Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.505
Filtrar
1.
Angew Chem Int Ed Engl ; : e202418062, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324416

RESUMO

The metal-electrode interface is key to unlocking emergent behaviour in all organic electrified systems, from battery technology to molecular electronics. In the latter, interfacial engineering has enabled efficient transport, higher device stability, and novel functionality. Mechanoresistivity - the change in electrical behaviour in response to a mechanical stimulus and a pathway to extremely sensitive force sensors - is amongst the most studied phenomena in molecular electronics, and the molecule-electrode interface plays a pivotal role in its emergence, reproducibility, and magnitude. In this contribution, we show that organometallic molecular wires incorporating a Pt(II) cation show mechanoresistive behaviour of exceptional magnitude, with conductance modulations of more than three orders of magnitude upon compression by as little as 1 nm. We synthesised series of cyclometalated Pt(II) molecular wires, and used scanning tunnelling microscopy - break junction techniques to characterise their electromechanical behaviour. Mechanoresistivity arises from an interaction between the Pt(II) cation and the Au electrode triggered by mechanical compression of the single-molecule device, and theoretical modelling confirms this hypothesis. Our study provides a new tool for the design of functional molecular wires by exploiting previously unreported ion-metal interactions in single-molecule devices, and develops a new framework for the development of mechanoresistive molecular junctions.

2.
Proc Natl Acad Sci U S A ; 121(38): e2407877121, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39259594

RESUMO

Understanding the structure in the nanoscopic region of water that is in direct contact with solid surfaces, so-called contact layer, is key to quantifying macroscopic properties that are of interest to e.g. catalysis, ice nucleation, nanofluidics, gas adsorption, and sensing. We explore the structure of the water contact layer on various technologically relevant solid surfaces, namely graphene, MoS[Formula: see text], Au(111), Au(100), Pt(111), and Pt(100), which have been previously hampered by time and length scale limitations of ab initio approaches or force field inaccuracies, by means of molecular dynamics simulations based on ab initio machine learning potentials built using an active learning scheme. Our results reveal that the in-plane intermolecular correlations of the water contact layer vary greatly among different systems: Whereas the contact layer on graphene and on Au(111) is predominantly homogeneous and isotropic, it is inhomogeneous and anisotropic on MoS[Formula: see text], on Au(100), and on the Pt surfaces, where it additionally forms two distinct sublayers. We apply hydrodynamics and the theory of the hydrophobic effect, to relate the energy corrugation and the characteristic length-scales of the contact layer with wetting, slippage, the hydration of small hydrophobic solutes and diffusio-osmotic transport. Thus, this work provides a microscopic picture of the water contact layer and links it to macroscopic properties of liquid/solid interfaces that are measured experimentally and that are relevant to wetting, hydrophobic solvation, nanofluidics, and osmotic transport.

3.
Adv Healthc Mater ; : e2402576, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39328088

RESUMO

Transparent microelectrode arrays have proven useful in neural sensing, offering a clear interface for monitoring brain activity without compromising high spatial and temporal resolution. The current landscape of transparent electrode technology faces challenges in developing durable, highly transparent electrodes while maintaining low interface impedance and prioritizing scalable processing and fabrication methods. To address these limitations, we introduce artifact-resistant transparent MXene microelectrode arrays optimized for high spatiotemporal resolution recording of neural activity. With 60% transmittance at 550 nm, these arrays enable simultaneous imaging and electrophysiology for multimodal neural mapping. Electrochemical characterization shows low impedance of 563 ± 99 kΩ at 1 kHz and a charge storage capacity of 58 mC cm⁻² without chemical doping. In vivo experiments in rodent models demonstrate the transparent arrays' functionality and performance. In a rodent model of chemically-induced epileptiform activity, we tracked ictal wavefronts via calcium imaging while simultaneously recording seizure onset. In the rat barrel cortex, we recorded multi-unit activity across cortical depths, showing the feasibility of recording high-frequency electrophysiological activity. The transparency and optical absorption properties of Ti3C2Tx MXene microelectrodes enable high-quality recordings and simultaneous light-based stimulation and imaging without contamination from light-induced artifacts.

4.
Water Res ; 266: 122397, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39288725

RESUMO

The concept of incorporating foam fractionation in aerated bioreactors at wastewater treatment plants (WWTPs) for the removal of per- and polyfluoroalkyl substances (PFAS) has recently been proposed. The extent of PFAS enrichment in aerated bioreactors' foams, as indicated by enrichment factors (EFs), has been observed to vary widely. Laboratory evidence has shown that factors affecting PFAS enrichment in foams include conductivity, surfactant concentrations and initial PFAS concentrations. However, real wastewaters are complex heterogenous matrices with physical, chemical and biological characteristics potentially contributing to the phenomenon of PFAS partitioning into foams. In this study, we characterised mixed liquor suspensions, including conductivity, filament content, aqueous PFAS concentrations, surface tension and total suspended solids concentrations (TSS) as well as foams, including bubble size and half-life. We used statistical tools - linear mixed-effects model - to establish relationships between PFAS enrichment in aerated bioreactor foams and the examined characteristics. We found that some of the examined characteristics, specifically filament content, surface tension and TSS concentrations measured in mixed liquor suspension and foam half-life, are negatively and significantly associated with the enrichment of longer chain PFAS (with perfluorinated carbon number ≥ 6). Of these, filament content is the important determinant of PFAS enrichment, potentially leading to an increase in, for example, perfluorooctanoic acid (PFOA) EF from 3 to 100 between typical filamentous and non-filamentous suspended biomass. However, enrichment of shorter chain PFAS (with perfluorinated carbon number ≤ 5) is negligible and is not affected by the characteristics that were measured. The findings of our study may serve as valuable information for the implementation of foam fractionation at WWTPs by elucidating the drivers that contribute to the enrichment of longer chain PFAS, under conditions typically found at WWTPs.

5.
ACS Nano ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39288275

RESUMO

The burgeoning demands for health care and human-machine interfaces call for the next generation of multifunctional integrated sensor systems with facile fabrication processes and reliable performances. Laser-induced graphene (LIG) with highly tunable physical and chemical characteristics plays vital roles in developing versatile skin-like flexible or stretchable sensor systems. This Progress Report presents an in-depth overview of the latest advances in LIG-based techniques in the applications of flexible sensors. First, the merits of the LIG technique are highlighted especially as the building blocks for flexible sensors, followed by the description of various fabrication methods of LIG and its variants. Then, the focus is moved to diverse LIG-based flexible sensors, including physical sensors, chemical sensors, and electrophysiological sensors. Mechanisms and advantages of LIG in these scenarios are described in detail. Furthermore, various representative paradigms of integrated LIG-based sensor systems are presented to show the capabilities of LIG technique for multipurpose applications. The signal cross-talk issues are discussed with possible strategies. The LIG technology with versatile functionalities coupled with other fabrication strategies will enable high-performance integrated sensor systems for next-generation skin electronics.

6.
Small ; : e2405318, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39301942

RESUMO

Interfacial self-assembly nanoarrays refer to the spontaneously organized nanostructures at interfaces, relying on the intrinsic properties of involved materials, such as surface energy, molecular structure, and interactions. In recent years, the exponential growth of self-assembly nanotechnology has substantially expanded the utility of nanomaterials. Particularly, non-covalent interactions-based interfacial self-assembly represents a viable and promising approach for the synthesis of novel nanostructure. This review introduces the significance and current development status of interfacial self-assembly technology, focusing on the driving mode, application, and prospects of interfacial self-assembly nanoarrays over the past few years.

7.
Nanomicro Lett ; 17(1): 23, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331208

RESUMO

Currently, the demand for electromagnetic wave (EMW) absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent. Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption. However, interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption. In this study, multi-component tin compound fiber composites based on carbon fiber (CF) substrate were prepared by electrospinning, hydrothermal synthesis, and high-temperature thermal reduction. By utilizing the different properties of different substances, rich heterogeneous interfaces are constructed. This effectively promotes charge transfer and enhances interfacial polarization and conduction loss. The prepared SnS/SnS2/SnO2/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt% in epoxy resin. The minimum reflection loss (RL) is - 46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz. Moreover, SnS/SnS2/SnO2/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces. Therefore, this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.

8.
ACS Appl Mater Interfaces ; 16(38): 50948-50960, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39263738

RESUMO

Alkali metal anodes paired with solid ion conductors offer promising avenues for enhancing battery energy density and safety. To facilitate rapid ion transport crucial for fast charging and discharging of batteries, it is essential to understand the behavior of point defects in these conductors. In this study, we investigate the heterogeneity of defect distribution in two prototypical solid ion conductors, Li3OCl and Li2PO2N (LiPON), by quantifying the defect formation energy (DFE) as a function of distance from the surface and interface through first-principles simulations. To simulate defects at the electrode-electrolyte interface, we perform calculations of Li+ vacancy in Li3OCl near its interface with lithium metal. Our results reveal a significant difference between the bulk and surface/interface DFE which could lead to defect aggregation/depletion near the surface/interface. Interestingly, while Li3OCl has a lower surface DFE than the bulk in most cases, LiPON follows the opposite trend with a higher surface DFE compared to the bulk. Due to this difference between bulk and surface DFE, the defect density can be up to 14 orders of magnitude higher at surfaces compared to the bulk. Further, we reveal that the DFE transition from surface/interface to bulk is precisely characterized by an exponentially decaying function. By incorporating this exponential trend, we develop a revised model for the average behavior of defects in solid ion conductors that offers a more accurate description of the influence of grain sizes. Surface effects dominate for grain sizes ≲1 µm, highlighting the importance of surface defect engineering and the DFE function for accurately capturing ion transport in devices. We further explore the kinetics of defect redistribution by calculating the migration barriers for defect movement between bulk and surfaces. We find a highly asymmetric energy landscape for the lithium vacancies, exhibiting lower migration barriers for movement toward the surface compared to the bulk, while interstitial defects exhibit comparable kinetics between surface and bulk regions. These insights highlight the importance of considering both thermodynamic and kinetic factors in designing solid ion conductors for improved ion transport at surfaces and interfaces.

9.
Small ; : e2406862, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308284

RESUMO

Interfacial stability is one of the critical challenges in all-solid-state Li metal batteries. Multiple processes such as solid electrolyte (SE) decomposition and lithium dendrite growth take place at the solid interfaces during cycling, leading to the overall cell failure. To deconvolute these complex processes, in situ characterization is of paramount importance to elucidate the interfacial evolution on the SE upon Li plating/stripping. Herein, an all-solid-state asymmetric in situ cell is developed that allows the direct visualization of the highly localized Li plating/stripping processes under the optical microscope. Moreover, this cell configuration enables reliable post-mortem chemical and morphological analysis of the intact SE/Li interface. Using combined scanning electron microscopy and energy-dispersive X-ray spectroscopy, the study reveals that the evolution of the Li argyrodite interface is strongly influenced by the current density, particularly in terms of chemical distribution and Li plating morphology. More specifically, the solid interface is LiCl-rich with the formation of Li cubes at low current densities, while high currents result in more uniform elemental distribution and filament morphology. These findings elucidate the dynamic evolution mechanism at solid interfaces and offer valuable guidance for developing stable solid interfaces in all-solid-state Li metal batteries.

10.
Front Bioeng Biotechnol ; 12: 1454262, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39253705

RESUMO

The global rise in lower limb amputation cases necessitates advancements in prosthetic limb technology to enhance the quality of life for affected patients. This review paper explores recent advancements in the integration of EEG and fNIRS modalities for smart lower prosthetic limbs for rehabilitation applications. The paper synthesizes current research progress, focusing on the synergy between brain-computer interfaces and neuroimaging technologies to enhance the functionality and user experience of lower limb prosthetics. The review discusses the potential of EEG and fNIRS in decoding neural signals, enabling more intuitive and responsive control of prosthetic devices. Additionally, the paper highlights the challenges, innovations, and prospects associated with the incorporation of these neurotechnologies in the field of rehabilitation. The insights provided in this review contribute to a deeper understanding of the evolving landscape of smart lower prosthetic limbs and pave the way for more effective and user-friendly solutions in the realm of neurorehabilitation.

11.
ACS Nano ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264378

RESUMO

The connection between solution structure, particle forces, and emergent phenomena at solid-liquid interfaces remains ambiguous. In this case study on boehmite aggregation, we established a connection between interfacial solution structure, emerging hydration forces between two approaching particles, and the resulting structure and kinetics of particle aggregation. In contrast to expectations from continuum-based theories, we observed a nonmonotonic dependence of the aggregation rate on the concentration of sodium chloride, nitrate, or nitrite, decreasing by 15-fold in 4 molal compared to 1 molal solutions. These results are accompanied by an increase in repulsive hydration forces and interfacial oscillatory features from 0.27-0.31 nm in 0.01 molal to 0.38-0.52 nm in 2 molal. Moreover, molecular dynamics (MD) simulations indicated that these changes correspond to enhanced ion correlations near the interface and produced loosely bound aggregates that retain electrolyte between the particles. We anticipate that these results will enable the prediction of particle aggregation, attachment, and assembly, with broad relevance to interfacial phenomena.

12.
J Colloid Interface Sci ; 678(Pt B): 609-618, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39265333

RESUMO

HYPOTHESIS: Host rock weathering and incipient pedogenesis result in the exposition of minerals, e.g., clay minerals in sedimentary limestones. Once exposed, these minerals provide the surfaces for fluid-solid interactions that control the fate of dissolved or suspended compounds such as organic matter and colloids. However, the functional and compositional diversity of organic matter and colloids limits the assessment of reactivity and availability of clay mineral interfaces. Such assessment demands a mobile compound with strong affinity to clay surfaces that is alien to the subsurface. EXPERIMENT: We approached this challenge by using poly(ethylene glycol) (PEG) as interfacial tracer in limestone weathering experiments. FINDINGS: PEG adsorption and transport was dependent on the availability of clay mineral surfaces and carbonate dissolution dynamics. In addition, PEG adsorption featured adsorption-desorption hysteresis which retained PEG mass on clay mineral surfaces. This resulted in different PEG transport for experiments conducted consecutively in the same porous medium. As such, PEG transport was reconstructed with a continuum-scale model parametrized by a Langmuir-type isotherm including hysteresis. Thus, we quantified the influence of exposed clay mineral surfaces on the transport of organic colloids in carbonate media. This renders PEG a suitable model colloid tracer for the assessment of clay surface exposition in porous media.

13.
Appl Ergon ; 122: 104382, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39265503

RESUMO

The introduction of advanced digital technologies continues to increase system complexity and introduce risks, which must be proactively identified and managed to support system resilience. Brain-computer interfaces (BCIs) are one such technology; however, the risks arising from broad societal use of the technology have yet to be identified and controlled. This study applied a structured systems thinking-based risk assessment method to prospectively identify risks and risk controls for a hypothetical future BCI system lifecycle. The application of the Networked Hazard Analysis and Risk Management System (Net-HARMS) method identified over 800 risks throughout the BCI system lifecycle, from BCI development and regulation through to BCI use, maintenance, and decommissioning. High-criticality risk themes include the implantation and degradation of unsafe BCIs, unsolicited brain stimulation, incorrect signals being sent to safety-critical technologies, and insufficiently supported BCI users. Over 600 risk controls were identified that could be implemented to support system safety and performance resilience. Overall, many highly-impactful BCI system safety and performance risks may arise throughout the BCI system lifecycle and will require collaborative efforts from a wide range of BCI stakeholders to adequately control. Whilst some of the identified controls are practical, work is required to develop a more systematic set of controls to best support the design of a resilient sociotechnical BCI system.

14.
ACS Nano ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283814

RESUMO

Interfaces can actively control the nucleation kinetics, orientations, and polymorphs of calcium carbonate (CaCO3). Prior studies have revealed that CaCO3 formation can be affected by the interplay between chemical functional moieties on solid-liquid or air-liquid interfaces as well as CaCO3's precursors and facets. Yet little is known about the roles of a liquid-liquid interface, specifically an oil-liquid interface, in directing CaCO3 mineralization which are common in natural and engineered systems. Here, by using in situ X-ray scattering techniques to locate a meniscus formed between water and a representative oil, isooctane, we successfully monitored CaCO3 formation at the pliable isooctane-water interface and systematically investigated the pivotal roles of the interface in the formation of CaCO3 (i.e., particle size, its spatial distribution with respect to the interface, and its mineral phase). Different from bulk solution, ∼5 nm CaCO3 nanoparticles form at the isooctane-water interface. They stably exist for a long time (36 h), which can result from interface-stabilized dehydrated prenucleation clusters of CaCO3. There is a clear tendency for enhanced amounts and faster crystallization of CaCO3 at locations closer to isooctane, which is attributed to a higher pH and an easier dehydration environment created by the interface and oil. Our study provides insights into CaCO3 nucleation at an oil-water interface, which can deepen our understanding of pliable interfaces interacting with CaCO3 and benefit mineral scaling control during energy-related subsurface operation.

15.
Eur J Pharm Biopharm ; : 114502, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39293723

RESUMO

The exposure of protein molecules to interfaces may cause protein aggregation and particle formation in protein formulations, especially hydrophobic interfaces, which may promote protein aggregation in solution. In this study, we found that modification of the surface properties by application of a hydrophobic Octadecyltrichlorosilane (OTS) could reduce the generation of protein aggregates and particles in protein solution induced by fluid shear. A stable protein adsorption layer was formed at the hydrophobic interface through the strong hydrophobic interaction between the protein and hydrophobic surface, which could prevent the aggregated protein from falling off into the bulk solution to form subvisible particles and insoluble protein aggregates. In addition, human complement enzyme linked immunosorbent assay results showed that the particles that were generated in the OTS-coated container did not activate human complement which indicated the OTS-coated container could be used as primary containers for certain types of monoclonal antibody formulation.

16.
Angew Chem Int Ed Engl ; : e202412794, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291306

RESUMO

The widespread application of photocatalysis for converting solar energy and seawater into hydrogen is generally hindered by limited catalyst activity and the lack of sustainable large-scale platforms. Here, a multi-scale hierarchical organic photocatalytic platform was developed, combining a photosensitive molecular heterojunction with a molecular-scale gradient energy level alignment and micro-nanoscale hierarchical pore structures. The ternary system facilitates efficient charge transfer and enhances photocatalytic activity compared to conventional donor-acceptor pairs. Meanwhile, the super-wetted hierarchical interfaces of the platform endow it with the ability to repeatedly capture light and self-suspend below the water surface, which simultaneously improves the light utilization efficiency, and reduces the adverse effects of salt deposition. Under a Xe lamp illumination, the hydrogen evolution rate of this organic platform utilizing a sacrificial agent can reach 165.8 mmol h-1 m-2, exceeding that of mostly inorganic systems as reported. And upon constructing a scalable system, the platform produced 80.6 ml m-2 of hydrogen from seawater within five hours at noon. More importantly, the outcomes suggest an innovative multi-scale approach that bridges disciplines, advancing the frontier of sustainable seawater hydrogen production driven by solar energy.

17.
Nano Lett ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291849

RESUMO

Aqueous calcium ion batteries, promising for energy storage, are still challenged by very limited anode choices. Although a Zn metal anode is popular in aqueous batteries, interface instability due to incessant corrosion and severe Zn dendrites hinders its development. Here, an interphase layer with densely packed nanocrystals of Ca3(CO3)2(OH)2·1.5H2O and ZnF2, and amorphous organic species, is demonstrated for a Zn metal anode with 1 M calcium trifluoromethyl sulfonate aqueous electrolyte. The hybrid interface fully avoids direct Zn-H2O contact, maintains fast ion conductivity, and effectively prevents corrosion and dendrite growth. Therefore, the symmetric cell stably lasts for 1600 h at 0.5 mA cm-2 and 2.5 mAh cm-2, far superior to 150 h for the control cell. Furthermore, the device maintains 80% capacity retention after 700 cycles at 1 A g-1, outperforming 13% retention after 200 cycles for the control device. This work indicates that interface and interphase engineering is also crucial for aqueous batteries.

18.
Small ; : e2405358, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291888

RESUMO

The replacement of oxygen evolution reactions with organic molecule oxidation reactions to enable energy-efficient hydrogen production has been a subject of interest. However, further reducing reaction energy consumption and releasing hydrogen from organic molecules continue to pose significant challenges. Herein, a strategy is proposed to produce hydrogen and formic acid from formaldehyde using Ag/Co3O4 interface catalysts at the anode. The key to improving the performance of Ag-based catalysts for formaldehyde oxidation lies in the strong SMSI achieved through the well-designed "spontaneous redox reaction" between Ag and Co3O4 precursors. Nano-sized Ag particles are uniformly dispersed on Co3O4 nanosheets, and electron-deficient Agδ+ are formed by the SMSI between Ag and Co3O4. Ag/Co3O4 demonstrates exceptional formaldehyde oxidation activity at low potentials of 0.32 V versus RHE and 0.65 V versus RHE, achieving current densities of 10 and 100 mA cm-2, respectively. The electrolyzer "Ag/Co3O4||20% Pt/C" achieves over 195% hydrogen efficiency and over 98% formic acid selectivity, maintaining stable operation for 60 hours. This work not only presents a novel approach to precisely modulate Ag particle size and interface electronic structure via SMSI, but also provides a promising approach to efficient and energy-saving hydrogen production and the transformation of harmful formaldehyde.

19.
J Neural Eng ; 21(5)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39231466

RESUMO

Objective.Steady-state visual evoked potentials (SSVEPs) in response to flickering stimuli are popular in brain-computer interfacing but their implementation in virtual reality (VR) offers new opportunities also for clinical applications. While traditional SSVEP target selection relies on single-frequency stimulation of both eyes simultaneously, further called congruent stimulation, recent studies attempted to improve the information transfer rate by using dual-frequency-coded SSVEP where each eye is presented with a stimulus flickering at a different frequency, further called incongruent stimulation. However, few studies have investigated incongruent multifrequency-coded SSVEP (MultiIncong-SSVEP).Approach.This paper reports on a systematical investigation of incongruent dual-, triple-, and quadruple-frequency-coded SSVEP for use in VR, several of which are entirely novel, and compares their performance with that of congruent dual-frequency-coded SSVEP.Main results.We were able to confirm the presence of a summation effect when comparing monocular- and binocular single-frequency congruent stimulation, and a suppression effect when comparing monocular- and binocular dual-frequency incongruent stimulation, as both tap into the binocular vision capabilities which, when hampered, could signal amblyopia.Significance.In sum, our findings not only evidence the potential of VR-based binocularly incongruent SSVEP but also underscore the importance of paradigm choice and decoder design to optimize system performance and user comfort.


Assuntos
Eletroencefalografia , Potenciais Evocados Visuais , Estudos de Viabilidade , Estimulação Luminosa , Realidade Virtual , Visão Binocular , Humanos , Potenciais Evocados Visuais/fisiologia , Visão Binocular/fisiologia , Masculino , Feminino , Adulto , Estimulação Luminosa/métodos , Adulto Jovem , Eletroencefalografia/métodos , Interfaces Cérebro-Computador
20.
ACS Appl Mater Interfaces ; 16(37): 49935-49943, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39253788

RESUMO

Reversible cycling of rare-earth elements between an aqueous electrolyte solution and its free surface is achieved by X-ray exposure. This exposure alters the competitive equilibrium between lanthanide ions bound to a chelating ligand, diethylenetriamine pentaacetic acid (DTPA), in the bulk solution and to insoluble monolayers of extractant di-hexadecyl phosphoric acid (DHDP) at its surface. Evidence for the exposure-induced temporal variations in the lanthanide surface density is provided by X-ray fluorescence near total reflection measurements. Comparison of results when X-rays are confined to the aqueous surface region to results when X-rays transmit into the bulk solution suggests the importance of aqueous radiolysis in the adsorption cycle. Amine binding sites in DTPA are identified as a likely target of radiolysis products. The molecules DTPA and DHDP are like those used in the separation of lanthanides from ores and in the reprocessing of nuclear fuel. These results suggest that an external source of X-rays can be used to drive rare-earth element separations. More generally, use of X-rays to controllably dose a liquid interface with lanthanides could trigger a range of interfacial processes, including enhanced metal ion extraction, catalysis, and materials synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA