Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.863
Filtrar
1.
Surg Endosc ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294317

RESUMO

BACKGROUND: Medical devices for fluorescence-guided surgery (FGS) are becoming available at a fast pace. The main challenge for surgeons lies in the lack of in-depth knowledge of optical imaging, different technical specifications and poor standardisation, and the selection of the best device based on clinical application. METHODS: This manuscript aims to provide an up-to-date description of the commercially available fluorescence imaging platforms by comparing their mode of use, required settings, image types, compatible fluorophores, regulatory approval, and cost. We obtained this information by performing a broad literature search on PubMed and by contacting medical companies directly. The data for this review were collected up to November 2023. RESULTS: Thirty-two devices made by 19 medical companies were identified. Ten systems are surgical microscopes, 5 can be used for both open and minimally invasive surgery (MIS), 6 can only be used for open surgery, and 10 only for MIS. One is a fluorescence system available for the Da Vinci robot. Nineteen devices can provide an overlay between fluorescence and white light image. All devices are compatible with Indocyanine Green, the most common fluorescence dye used intraoperatively. There is significant variability in the hardware and software of each device, which resulted in different sensitivity, fluorescence intensity, and image quality. All devices are CE-mark regulated, and 30 were FDA-approved. CONCLUSION: There is a prolific market of devices for FGS and healthcare professionals should have basic knowledge of their technical specifications to use it at best for each clinical indication. Standardisation across devices must be a priority in the field of FGS, and it will enhance external validity for future clinical trials in the field.

2.
Curr Biol ; 34(18): 4184-4196.e7, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39255789

RESUMO

Human primary visual cortex (V1) responds more strongly, or resonates, when exposed to ∼10, ∼15-20, and ∼40-50 Hz rhythmic flickering light. Full-field flicker also evokes the perception of hallucinatory geometric patterns, which mathematical models explain as standing-wave formations emerging from periodic forcing at resonant frequencies of the simulated neural network. However, empirical evidence for such flicker-induced standing waves in the visual cortex was missing. We recorded cortical responses to flicker in awake mice using high-spatial-resolution widefield imaging in combination with high-temporal-resolution glutamate-sensing fluorescent reporter (iGluSnFR). The temporal frequency tuning curves in the mouse V1 were similar to those observed in humans, showing a banded structure with multiple resonance peaks (8, 15, and 33 Hz). Spatially, all flicker frequencies evoked responses in V1 corresponding to retinotopic stimulus location, but some evoked additional peaks. These flicker-induced cortical patterns displayed standing-wave characteristics and matched linear wave equation solutions in an area restricted to the visual cortex. Taken together, the interaction of periodic traveling waves with cortical area boundaries leads to spatiotemporal activity patterns that may affect perception.


Assuntos
Córtex Visual Primário , Animais , Camundongos , Córtex Visual Primário/fisiologia , Masculino , Estimulação Luminosa , Camundongos Endogâmicos C57BL , Feminino , Percepção Visual/fisiologia , Córtex Visual/fisiologia
3.
ACS Appl Mater Interfaces ; 16(38): 51020-51027, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39264821

RESUMO

FA-MA-Cs ternary cation perovskite exhibits excellent optoelectronic properties and high stabilities against humidity and light soaking and thus has aroused extensive attention in polycrystalline thin film solar cells. Compared with polycrystalline counterparts, FA-MA-Cs ternary cation perovskite single-crystal thin films (SCTFs) have lower defects, better carrier transport capacity, and stability because of lacking grain boundary defects. However, the immature growth technology of SCTFs restricts digging out its optoelectronic potential. Here, we proposed an improved space-confined method to grow large area FA0.9 MA0.05Cs0.05PbI2.7Br0.3 SCTFs using a tunable heating area to control the nucleation and growth process. Its area reaches 64 mm2 with a thickness of 26 µm. The SCTF exhibits high crystallinity, low defect density, long carrier lifetime, and high moisture resistance stability. Besides, a photosensitive chip based on a planar metal-semiconductor-metal photodetector demonstrates linear response to the three primary colors, with a photosensitive range that is 1.5 times that of protocol 3 wide color gamut. Under high-frequency light sources, the on/off ratio reaches 3.9 × 103, and the response time can be as low as 400 ns. Such ultrafast response speed and broad photosensitive range are successfully achieved for imaging applications.

4.
Biomed Eng Lett ; 14(5): 1125-1135, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39220033

RESUMO

Dual-mode optical imaging can simultaneously provide morphological and functional information. Furthermore, it can be integrated with projection mapping method to directly observe the images in the region of interest. This study was aimed to develop a dual-mode optical projection mapping system (DOPMS) that obtains laser speckle contrast image (LSCI) and subcutaneous vein image (SVI) and projects onto the region of interest, minimizing the spatial misalignment between the regions captured by the camera and projected by a projector. In in vitro and in vivo studies, LSCI and SVI were obtained and projected under single-mode illumination, where either the laser or light-emitting diode (LED) was activated, and under dual-mode illumination, where the laser and LED were activated simultaneously. In addition, fusion image (FI) of LSCI and SVI was implemented to selectively observe blood perfusion in the vein. DOPMS successfully obtained LSCI, SVI, and FI and projected them onto the identical region of interest, minimizing spatial misalignment. Single-mode illumination resulted in relatively clearer and noise-free images. Dual-mode illumination introduced speckle noise to SVI and FI but enabled real-time imaging by simultaneously employing LSCI, SVI, and FI. FI may be more effective for quasi-static evaluations before and after treatment under single-mode illumination and for real-time evaluation during treatment under dual-mode illumination owing to its faster image processing, albeit with a potential tradeoff in image quality.

5.
Surg Oncol Clin N Am ; 33(4): 651-667, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39244285

RESUMO

Margin status in head and neck cancer has important prognostic implications. Currently, resection is based on manual palpation and gross visualization followed by intraoperative specimen or tumor bed-based margin analysis using frozen sections. While generally effective, this protocol has several limitations including margin sampling and close and positive margin re-localization. There is a lack of evidence on the association of use of frozen section analysis with improved survival in head and neck cancer. This article reviews novel technologies in head and neck margin analysis such as 3-dimensional scanning, augmented reality, molecular margins, optical imaging, spectroscopy, and artificial intelligence.


Assuntos
Neoplasias de Cabeça e Pescoço , Margens de Excisão , Humanos , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/cirurgia
6.
iScience ; 27(9): 110655, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39252965

RESUMO

The ability to visualize and track multiple biological processes in vivo in real time is highly desirable. Bioluminescence imaging (BLI) has emerged as an attractive modality for non-invasive cell tracking, with various luciferase reporters enabling parallel monitoring of several processes. However, simultaneous multiplexed imaging in vivo is challenging due to suboptimal reporter intensities and the need to image one luciferase at a time. We report a multiplexed BLI approach using a single substrate that leverages bioluminescence resonance energy transfer (BRET)-based reporters with distinct spectral profiles for triple-color BLI. These luciferase-fluorophore fusion reporters address light transmission challenges and use optimized coelenterazine substrates. Comparing BRET reporters across two substrate analogs identified a green-yellow-orange combination that allows simultaneous imaging of three distinct cell populations in vitro and in vivo. These tools provide a template for imaging other biological processes in vivo during a single BLI session using a single reporter substrate.

7.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39273264

RESUMO

The incorporation of gold nanoparticles (GNPs) into retinal imaging signifies a notable advancement in ophthalmology, offering improved accuracy in diagnosis and patient outcomes. This review explores the synthesis and unique properties of GNPs, highlighting their adjustable surface plasmon resonance, biocompatibility, and excellent optical absorption and scattering abilities. These features make GNPs advantageous contrast agents, enhancing the precision and quality of various imaging modalities, including photoacoustic imaging, optical coherence tomography, and fluorescence imaging. This paper analyzes the unique properties and corresponding mechanisms based on the morphological features of GNPs, highlighting the potential of GNPs in retinal disease diagnosis and management. Given the limitations currently encountered in clinical applications of GNPs, the approaches and strategies to overcome these limitations are also discussed. These findings suggest that the properties and efficacy of GNPs have innovative applications in retinal disease imaging.


Assuntos
Ouro , Nanopartículas Metálicas , Imagem Óptica , Retina , Tomografia de Coerência Óptica , Ouro/química , Nanopartículas Metálicas/química , Humanos , Imagem Óptica/métodos , Retina/diagnóstico por imagem , Retina/metabolismo , Tomografia de Coerência Óptica/métodos , Doenças Retinianas/diagnóstico por imagem , Doenças Retinianas/diagnóstico , Animais , Imagem Molecular/métodos , Meios de Contraste/química
8.
Neuroinformatics ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312131

RESUMO

Advances in the spatiotemporal resolution and field-of-view of neuroimaging tools are driving mesoscale studies for translational neuroscience. On October 10, 2023, the Center for Mesoscale Mapping (CMM) at the Massachusetts General Hospital (MGH) Athinoula A. Martinos Center for Biomedical Imaging and the Massachusetts Institute of Technology (MIT) Health Sciences Technology based Neuroimaging Training Program (NTP) hosted a symposium exploring the state-of-the-art in this rapidly growing area of research. "Mesoscale Brain Mapping: Bridging Scales and Modalities in Neuroimaging" brought together researchers who use a broad range of imaging techniques to study brain structure and function at the convergence of the microscopic and macroscopic scales. The day-long event centered on areas in which the CMM has established expertise, including the development of emerging technologies and their application to clinical translational needs and basic neuroscience questions. The in-person symposium welcomed more than 150 attendees, including 57 faculty members, 61 postdoctoral fellows, 35 students, and four industry professionals, who represented institutions at the local, regional, and international levels. The symposium also served the training goals of both the CMM and the NTP. The event content, organization, and format were planned collaboratively by the faculty and trainees. Many CMM faculty presented or participated in a panel discussion, thus contributing to the dissemination of both the technologies they have developed under the auspices of the CMM and the findings they have obtained using those technologies. NTP trainees who benefited from the symposium included those who helped to organize the symposium and/or presented posters and gave "flash" oral presentations. In addition to gaining experience from presenting their work, they had opportunities throughout the day to engage in one-on-one discussions with visiting scientists and other faculty, potentially opening the door to future collaborations. The symposium presentations provided a deep exploration of the many technological advances enabling progress in structural and functional mesoscale brain imaging. Finally, students worked closely with the presenting faculty to develop this report summarizing the content of the symposium and putting it in the broader context of the current state of the field to share with the scientific community. We note that the references cited here include conference abstracts corresponding to the symposium poster presentations.

9.
Biochem Biophys Res Commun ; 734: 150747, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39340925

RESUMO

In animal models of cancer, targeted fluorescence bioimaging, performed non-invasively and in real time, is indispensable tool for assessing tumor location, spread of metastasis, and the therapeutic potential of anticancer drugs under development. To overcome the limitation of antibodies in bioimaging applications, small artificial scaffold proteins based on ankyrin repeats (DARPins, designed ankyrin repeat proteins) are used as tumor-associated antigen binders. In this study for the first time, we assessed the potential of DARPin_9-29, the human epidermal growth factor receptor 2 (HER2) subdomain I-specific protein, genetically fused with albumin binding domain (ABD) and conjugated with Cyanine5.5 as a NIR sensor for fluorescence bioimaging of HER2-positive cancer in animal model. In vivo biodistribution studies have revealed sufficient tumor-to-background ratios at 48 h (3.17 ± 0.55) and 72 h (3.49 ± 0.64) postinjection, providing excellent contrast between the primary tumor and tissue background and allowing clear breast tumor detection. Ex vivo biodistribution has shown that ABD module in DARP-ABD sensor prevents renal reabsorption and increases tumor accumulation in more than 10-folds compared to excreting organs. To verify if DARP-ABD-Cy5.5 can demarcate HER2-positive tumor in vivo, HER2-positive syngeneic breast cancer cell line with constitutive gene expression of luciferase eFFLuc, was created. The powerful combination of bioluminescence and fluorescence imaging let to track the fluorescent anti-HER2 DARP-ABD sensor in bioluminescent HER2-positive breast tumors. Our results validate DARP-ABD as a promising sensor for fluorescence-guided imaging of HER2-positive solid cancer, which can be used in the development of improved anticancer treatment strategies.

10.
Bioengineering (Basel) ; 11(9)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39329658

RESUMO

The human brain is a complex organ controlling daily activity. Present technique models have mostly focused on multi-layer brain tissues, which lack understanding of the propagation characteristics of various single brain tissues. To better understand the influence of different optical source types on individual brain tissues, we constructed single-layer brain models and simulated optical propagation using the Monte Carlo method. Based on the optical simulation results, sixteen optical source types had different optical energy distributions, and the distribution in cerebrospinal fluid had obvious characteristics. Five brain tissues (scalp, skull, cerebrospinal fluid, gray matter, and blood vessel) had the same set of the first three optical source types with maximum depth, while white matter had a different set of the first three optical source types with maximum depth. Each brain tissue had different optical source types with the maximum and minimum full width at half maximum. The study on single-layer brain tissues under different optical source types lays the foundation for constructing complex brain models with multiple tissue layers. It provides a theoretical reference for optimizing the selection of optical source devices for brain imaging.

11.
Prog Neurobiol ; 240: 102657, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39103115

RESUMO

Accurate definition of the borders of cortical visual areas is essential for the study of neuronal processes leading to perception. However, data used for definition of areal boundaries have suffered from issues related to resolution, uniform coverage, or suitability for objective analysis, leading to ambiguity. Here, we present a novel approach that combines widefield optical imaging, presentation of naturalistic movies, and encoding model analysis, to objectively define borders in the primate extrastriate cortex. We applied this method to test conflicting hypotheses about the third-tier visual cortex, where areal boundaries have remained controversial. We demonstrate pronounced tuning preferences in the third-tier areas, and an organizational structure in which the dorsomedial area (DM) contains representations of both the upper and lower contralateral quadrants, and is located immediate anterior to V2. High-density electrophysiological recordings with a Neuropixels probe confirm these findings. Our encoding-model approach offers a powerful, objective way to disambiguate areal boundaries.


Assuntos
Callithrix , Córtex Visual , Animais , Córtex Visual/fisiologia , Callithrix/fisiologia , Estimulação Luminosa/métodos , Mapeamento Encefálico , Masculino , Imagem Óptica , Feminino
12.
Healthc Technol Lett ; 11(4): 240-251, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39100499

RESUMO

Hyperspectral imaging has demonstrated its potential to provide correlated spatial and spectral information of a sample by a non-contact and non-invasive technology. In the medical field, especially in histopathology, HSI has been applied for the classification and identification of diseased tissue and for the characterization of its morphological properties. In this work, we propose a hybrid scheme to classify non-tumor and tumor histological brain samples by hyperspectral imaging. The proposed approach is based on the identification of characteristic components in a hyperspectral image by linear unmixing, as a features engineering step, and the subsequent classification by a deep learning approach. For this last step, an ensemble of deep neural networks is evaluated by a cross-validation scheme on an augmented dataset and a transfer learning scheme. The proposed method can classify histological brain samples with an average accuracy of 88%, and reduced variability, computational cost, and inference times, which presents an advantage over methods in the state-of-the-art. Hence, the work demonstrates the potential of hybrid classification methodologies to achieve robust and reliable results by combining linear unmixing for features extraction and deep learning for classification.

13.
J Dent Res ; : 220345241262949, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101558

RESUMO

Endodontic access preparation is one of the initial steps in root canal treatments and can be hindered by the obliteration of pulp canals and formation of tertiary dentin. Until now, methods for direct intraoperative visualization of the 3-dimensional anatomy of teeth have been missing. Here, we evaluate the use of shortwave infrared radiation (SWIR) for navigation during stepwise access preparation. Nine teeth (3 anteriors, 3 premolars, and 3 molars) were explanted en bloc with intact periodontium including alveolar bone and mucosa from the upper or lower jaw of human body donors. Analysis was performed at baseline as well as at preparation depths of 5 mm, 7 mm, and 9 mm, respectively. For reflection, SWIR was used at a wavelength of 1,550 nm from the occlusal direction, whereas for transillumination, SWIR was passed through each sample at the marginal gingiva from the buccal as well as oral side at a wavelength of 1,300 nm. Pulpal structures could be identified as darker areas approximately 2 mm before reaching the pulp chamber using SWIR transillumination, although they were indistinguishable under normal circumstances. Furcation areas in molars appeared with higher intensity than areas with canals. The location of pulpal structures was confirmed by superimposition of segmented micro-computed tomography (µCT) images. By radiomic analysis, significant differences between pulpal and parapulpal areas could be detected in image features. With hierarchical cluster analysis, both segments could be confirmed and associated with specific clusters. The local thickness of µCTs was calculated and correlated with SWIR transillumination images, by which a linear dependency of thickness and intensity could be demonstrated. Lastly, by in silico simulations of light propagation, dentin tubules were shown to be a crucial factor for understanding the visibility of the pulp. In conclusion, SWIR transillumination may allow direct clinical live navigation during endodontic access preparation.

14.
J Neurol Sci ; 463: 123151, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39088895

RESUMO

INTRODUCTION: Bitemporal hemianopia is usually caused by chiasmal pathology. Rarely, chorioretinal lesions may develop symmetrically in both eyes and mimic chiasmopathy. METHODS: This case series included three patients who presented to a tertiary neuro-ophthalmology centre with bitemporal hemianopic defects between 2021 and 2023 and were subsequently diagnosed with bilateral chorioretinopathy. All patients received comprehensive examinations from a fellowship-trained neuro-ophthalmologist and uveitis specialist to rule out other causes of visual dysfunction. RESULTS: Three males aged 64, 62, and 72 years were included. All patients showed bitemporal hemianopic defects crossing the vertical midline on automated perimetry and binasal thinning of the macular ganglion cell complex on spectral-domain optical coherence tomography (OCT). Fundus autofluorescence (FAF) showed classical features of acute zonal occult outer retinopathy (AZOOR) in two patients and central serous chorioretinopathy (CSCR) in another. AZOOR diagnosis was preceded by neuroimaging in both cases, whereas the patient with CSCR had longstanding, electroretinography-confirmed lesions and did not require neuroimaging. Fundus appearance and visual field defects remained stable in all patients across 3-6 months of follow-up. CONCLUSIONS: Bilateral chorioretinopathy should be considered in the differential diagnosis of bitemporal hemianopia in specific cases, including when visual field defects cross the vertical midline and when neuroimaging fails to reveal chiasmal pathology. FAF and macular OCT have high diagnostic yield as initial investigations.


Assuntos
Hemianopsia , Humanos , Masculino , Pessoa de Meia-Idade , Hemianopsia/etiologia , Hemianopsia/diagnóstico , Idoso , Tomografia de Coerência Óptica/métodos , Síndrome dos Pontos Brancos/diagnóstico , Testes de Campo Visual , Coriorretinopatia Serosa Central/diagnóstico por imagem , Coriorretinopatia Serosa Central/diagnóstico , Coriorretinopatia Serosa Central/complicações , Campos Visuais/fisiologia , Escotoma/diagnóstico , Escotoma/diagnóstico por imagem , Escotoma/etiologia
15.
J Biophotonics ; : e202400248, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210550

RESUMO

Postoperative bleeding is the most significant complication of tonsillectomy. Regular monitoring of post-surgical wound healing in the pharynx is required. For this purpose, we propose endoscope-based non-invasive perfusion mapping and quantification. The combination of imaging photoplethysmography and image processing provides automated wound area selection and microcirculation characterization. In this feasibility study, we demonstrate the first results of the proposed approach to wound monitoring in clinical trial on eight patients after tonsillectomy. Combination of probe-based optical system and image processing algorithms can provide the valuable and consistent data on perfusion distribution. The quantitative microcirculation data obtained 1, 4, and 7 days after surgery are in good agreement with existing monitoring protocols.

16.
Neuroimage ; 298: 120805, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39173692

RESUMO

The study of the neural substrates that serve conscious vision is one of the unsolved questions of cognitive neuroscience. So far, consciousness literature has endeavoured to disentangle which brain areas and in what order are involved in giving rise to visual awareness, but the problem of consciousness still remains unsolved. Availing of two different but complementary sources of data (i.e., Fast Optical Imaging and EEG), we sought to unravel the neural dynamics responsible for the emergence of a conscious visual experience. Our results revealed that conscious vision is characterized by a significant increase of activation in extra-striate visual areas, specifically in the Lateral Occipital Complex (LOC), and that, more interestingly, such activity occurred in the temporal window of the ERP component commonly thought to represent the electrophysiological signature of visual awareness, i.e., the Visual Awareness Negativity (VAN). Furthermore, Granger causality analysis, performed to further investigate the flow of activity occurring in the investigated areas, unveiled that neural processes relating to conscious perception mainly originated in LOC and subsequently spread towards visual and motor areas. In general, the results of the present study seem to advocate for an early contribution of LOC in conscious vision, thus suggesting that it could represent a reliable neural correlate of visual awareness. Conversely, striate visual areas, showing awareness-related activity only in later stages of stimulus processing, could be part of the cascade of neural events following awareness emergence.


Assuntos
Estado de Consciência , Eletroencefalografia , Lobo Occipital , Percepção Visual , Humanos , Estado de Consciência/fisiologia , Percepção Visual/fisiologia , Masculino , Feminino , Adulto , Adulto Jovem , Lobo Occipital/fisiologia , Lobo Occipital/diagnóstico por imagem , Córtex Visual Primário/fisiologia , Córtex Visual Primário/diagnóstico por imagem , Mapeamento Encefálico , Potenciais Evocados Visuais/fisiologia , Córtex Visual/fisiologia , Córtex Visual/diagnóstico por imagem , Conscientização/fisiologia
17.
SLAS Technol ; 29(5): 100186, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39214254

RESUMO

Paroxysmal atrial fibrillation is a common arrhythmia, and its development process and prediction of the degree of atrial fibrosis are of great significance for treatment and management. Optical imaging technology provides a new means for non-invasive observation of atrial electrical activity. The aim of this study is to investigate the predictive effect of sinus node recovery time on the degree of atrial fibrosis in patients with paroxysmal atrial fibrillation, and to provide a basis for the application of optical imaging technology in the study of atrial fibrosis. The study collected clinical and optical imaging data from a group of patients with paroxysmal atrial fibrillation, and used statistical analysis methods to investigate the relationship between sinus node recovery time and the degree of atrial fibrosis. The research results indicate that there is a significant correlation between the recovery time of the sinus node and the degree of atrial fibrosis, that is, there is a positive correlation between the prolonged recovery time of the sinus node and the aggravation of atrial fibrosis. SNRT can serve as an effective indicator for evaluating atrial matrix and can be applied to predict recurrence after catheter ablation of paroxysmal atrial fibrillation. Shortening SNRT through catheter ablation can become an important predictor of effective catheter ablation.

18.
iScience ; 27(8): 110554, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39184441

RESUMO

Zebrafish and organoids, crucial for complex biological studies, necessitate an imaging system with deep tissue penetration, sample protection from environmental interference, and ample operational space. Traditional three-photon microscopy is constrained by short-working-distance objectives and falls short. Our long-working-distance high-collection-efficiency three-photon microscopy (LH-3PM) addresses these challenges, achieving a 58% fluorescence collection efficiency at a 20 mm working distance. LH-3PM significantly outperforms existing three-photon systems equipped with the same long working distance objective, enhancing fluorescence collection and dramatically reducing phototoxicity and photobleaching. These improvements facilitate accurate capture of neuronal activity and an enhanced detection of activity spikes, which are vital for comprehensive, long-term imaging. LH-3PM's imaging of epileptic zebrafish not only showed sustained neuron activity over an hour but also highlighted increased neural synchronization and spike numbers, marking a notable shift in neural coding mechanisms. This breakthrough paves the way for new explorations of biological phenomena in small model organisms.

19.
J Clin Med ; 13(16)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39200882

RESUMO

Background/Objectives: Three-dimensional (3D) analysis of maxillofacial structures in dysmorphic patients offers clinical advantages over 2D analysis due to its high accuracy and precision in measuring many morphological parameters. Currently, no reliable gold standard exists for calculating 3D volumetric measurements of maxillofacial structures when captured by 3D surface imaging techniques. The aim of this scoping review is to provide an overview of the scientific literature related to 3D surface imaging methods used for volumetric analysis of the dysmorphic maxillofacial structures of patients affected by CL/P or other syndromes and to provide an update on the existing protocols, methods, and, when available, reference data. Methods: A total of 17 papers selected according to strict inclusion and exclusion criteria were reviewed for the qualitative analysis out of more than 4500 articles published between 2002 and 2024 that were retrieved from the main electronic scientific databases according to the PRISMA-ScR guidelines. A qualitative synthesis of the protocols used for the selection of the anatomical areas of interest and details on the methods used for the calculation of their volume was completed. Results: The results suggest a great degree of heterogeneity between the reviewed studies in all the aspects analysed (patient population, anatomical structure, area selection, and volume calculation), which prevents any chance of direct comparison between the reported volumetric data. Conclusions: Our qualitative analysis revealed dissimilarities in the procedures specified in the studies, highlighting the need to develop uniform methods and protocols and the need for comparative studies to verify the validity of methods in order to achieve high levels of scientific evidence, homogeneity of volumetric data, and clinical consensus on the methods to use for 3D volumetric surface-based analysis.

20.
Prog Neurobiol ; 240: 102656, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39009108

RESUMO

The orientation map is one of the most well-studied functional maps of the visual cortex. However, results from the literature are of different qualities. Clear boundaries among different orientation domains and blurred uncertain distinctions were shown in different studies. These unclear imaging results will lead to an inaccuracy in depicting cortical structures, and the lack of consideration in experimental design will also lead to biased depictions of the cortical features. How we accurately define orientation domains will impact the entire field of research. In this study, we test how spatial frequency (SF), stimulus size, location, chromatic, and data processing methods affect the orientation functional maps (including a large area of dorsal V4, and parts of dorsal V1) acquired by intrinsic signal optical imaging. Our results indicate that, for large imaging fields, large grating stimuli with mixed SF components should be considered to acquire the orientation map. A diffusion model image enhancement based on the difference map could further improve the map quality. In addition, the similar outcomes of achromatic and chromatic gratings indicate two alternative types of afferents from LGN, pooling in V1 to generate cue-invariant orientation selectivity.


Assuntos
Mapeamento Encefálico , Córtex Visual , Córtex Visual/fisiologia , Córtex Visual/diagnóstico por imagem , Mapeamento Encefálico/métodos , Animais , Estimulação Luminosa/métodos , Orientação/fisiologia , Humanos , Vias Visuais/fisiologia , Vias Visuais/diagnóstico por imagem , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA