Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Toxicon X ; 22: 100196, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38665175

RESUMO

Snakebite is a neglected public health issue, with many scientific and medical issues to be solved. Cobras are among the most common venomous snakes in Myanmar and are responsible for a considerable number of severe snakebite envenoming. There are three species of cobra (Naja kaouthia, Naja mandalayensis and Ophiophagus hannah) in Myanmar. The study aims to characterize the N. kaouthia and N. mandalayensis venoms and to investigate the efficacy of anti-cobra antivenom (BPI) against the two venoms. Protein components and fibrinogenolytic activity were determined by SDS-PAGE. Enzymatic activities for PLA2, protease and acetylcholinesterase were determined by spectrophotometric method. Anticoagulant activity was determined by recalcification time of citrated human plasma. Myotoxicity, necrotizing activity, median lethal dose (LD50) and median effective dose (ED50) were determined by WHO recommended methods. The SDS-PAGE displayed the proteins and enzymes containing in two venoms were different. N. kaouthia venom exhibited more in PLA2, acetylcholinesterase, anticoagulant, fibrinogenolytic and necrotizing activities than N. mandalayensis venom. N. mandalayensis venom had more protease activity and myotoxicity than N. kaouthia venom. The median lethal dose (LD50) of N. kaouthia and N. mandalayensis venom was 4.33 µg/mouse and 5.04 µg/mouse respectively. Both venoms induced fibrinogen Aα chain degradation in 30 min (N. kaouthia) and in 6 h (N. mandalayensis). The same median effective dose (ED50) (19.56 µg/mouse) showed that anti-NK antivenom can neutralize against lethal effect of N. mandalayensis venom. It can also neutralize the protease activity, anticoagulant activity and fibrinogenolytic activity of both venoms. Immunodiffusion and immunoblotting studies showed that the antivenom recognized its homologous venom (N. kaouthia) and cross-reacted against the heterologous venom (N. mandalayensis). The anti-NK antivenom is suitable to use for N. mandalayensis bite if monospecific antivenom is not available.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34394208

RESUMO

BACKGROUND: Naja mandalayensis is a spitting cobra from Myanmar. To the best of our knowledge, no studies on this venom composition have been conducted so far. On the other hand, few envenomation descriptions state that it elicits mainly local inflammation in the victims' eyes, the preferred target of this spiting cobra. Symptoms would typically include burning and painful sensation, conjunctivitis, edema and temporary loss of vision. METHODS: We have performed a liquid-chromatography (C18-RP-HPLC) mass spectrometry (ESI-IT-TOF/MS) based approach in order to biochemically characterize N. mandalayensis venom. RESULTS: A wide variety of three-finger toxins (cardiotoxins) and metallopeptidases were detected. Less abundant, but still representative, were cysteine-rich secretory proteins, L-amino-acid oxidases, phospholipases A2, venom 5'-nucleotidase and a serine peptidase inhibitor. Other proteins were present, but were detected in a relatively small concentration. CONCLUSION: The present study set the basis for a better comprehension of the envenomation from a molecular perspective and, by increasing the interest and information available for this species, allows future venom comparisons among cobras and their diverse venom proteins.

3.
J. venom. anim. toxins incl. trop. dis ; 27: e20200125, 2021. tab, graf
Artigo em Inglês | VETINDEX, LILACS | ID: biblio-1287096

RESUMO

Background Naja mandalayensis is a spitting cobra from Myanmar. To the best of our knowledge, no studies on this venom composition have been conducted so far. On the other hand, few envenomation descriptions state that it elicits mainly local inflammation in the victims' eyes, the preferred target of this spiting cobra. Symptoms would typically include burning and painful sensation, conjunctivitis, edema and temporary loss of vision. Methods We have performed a liquid-chromatography (C18-RP-HPLC) mass spectrometry (ESI-IT-TOF/MS) based approach in order to biochemically characterize N. mandalayensis venom. Results A wide variety of three-finger toxins (cardiotoxins) and metallopeptidases were detected. Less abundant, but still representative, were cysteine-rich secretory proteins, L-amino-acid oxidases, phospholipases A2, venom 5'-nucleotidase and a serine peptidase inhibitor. Other proteins were present, but were detected in a relatively small concentration. Conclusion The present study set the basis for a better comprehension of the envenomation from a molecular perspective and, by increasing the interest and information available for this species, allows future venom comparisons among cobras and their diverse venom proteins.(AU)


Assuntos
Animais , Proteômica/classificação , Venenos Elapídicos/enzimologia
4.
J Venom Anim Toxins Incl Trop Dis, v. 27, e20200125, jul. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3923

RESUMO

Background: Naja mandalayensis is a spitting cobra from Myanmar. To the best of our knowledge, no studies on this venom composition have been conducted so far. On the other hand, few envenomation descriptions state that it elicits mainly local inflammation in the victims’ eyes, the preferred target of this spiting cobra. Symptoms would typically include burning and painful sensation, conjunctivitis, edema and temporary loss of vision. Methods: We have performed a liquid-chromatography (C18-RP-HPLC) mass spectrometry (ESI-IT-TOF/MS) based approach in order to biochemically characterize N. mandalayensis venom. Results: A wide variety of three-finger toxins (cardiotoxins) and metallopeptidases were detected. Less abundant, but still representative, were cysteine-rich secretory proteins, L-amino-acid oxidases, phospholipases A2, venom 5’-nucleotidase and a serine peptidase inhibitor. Other proteins were present, but were detected in a relatively small concentration. Conclusion: The present study set the basis for a better comprehension of the envenomation from a molecular perspective and, by increasing the interest and information available for this species, allows future venom comparisons among cobras and their diverse venom proteins.

5.
Toxicon ; 184: 39-47, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32504626

RESUMO

Examination of 18 cobras brought to three hospitals in the Mandalay Region by patients bitten or spat at by them distinguished 3 monocled cobras (Naja kaouthia) and 15 Mandalay spitting cobras (N. mandalayensis), based on their morphological characteristics. We confirm and extend the known distributions and habitats of both N. mandalayensis and N. kaouthia in Upper Myanmar. Clinical symptoms of local and systemic envenoming by N. mandalayensis are described for the first time. These included local swelling, blistering and necrosis and life-threatening systemic neurotoxicity. More information is needed about the clinical phenotype and management of bites by N. mandalayensis, the commoner of the two cobras in Upper Myanmar. Since the current cobra antivenom manufactured in Myanmar has lower pre-clinical efficacy against N. mandalayensis than N. kaouthia, there is a need for more specific antivenom therapy.


Assuntos
Venenos Elapídicos , Elapidae , Naja , Animais , Antivenenos , Endoftalmite , Mianmar , Mordeduras de Serpentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA