness and invasiveness, and for the limited therapeutic options available, which justify the poor survival rates registered for this breast cancer subtype. Compelling new evidence pointed out the role of epigenetic modifications in cancer, prompting tumor cell uncontrolled proliferation, epithelial-to-mesenchymal transition, and metastatic events. In this review we showcase the latest evidence supporting the involvement of histone deacetylase 6 (HDAC6) in cancer pathways strictly related to TNBC subtype, also tracking the latest advancements in the identification of novel HDAC6 inhibitors which showed efficacy in TNBC models, offering insights into the potential of targeting this key epigenetic player as an innovative therapeutic option for the treatment of TNBC.

7.
Bioorg Med Chem ; 113: 117924, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39321740

RESUMO

Pulmonary fibrosis (PF) is a common, severe, chronic, and progressive pulmonary interstitial disease characterized by rapid disease progression and high mortality. Despite the Food and Drug Administration (FDA)'s approval of two antifibrotic drugs, nintedanib and pirfenidone, effectively halting the progression of pulmonary fibrosis remains challenging. Histone deacetylase (HDAC) inhibitors have indeed emerged as an important class of antitumour drugs. However, their application in the treatment of fibrotic diseases is still relatively limited. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) has the potential to inhibit fibrotic processes by inducing fibroblast apoptosis. In this study, we designed and synthesized a series of histone deacetylase 6 (HDAC6) inhibitors that activate TRAIL, among which compound 7e exhibited potent inhibitory activity against HDAC6, with an IC50 of 42.90 ± 4.96 nM and superior antiproliferative effects on fibroblasts. Therefore, we further investigated its anti-pulmonary fibrosis effect in mouse models of both idiopathic pulmonary fibrosis (IPF) and silicosis. Our results suggest that compound 7e is a promising candidate for the treatment of pulmonary fibrosis.

8.
Bioorg Chem ; 153: 107818, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39288633

RESUMO

Epigenetics, particularly deacetylation, plays a critical role in tumorigenesis as many carcinogens are under tight control by post-translational modification. HDAC6, an important and special histone deacetylase (HDAC) family member, has been indicated to increase carcinogenesis through various functions. Recent studies demonstrated the effects of HDAC6 inhibitors in mitotic arrest, however, detailed mechanisms still remain unknown. Herein, we review and summarize HDAC6-associated proteins that have been implicated in important roles in mitosis. We also discuss the development of medicinal agents targeting HDAC6.

9.
Int J Mol Sci ; 25(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39273190

RESUMO

Breast and ovarian cancers pose significant therapeutic challenges. We explored the synergistic cytotoxicity of histone deacetylase inhibitors (HDACis), poly(ADP-ribose) polymerase inhibitors (PARPis), and decitabine in breast (MDA-MB-231 and MCF-7) and ovarian (HEY-T30 and SKOV-3) cancer cell lines that were exposed to HDACi (panobinostat or vorinostat), PARPi (talazoparib or olaparib), decitabine, or their combinations. HDACi, PARPi, and decitabine combinations had synergistic cytotoxicity (assessed by MTT and clonogenic assays) in all cell lines (combination index < 1). Clonogenic assays confirmed the sensitivity of breast and ovarian cancer cell lines to the three-drug combinations (panobinostat, talazoparib, and decitabine; panobinostat, olaparib, and decitabine; vorinostat, talazoparib, and decitabine; vorinostat, olaparib, and decitabine). Cell proliferation was inhibited by 48-70%, and Annexin V positivity was 42-59% in all cell lines exposed to the three-drug combinations. Western blot analysis showed protein PARylation inhibition, caspase 3 and PARP1 cleavage, and c-MYC down-regulation. The three-drug combinations induced more DNA damage (increased phosphorylation of histone 2AX) than the individual drugs, impaired the DNA repair pathways, and altered the epigenetic regulation of gene expression. These results indicate that HDACi, PARPi, and decitabine combinations should be further explored in these tumor types. Further clinical validation is warranted to assess their safety and efficacy.


Assuntos
Neoplasias da Mama , Proliferação de Células , Decitabina , Sinergismo Farmacológico , Inibidores de Histona Desacetilases , Neoplasias Ovarianas , Ftalazinas , Piperazinas , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Decitabina/farmacologia , Feminino , Inibidores de Histona Desacetilases/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Piperazinas/farmacologia , Vorinostat/farmacologia , Panobinostat/farmacologia , Apoptose/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Ácidos Hidroxâmicos/farmacologia , Células MCF-7
10.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39273544

RESUMO

Excessive fluoride ingestion during tooth development can cause dental fluorosis. Previously, we reported that fluoride activates histone acetyltransferase (HAT) to acetylate p53, promoting fluoride toxicity in mouse ameloblast-like LS8 cells. However, the roles of HAT and histone acetylation status in fluoride-mediated gene expression remain unidentified. Here, we demonstrate that fluoride-mediated histone modification causes gene expression alterations in LS8 cells. LS8 cells were treated with or without fluoride followed by ChIP-Seq analysis of H3K27ac. Genes were identified by differential H3K27ac peaks within ±1 kb from transcription start sites. The levels of mRNA of identified genes were assessed using rea-time PCR (qPCR). Fluoride increased H3K27ac peaks associated with Bax, p21, and Mdm2 genes and upregulated their mRNA levels. Fluoride decreased H3K27ac peaks and p53, Bad, and Bcl2 had suppressed transcription. HAT inhibitors (Anacardic acid or MG149) suppressed fluoride-induced mRNA of p21 and Mdm2, while fluoride and the histone deacetylase (HDAC) inhibitor sodium butyrate increased Bad and Bcl2 expression above that of fluoride treatment alone. To our knowledge, this is the first study that demonstrates epigenetic regulation via fluoride treatment via H3 acetylation. Further investigation is required to elucidate epigenetic mechanisms of fluoride toxicity in enamel development.


Assuntos
Ameloblastos , Fluoretos , Histonas , Animais , Camundongos , Acetilação/efeitos dos fármacos , Histonas/metabolismo , Ameloblastos/metabolismo , Ameloblastos/efeitos dos fármacos , Fluoretos/farmacologia , Fluoretos/toxicidade , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Epigênese Genética/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia
11.
Brain Res Bull ; 217: 111080, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39277018

RESUMO

Inflammation and neuronal apoptosis play a key role in traumatic brain injury (TBI). Quercetin (Que) has been shown to exhibit a neuroprotective effect after TBI, but the underlying molecular mechanism remains unclear. In this study, We established a weight-drop mouse model to illustrate the effects of Que on microglial-induced inflammation in TBI. Mice were divided into four groups: the Sham group, TBI group, TBI+vehicle group, and TBI+Que group. The TBI+Que group was treated with Que 30 min after TBI. Brain water content, neurological score, and neuronal apoptosis were measured. Western blotting, TUNEL staining, Nissl staining, quantitative polymerase chain reaction, and immunofluorescence staining were performed to assess the activation of the PGC-1α/Nrf2 pathway and nuclear translocation of HDAC3 with Que treatment. The results showed that Que administration alleviated TBI-induced neurobehavioral deficits, encephaledema, and neuron apoptosis. Que also restrained TBI-induced microglial activity and the subsequent expression of the inflammatory factor in the contusion cortex. Moreover, Que treatment activated the PGC-1α/Nrf2 pathway, attributable to the inhibition of HDAC3 translocation to the nucleus. Overall, these results reveal the role of Que in protecting against TBI-induced neuroinflammation and promoting neurological functional recovery, which is achieved through the negative regulation of HDAC3.

12.
Genes Dis ; 11(6): 101100, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39281832

RESUMO

High-intensity interval training (HIIT) has been found to be more effective in relieving heart failure (HF) symptoms, than moderate-intensity continuous aerobic training (MICT). Additionally, higher meteorin-like protein (Metrnl) levels are seen after HIIT versus MICT. We investigated whether Metrnl contributed to post-HF cardiac functional improvements, and the signaling pathways involved. 50 HF patients underwent MICT, and another 50, HIIT, which was followed by cardiac function and serum Metrnl measurements. Metrnl was also measured in both blood and skeletal muscle samples of mice with transverse aortic constriction-induced HF after undergoing HIIT. Afterward, shRNA-containing adenovectors were injected into mice, yielding five groups: control, HF, HF + HIIT + scrambled shRNA, HF + HIIT + shMetrnl, and HF + Metrnl (HF + exogenous Metrnl). Mass spectrometry identified specific signaling pathways associated with increased Metrnl, which was confirmed with biochemical analyses. Glucose metabolism and mitochondrial functioning were evaluated in cardiomyocytes from the five groups. Both HF patients and mice had higher circulating Metrnl levels post-HIIT. Metrnl activated AMPK in cardiomyocytes, subsequently increasing histone deacetylase 4 (HDAC4) phosphorylation, leading to its cytosolic sequestration and inactivation via binding with chaperone protein 14-3-3. HDAC4 inactivation removed its repression on glucose transporter type 4, which, along with increased mitochondrial complex I-V expression, yielded improved aerobic glucose respiration and alleviation of mitochondrial dysfunction. All these changes ultimately result in improved post-HF cardiac functioning. HIIT increased skeletal muscle Metrnl production, which then operated on HF hearts to alleviate their functional defects, via increasing aerobic glucose metabolism through AMPK-HDAC4 signaling.

13.
mBio ; : e0190624, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287437

RESUMO

Leptospirosis is a re-emerging worldwide zoonotic disease. Infected patients and animals often exhibit intestinal symptoms. Mounting evidence suggests that host immune responses to bacterial infection are closely associated with intestinal homeostasis. Our previous research has shown that the gut microbiota can protect the host from acute leptospirosis, while the specific bacterial metabolic mediators participating in the pathogenesis remain to be identified. Short-chain fatty acids (SCFAs) are metabolites produced mainly by the gut microbiota that play a role in immune regulation. However, whether SCFAs are the key to protecting the host against leptospirosis and the underlying regulatory mechanisms are unknown. In this study, our results showed that the SCFA butyrate is involved in ameliorating leptospirosis. The depletion of SCFAs by antibiotic cocktail treatment reduced survival time after Leptospira infection while supplementation with butyrate but not acetate or propionate significantly amelioration of leptospirosis. In vitro experiments showed that butyrate treatment enhanced the intracellular bactericidal activity mediated by reactive oxygen species (ROS) production. Mechanistically, butyrate functions as a histone deacetylase 3 inhibitor (HDAC3i) to promote ROS production via monocarboxylate transporter (MCT). The protection of butyrate against acute leptospirosis mediated by ROS was also proven in vivo. Collectively, our data provide evidence that the butyrate-MCT-HDAC3i-ROS signaling axis is a potential therapeutic target for acute leptospirosis. Our work not only interprets the microbial metabolite signaling involved in transkingdom interactions between the host and gut microbiota but also provides a possible target for developing a prevention strategy for acute leptospirosis. IMPORTANCE: Leptospirosis is a worldwide zoonotic disease caused by Leptospira. An estimated 1 million people are infected with leptospirosis each year. Studies have shown that healthy gut microbiota can protect the host against leptospirosis but the mechanism is not clear. This work elucidated the mechanism of gut microbiota protecting the host against acute leptospirosis. Here, we find that butyrate, a metabolite of gut microbiota, can improve the survival rate of hamsters with leptospirosis by promoting the bactericidal activity of macrophages. Mechanistically, butyrate upregulates reactive oxygen species (ROS) levels after macrophage infection with Leptospira by inhibiting HDAC3. This work confirms the therapeutic potential of butyrate in preventing acute leptospirosis and provides evidence for the benefits of the macrophage-HDAC3i-ROS axis.

14.
World Allergy Organ J ; 17(9): 100963, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39295955

RESUMO

Background: Allergic rhinitis (AR) is a global health issue affecting millions of individuals worldwide. Pyroptosis has emerged as a major player in the development of AR, and targeting its inhibition with specific drugs holds promise for AR treatment. However, a comprehensive understanding of the precise mechanisms underlying pyroptosis in AR remains to be explored, warranting further investigation. Objective: This study aims to elucidate the roles of HMGB1, Sphk1, and HDAC4 in regulating human nasal epithelial cell (hNEC) pyroptosis and AR. Methods: An in vitro AR cell culture model and an in vivo AR mouse model were established. Western blot, ELISA, histological staining, and flow cytometry were utilized to confirm the gene and protein expression. The interactions among Sphk1, HDAC4, and HMGB1 were validated through ChIP, Co-IP, and Dual-luciferase assay. Results and conclusion: We identified that the expression levels of Sphk1, HMGB1, and inflammasome components, including IL-18, and IL-1ß were elevated in AR patients and mouse models. Knockdown of Sphk1 inhibited hNEC pyroptosis induced by dust mite allergen. Overexpression of HDAC4 suppressed HMGB1-mediated pyroptosis in hNECs. In addition, HDAC4 was found to mediate the transcriptional regulation of HMGB1 via MEF2C, a transcription factor. Additionally, Sphk1 was shown to interact with CaMKII-δ, promoting the phosphorylation of HDAC4 and inhibiting its cytoplasmic translocation. Knockdown of HDAC4 reversed the effect of Sphk1 knockdown on pyroptosis. These discoveries offer a glimpse into the molecular mechanisms underlying AR and suggest potential therapeutic targets for the treatment of this condition.

15.
Virus Genes ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302542

RESUMO

Post-translational modifications (PTMs), as epigenetic modifications, are significant in the interaction between virus and its host. However, it is unclear whether rotavirus (RV) causes changes in both the host cell epigenetic protein modification and the regulatory mechanism of viral replication. Here, we analyzed the proteome of Caco-2 cells to determine if acetylation modification occurred within the cells after RV infection. We found that glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein involved in glycolysis, was deacetylated at lysine 219 via histone deacetylase 9 (HDAC9) in 50 h after the RV infection. Remarkably, the deacetylation of GAPDH promoted RV replication. Finally, we found that glycolysis was alterable in Caco-2 cells by RV or the deacetylation of GAPDH lysine 219, using the Seahorse XF Glycolysis Stress Test. In conclusion, our results demonstrate for the first time that RV infection promoted deacetylation of GAPDH at lysine 219 in order to increase its own viral replication in Caco-2 cells.

16.
Expert Opin Ther Targets ; : 1-19, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39305025

RESUMO

INTRODUCTION: Inhibition of the enzymatic function of HDAC6 is currently being explored in clinical trials ranging from peripheral neuropathies to cancers. Advances in selective HDAC6 inhibitor discovery allowed studying highly efficacious brain penetrant and peripheral restrictive compounds for treating PNS and CNS indications. AREAS COVERED: This review explores the multifactorial role of HDAC6 in cells, the common pathological hallmarks of PNS and CNS disorders, and how HDAC6 modulates these mechanisms. Pharmacological inhibition of HDAC6 and genetic knockout/knockdown studies as a therapeutic strategy in PNS and CNS indications were analyzed. Furthermore, we describe the recent developments in HDAC6 PET tracers and their utility in CNS indications. Finally, we explore the advancements and challenges with HDAC6 inhibitor compounds, such as hydroxamic acid, fluoromethyl oxadiazoles, HDAC6 degraders, and thiol-based inhibitors. EXPERT OPINION: Based on extensive preclinical evidence, pharmacological inhibition of HDAC6 is a promising approach for treating both PNS and CNS disorders, given its involvement in neurodegeneration and aging-related cellular processes. Despite the progress in the development of selective HDAC6 inhibitors, safety concerns remain regarding their chronic administration in PNS and CNS indications, and the development of novel compound classes and modalities inhibiting HDAC6 function offer a way to mitigate some of these safety concerns.

17.
Front Pharmacol ; 15: 1473019, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39323643

RESUMO

Background: White matter injury is a predominant form of brain injury in preterm infants. However, effective drugs for its treatment are currently lacking. Previous studies have shown the neuroprotective effects of Isoliquiritigenin (ISL), but its impact on white matter injury in preterm infants remains poorly understood. Aims: This study aimed to investigate the protective effects of ISL against white matter injury caused by infection in preterm infants using a mouse model of lipopolysaccharide-induced white matter injury, integrating network pharmacology as well as in vivo and in vitro experiments. Methods: This study explores the potential mechanisms of ISL on white matter injury by integrating network pharmacology. Core pathways and biological processes affected by ISL were verified through experiments, and motor coordination, anxiety-like, and depression-like behaviors of mice were evaluated using behavioral experiments. White matter injury was observed using hematoxylin-eosin staining, Luxol Fast Blue staining, and electron microscopy. The development of oligodendrocytes and the activation of microglia in mice were assessed by immunofluorescence. The expression of related proteins was detected by Western blot. Results: We constructed a drug-target network, including 336 targets associated with ISL treatment of white matter injury. The biological process of ISL treatment of white matter injury mainly involves microglial inflammation regulation and myelination. Our findings revealed that ISL reduced early nerve reflex barriers and white matter manifestations in mice, leading to decreased activation of microglia and release of proinflammatory cytokines. Additionally, ISL demonstrated the ability to mitigate impairment in oligodendrocyte development and myelination, ultimately improving behavior disorders in adult mice. Mechanistically, we observed that ISL downregulated HDAC3 expression, promoted histone acetylation, enhanced the expression of H3K27ac, and regulated oligodendrocyte pro-differentiation factors. Conclusion: These findings suggest that ISL can have beneficial effects on white matter injury in preterm infants by alleviating inflammation and promoting oligodendrocyte differentiation.

18.
Neoplasia ; 57: 101059, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39326322

RESUMO

BACKGROUND: Breast cancer is a malignancy with a generally poor prognosis. With the advancement of molecular research, we have gained deeper insights into the cellular processes that drive breast cancer development. However, the precise mechanisms remain elusive. RESULTS: Based on the CPTAC database, we found that NEDD9 expression is up-regulated in breast cancer tissues and is associated with poor prognosis in breast cancer patients. Functional experiments showed that NEDD9 promotes tumor growth and metastasis both in vitro and in vivo. Overexpression of NEDD9 disrupts mammary epithelial acinus formation and triggers epithelial-mesenchymal transition in breast cancer cells, effects that are reversed upon NEDD9 gene silencing. Mechanistically, NEDD9 upregulates its expression by inhibiting HDAC4 activity, leading to enhanced H3K9 acetylation of the NEDD9 gene promoter and activation of the FAK/NF-κB signaling pathway. Furthermore, NEDD9 overexpression promotes IL-6 secretion, which further drives breast cancer progression. Notably, NEDD9 activation fosters the pro-tumoral M2 macrophage polarization in the tumor microenvironment. NEDD9 stimulates IL-6 secretion, polarizes monocytes towards an M2-like phenotype, and enhances BC cell invasiveness. CONCLUSIONS: These findings suggest that NEDD9 upregulation plays a pivotal role in breast cancer metastasis and macrophage M2 polarization via the FAK/NF-κB signaling axis. Targeting NEDD9 may offer a promising therapeutic approach for breast cancer treatment.

19.
Cell Rep ; 43(9): 114736, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39277863

RESUMO

Short-chain fatty acids (SCFAs) are immunomodulatory compounds produced by the microbiome through dietary fiber fermentation. Although generally considered beneficial for gut health, patients suffering from inflammatory bowel disease (IBD) display poor tolerance to fiber-rich diets, suggesting that SCFAs may have contrary effects under inflammatory conditions. To investigate this, we examined the effect of SCFAs on human macrophages in the presence of Toll-like receptor (TLR) agonists. In contrast to anti-inflammatory effects under steady-state conditions, we found that butyrate and propionate activated the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome in the presence of TLR agonists. Mechanistically, these SCFAs prevented transcription of FLICE-like inhibitory protein (cFLIP) and interleukin-10 (IL-10) through histone deacetylase (HDAC) inhibition, triggering caspase-8-dependent NLRP3 inflammasome activation. SCFA-driven NLRP3 activation was potassium efflux independent and did not result in cell death but rather triggered hyperactivation and IL-1ß release. Our findings demonstrate that butyrate and propionate are bacterially derived danger signals that regulate NLRP3 inflammasome activation through epigenetic modulation of the inflammatory response.


Assuntos
Butiratos , Inflamassomos , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Propionatos , Receptores Toll-Like , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Propionatos/farmacologia , Butiratos/farmacologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Receptores Toll-Like/metabolismo , Transdução de Sinais/efeitos dos fármacos , Interleucina-1beta/metabolismo , Interleucina-10/metabolismo
20.
J Cell Mol Med ; 28(18): e70114, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39317961

RESUMO

Nephrotoxicity is a major side effect of platinum-based antineoplastic drugs, and there is currently no available therapeutic intervention. Our study suggests that targeting histone deacetylase 8 could be a potential treatment for cisplatin-induced acute kidney injury (AKI). In a murine model of AKI induced by cisplatin, the administration of PCI-34051, a selective inhibitor of HDAC8, resulted in significant improvement in renal function and reduction in renal tubular damage and apoptosis. Pharmacological inhibition of HDAC8 also decreased caspase-3 and PARP1 cleavage, attenuated Bax expression and preserved Bcl-2 levels in the injured kidney. In cultured murine renal epithelial cells (mRTECs) exposed to cisplatin, treatment with PCI-34051 or transfection with HDAC8 siRNA reduced apoptotic cell numbers and diminished expression of cleaved caspase-3 and PARP1; conversely, overexpression of HDAC8 intensified these changes. Additionally, PCI-34051 reduced p53 expression levels along with those for p21, p-CDK2 and γ-H2AX while preserving MRE11 expression in the injured kidney. Similarly, pharmacological and genetic inhibition of HDAC8 reduced γ-H2AX and enhanced MRE11 expression; conversely, HDAC8 overexpression exacerbated these changes in mRTECs exposed to cisplatin. These results support that HDAC8 inhibition attenuates cisplatin-induced AKI through a mechanism associated with reducing DNA damage and promoting its repair.


Assuntos
Injúria Renal Aguda , Apoptose , Cisplatino , Dano ao DNA , Inibidores de Histona Desacetilases , Histona Desacetilases , Reparo de DNA por Recombinação , Proteína Supressora de Tumor p53 , Animais , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Dano ao DNA/efeitos dos fármacos , Camundongos , Reparo de DNA por Recombinação/efeitos dos fármacos , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Apoptose/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Masculino , Camundongos Endogâmicos C57BL , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Histonas/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Caspase 3/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteína Homóloga a MRE11/metabolismo , Proteína Homóloga a MRE11/genética , Modelos Animais de Doenças , Ácidos Hidroxâmicos/farmacologia , Indóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA