Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
CNS Neurosci Ther ; 30(9): e14905, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39248455

RESUMO

AIMS: We aimed to investigate mesial temporal lobe abnormalities in mesial temporal lobe epilepsy (MTLE) patients with hypersynchronous (HYP) and low-voltage fast rhythms (LVF) onset identified by stereotactic electroencephalography (SEEG) and evaluate their diagnostic and prognostic value. METHODS: Fifty-one MTLE patients were categorized as HYP or LVF by SEEG. High-resolution MRI volume-based analysis and 18F-FDG-PET standard uptake values of hippocampal and amygdala subfields were quantified and compared with 57 matched controls. Further analyses were conducted to delineate the distinct pathological characteristics differentiating the two groups. Diagnostic and prognostic prediction performance of these biomarkers were assessed using receiver operating characteristic curves. RESULTS: LVF-onset individuals demonstrated ipsilateral amygdala enlargement (p = 0.048) and contralateral hippocampus hypermetabolism (p = 0.042), pathological results often accompany abnormalities in the temporal lobe cortex, while HYP-onset subjects had significant atrophy (p < 0.001) and hypometabolism (p = 0.013) in ipsilateral hippocampus and its subfields, as well as amygdala atrophy (p < 0.001), pathological results are highly correlated with hippocampal sclerosis. Severe fimbria atrophy was observed in cases of HYP-onset MTLE with poor prognosis (AUC = 0.874). CONCLUSION: Individuals with different seizure-onset patterns display specific morphological and metabolic abnormalities in the amygdala and hippocampus. Identifying these subfield abnormalities can improve diagnostic and prognostic precision, guiding surgical strategies for MTLE.


Assuntos
Tonsila do Cerebelo , Eletroencefalografia , Epilepsia do Lobo Temporal , Hipocampo , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Técnicas Estereotáxicas , Humanos , Feminino , Masculino , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/patologia , Adulto , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Hipocampo/metabolismo , Eletroencefalografia/métodos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/cirurgia , Epilepsia do Lobo Temporal/patologia , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Adulto Jovem , Convulsões/diagnóstico por imagem , Convulsões/metabolismo , Fluordesoxiglucose F18
2.
J Neural Eng ; 21(4)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38959877

RESUMO

Objective. Traditionally known for its involvement in emotional processing, the amygdala's involvement in motor control remains relatively unexplored, with sparse investigations into the neural mechanisms governing amygdaloid motor movement and inhibition. This study aimed to characterize the amygdaloid beta-band (13-30 Hz) power between 'Go' and 'No-go' trials of an arm-reaching task.Approach. Ten participants with drug-resistant epilepsy implanted with stereoelectroencephalographic (SEEG) electrodes in the amygdala were enrolled in this study. SEEG data was recorded throughout discrete phases of a direct reach Go/No-go task, during which participants reached a touchscreen monitor or withheld movement based on a colored cue. Multitaper power analysis along with Wilcoxon signed-rank and Yates-correctedZtests were used to assess significant modulations of beta power between the Response and fixation (baseline) phases in the 'Go' and 'No-go' conditions.Main results. In the 'Go' condition, nine out of the ten participants showed a significant decrease in relative beta-band power during the Response phase (p⩽ 0.0499). In the 'No-go' condition, eight out of the ten participants presented a statistically significant increase in relative beta-band power during the response phase (p⩽ 0.0494). Four out of the eight participants with electrodes in the contralateral hemisphere and seven out of the eight participants with electrodes in the ipsilateral hemisphere presented significant modulation in beta-band power in both the 'Go' and 'No-go' conditions. At the group level, no significant differences were found between the contralateral and ipsilateral sides or between genders.Significance.This study reports beta-band power modulation in the human amygdala during voluntary movement in the setting of motor execution and inhibition. This finding supplements prior research in various brain regions associating beta-band power with motor control. The distinct beta-power modulation observed between these response conditions suggests involvement of amygdaloid oscillations in differentiating between motor inhibition and execution.


Assuntos
Tonsila do Cerebelo , Braço , Ritmo beta , Desempenho Psicomotor , Humanos , Tonsila do Cerebelo/fisiologia , Masculino , Feminino , Adulto , Ritmo beta/fisiologia , Desempenho Psicomotor/fisiologia , Braço/fisiologia , Adulto Jovem , Movimento/fisiologia , Pessoa de Meia-Idade , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletroencefalografia/métodos
3.
J Neural Eng ; 21(4)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38914073

RESUMO

Objective.Can we classify movement execution and inhibition from hippocampal oscillations during arm-reaching tasks? Traditionally associated with memory encoding, spatial navigation, and motor sequence consolidation, the hippocampus has come under scrutiny for its potential role in movement processing. Stereotactic electroencephalography (SEEG) has provided a unique opportunity to study the neurophysiology of the human hippocampus during motor tasks. In this study, we assess the accuracy of discriminant functions, in combination with principal component analysis (PCA), in classifying between 'Go' and 'No-go' trials in a Go/No-go arm-reaching task.Approach.Our approach centers on capturing the modulation of beta-band (13-30 Hz) power from multiple SEEG contacts in the hippocampus and minimizing the dimensional complexity of channels and frequency bins. This study utilizes SEEG data from the human hippocampus of 10 participants diagnosed with epilepsy. Spectral power was computed during a 'center-out' Go/No-go arm-reaching task, where participants reached or withheld their hand based on a colored cue. PCA was used to reduce data dimension and isolate the highest-variance components within the beta band. The Silhouette score was employed to measure the quality of clustering between 'Go' and 'No-go' trials. The accuracy of five different discriminant functions was evaluated using cross-validation.Main results.The Diagonal-Quadratic model performed best of the 5 classification models, exhibiting the lowest error rate in all participants (median: 9.91%, average: 14.67%). PCA showed that the first two principal components collectively accounted for 54.83% of the total variance explained on average across all participants, ranging from 36.92% to 81.25% among participants.Significance.This study shows that PCA paired with a Diagonal-Quadratic model can be an effective method for classifying between Go/No-go trials from beta-band power in the hippocampus during arm-reaching responses. This emphasizes the significance of hippocampal beta-power modulation in motor control, unveiling its potential implications for brain-computer interface applications.


Assuntos
Braço , Ritmo beta , Hipocampo , Humanos , Hipocampo/fisiologia , Feminino , Ritmo beta/fisiologia , Masculino , Adulto , Braço/fisiologia , Desempenho Psicomotor/fisiologia , Movimento/fisiologia , Eletroencefalografia/métodos , Eletroencefalografia/classificação , Análise de Componente Principal , Adulto Jovem , Reprodutibilidade dos Testes , Pessoa de Meia-Idade
4.
Epilepsy Behav Rep ; 26: 100669, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699062

RESUMO

Most magnetoencephalographic signals are derived from synchronized activity in the brain surface cortex. By contrast, the contribution of synchronized activity in the deep brain to magnetoencephalography (MEG) has remained unclear. We compared stereotactic electroencephalography (sEEG) with simultaneous MEG findings in a patient with temporal lobe epilepsy to determine the conditions under which MEG could also detect sEEG findings. The synchrony and similarity of the waves were evaluated using visual inspection and wavelet coherence. A 45-year-old woman with intractable temporal lobe epilepsy underwent sEEG and MEG simultaneously to determine the laterality and precise location of the epileptic focus. When spike-and-waves were seen in the right hippocampal head alone, no distinct spike-and-waves were observed visually in the right temporal MEG. The seizure then spread to the right insula on sEEG with a rhythmic theta frequency while synchronous activity was observed in the right temporal MEG channels. When polyspikes appeared in the right hippocampus, the right temporal MEG showed electrical activity with relatively high similarity to that of the right hippocampal head and insular cortex but less similarity to that of the right lateral temporal lobe cortex. MEG might detect epileptic activity synchronized between the hippocampus and insular cortex.

5.
NMC Case Rep J ; 11: 49-53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38454914

RESUMO

Stereotactic electroencephalography (SEEG) is an increasingly popular surgical modality for localizing the epileptogenic zone. Robot-guided stereotactic electrode placement has been covered in Japan by National Health Insurance since 2020. However, several surgical devices, such as the anchor bolt (a thin, hollow, metal shaft that serves as a guide screw or fixing for each electrode), have not been approved. A 14-year-old female who underwent SEEG for intractable epilepsy and required additional surgery to remove a retained depth electrode from the skull after the SEEG monitoring was finished. She had uncontrolled focal seizures consisting of nausea and laryngeal constriction at the onset. After a comprehensive presurgical evaluation, robot-guided stereotactic electrode implantation was performed to evaluate her seizures by SEEG. Nine depth electrodes were implanted through the twist drill hole. The electrodes were sutured to her skin for fixation without anchor bolts. When we attempted to remove the electrodes after 8 days of SEEG monitoring, one of the electrodes was retained. The retained electrode was removed through an additional skin incision and a small craniectomy under general anesthesia. We confirmed narrowing of the twist drill hole pathway in the internal table of the skull due to osteogenesis, which locked the electrode. This complication might be avoided if an anchor bolt had been used. This case report prompts the approval of the anchor bolts to avoid difficulty in electrode removal. Moreover, approval of a depth electrode with a thinner diameter and more consistent hardness is needed.

6.
Brain Sci ; 14(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38539601

RESUMO

BACKGROUND: Positive correlations between low- and high-frequency spectra from stereotactic electroencephalogram (SEEG) recordings have been implicated in pathological brain activity interictally and have been used for ictal detection in both focal and network models. OBJECTIVE: We evaluated SEEG signals in patients who ultimately underwent temporal lobectomy to evaluate their utility in seizure localization and prediction of seizure freedom post-resection. METHODS: We retrospectively analyzed cross-frequency correlations between beta and high gamma (HG) interictal SEEG signals from 22 patients. We compared signals based on temporal versus extra-temporal locations, seizure-free (SF) versus non-seizure-free (NSF) outcomes, and mesial (M) versus mesial temporal-plus (M+) onset. RESULTS: Positive cross-correlations were increased in temporal areas. NSF patients showed a higher proportion of positive electrodes in temporal areas. SF patients had a greater proportion of significant channels in mesial versus lateral temporal areas. HG/Beta correlations in mesial versus lateral temporal areas predicted seizure freedom better than ictal SEEG seizure onset localization to M or M+ locations. CONCLUSIONS: We present preliminary data that local HG/Beta correlations may predict epilepsy focus and surgical outcome and may have utility as adjunct methods to conventional SEEG analysis. Further studies are needed to determine strategies for prospective studies and clinical use.

7.
Acta Neurochir (Wien) ; 166(1): 18, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231293

RESUMO

BACKGROUND: The use of anchor bolts to secure electrodes to the skull can be difficult in some clinical situations. Herein, we present the boltless technique to secure electrodes to the scalp using nylon sutures to overcome the problems associated with anchor bolts. We investigated the safety, accuracy errors, and patient-related and operative factors affecting errors in the boltless technique. METHODS: This single-institution retrospective series analyzed 103 electrodes placed in 12 patients. The target-point localization error (TPLE), entry-point localization error (EPLE), radial error (RE), and depth error (DE) of the electrodes were calculated. RESULTS: The median of the mean operative time per electrode was 9.3 min. The median TPLE, EPLE, RE, and absolute DE value were 4.1 mm, 1.6 mm, 2.7 mm, and 1.9 mm, respectively. Positive correlations were observed between the preoperative scalp thickness, mean operative time per electrode, EPLE, RE, and the absolute value of DE versus TPLE (r = .228, p = .02; r = .678, p = .015; r = .228, p = .02; r = .445, p < .01; r = .630, p < .01, respectively), and electrode approach angle versus EPLE (r = .213, p = .031). Multivariate analysis revealed that the absolute value of DE had the strongest influence on the TPLE, followed by RE and preoperative scalp thickness, respectively (ß = .938, .544, .060, respectively, p < .001). No complications related to SEEG insertion and monitoring were encountered. CONCLUSION: The boltless technique using our unique planning and technical method is a safe, effective, and low-cost alternative in cases where anchor bolts are contraindicated.


Assuntos
Eletroencefalografia , Nylons , Humanos , Estudos Retrospectivos , Couro Cabeludo , Técnicas de Sutura , Suturas
8.
J Nucl Med ; 65(3): 470-474, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38212073

RESUMO

Ictal SPECT is an informative seizure imaging technique to tailor epilepsy surgery. However, capturing the onset of unpredictable seizures is a medical and logistic challenge. Here, we sought to image planned seizures triggered by direct stimulation of epileptic networks via stereotactic electroencephalography (sEEG) electrodes. Methods: In this case series of 3 adult participants with left temporal epilepsy, we identified and stimulated sEEG contacts able to trigger patient-typical seizures. We administered 99mTc-HMPAO within 12 s of ictal onset and acquired SPECT images within 40 min without any adverse events. Results: Ictal hyperperfusion maps partially overlapped concomitant sEEG seizure activity. In both participants known for periictal aphasia, SPECT imaging revealed hyperperfusion in the speech cortex lacking sEEG coverage. Conclusion: Triggering of seizures for ictal SPECT complements discrete sEEG sampling with spatially complete images of early seizure propagation. This readily implementable method revives interest in seizure imaging to guide resective epilepsy surgery.


Assuntos
Epilepsia , Convulsões , Adulto , Humanos , Estudos de Viabilidade , Convulsões/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Córtex Cerebral
9.
Brain Topogr ; 37(2): 287-295, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-36939988

RESUMO

Electroencephalography (EEG) microstates are short successive periods of stable scalp field potentials representing spontaneous activation of brain resting-state networks. EEG microstates are assumed to mediate local activity patterns. To test this hypothesis, we correlated momentary global EEG microstate dynamics with the local temporo-spectral evolution of electrocorticography (ECoG) and stereotactic EEG (SEEG) depth electrode recordings. We hypothesized that these correlations involve the gamma band. We also hypothesized that the anatomical locations of these correlations would converge with those of previous studies using either combined functional magnetic resonance imaging (fMRI)-EEG or EEG source localization. We analyzed resting-state data (5 min) of simultaneous noninvasive scalp EEG and invasive ECoG and SEEG recordings of two participants. Data were recorded during the presurgical evaluation of pharmacoresistant epilepsy using subdural and intracranial electrodes. After standard preprocessing, we fitted a set of normative microstate template maps to the scalp EEG data. Using covariance mapping with EEG microstate timelines and ECoG/SEEG temporo-spectral evolutions as inputs, we identified systematic changes in the activation of ECoG/SEEG local field potentials in different frequency bands (theta, alpha, beta, and high-gamma) based on the presence of particular microstate classes. We found significant covariation of ECoG/SEEG spectral amplitudes with microstate timelines in all four frequency bands (p = 0.001, permutation test). The covariance patterns of the ECoG/SEEG electrodes during the different microstates of both participants were similar. To our knowledge, this is the first study to demonstrate distinct activation/deactivation patterns of frequency-domain ECoG local field potentials associated with simultaneous EEG microstates.


Assuntos
Mapeamento Encefálico , Eletrocorticografia , Humanos , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Couro Cabeludo
10.
J Neurosci Methods ; 403: 110035, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38128785

RESUMO

BACKGROUND: Long and thin shaft electrodes are implanted intracerebrally for stereoelectroencephalography (SEEG) in patients with pharmacoresistant focal epilepsies. Two adjacent contacts of one of such electrodes can deliver a train of single pulse electrical stimulations (SPES), and evoked potentials (EPs) are recorded on other contacts. In this study we assess if stimulating and recording on the same shaft, as opposed to different shafts, has an impact on common EP features. NEW METHOD: We leverage the large volume of SEEG data gathered in the F-TRACT database and analyze data from nearly one thousand SEEG implantations in order to verify whether stimulation and recording from the same shaft influence the EP pattern. RESULTS: We found that when the stimulated and the recording contacts were located on the same shaft, the mean and median amplitudes of an EP are greater, and its mean and median latencies are smaller than when the contacts were located on different shafts. This effect is small (Cohen's d ∼ 0.1), but robust (p-value < 10-3) across the SEEG database. COMPARISON WITH EXISTING METHOD(S): Our study is the first one to address this question. Due to the choice of commonly used EP features, our method is congruent with other studies. CONCLUSIONS: The magnitude of the reported effect does not obligate all standard analyses to correct for it, unless they aim at high precision. The source of the effect is not clear. Manufacturers of SEEG electrodes could examine it and potentially minimize the effect in their future products.


Assuntos
Epilepsias Parciais , Técnicas Estereotáxicas , Humanos , Potenciais Evocados/fisiologia , Eletrodos , Estimulação Elétrica , Eletroencefalografia , Eletrodos Implantados
11.
Diagnostics (Basel) ; 13(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37998556

RESUMO

Epilepsy is a neurological disorder characterized by spontaneous recurrent seizures. While 20% to 30% of epilepsy cases are untreatable with Anti-Epileptic Drugs, some of these cases can be addressed through surgical intervention. The success of such interventions greatly depends on accurately locating the epileptogenic tissue, a task achieved using diagnostic techniques like Stereotactic Electroencephalography (SEEG). SEEG utilizes multi-modal fusion to aid in electrode localization, using pre-surgical resonance and post-surgical computer tomography images as inputs. To ensure the absence of artifacts or misregistrations in the resultant images, a fusion method that accounts for electrode presence is required. We proposed an image fusion method in SEEG that incorporates electrode segmentation from computed tomography as a sampling mask during registration to address the fusion problem in SEEG. The method was validated using eight image pairs from the Retrospective Image Registration Evaluation Project (RIRE). After establishing a reference registration for the MRI and identifying eight points, we assessed the method's efficacy by comparing the Euclidean distances between these reference points and those derived using registration with a sampling mask. The results showed that the proposed method yielded a similar average error to the registration without a sampling mask, but reduced the dispersion of the error, with a standard deviation of 0.86 when a mask was used and 5.25 when no mask was used.

12.
Neurol Med Chir (Tokyo) ; 63(5): 179-190, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37005247

RESUMO

Stereotactic electroencephalography (SEEG) is receiving increasing attention as a safe and effective technique in the invasive evaluation for epileptogenic zone (EZ) detection. The main clinical question is whether the use of SEEG truly improves outcomes. Herein, we compared outcomes in our patients after three types of intracranial EEG (iEEG): SEEG, the subdural electrode (SDE), and a combined method using depth and strip electrodes. We present here our preliminary results from two demonstrative cases. Several international reports from large epilepsy centers found the following clinical advantages of SEEG: 1) three-dimensional analysis of structures, including bilateral and multilobar structures; 2) low rate of complications; 3) less pneumoencephalopathy and less patient burden during postoperative course, which allows the initiation of video-EEG monitoring immediately after implantation and does not require resection to be performed in the same hospitalization; and 4) a higher rate of good seizure control after resection. In other words, SEEG more accurately identified the EZ than the SDE method. We obtained similar results in our preliminary experiences under limited conditions. In Japan, as of August 2022, dedicated electrodes and SEEG accessories have not been approved and the use of the robot arm is not widespread. The Japanese medical community is hopeful that these issues will soon be resolved and that the experience with SEEG in Japan will align with that of large epilepsy centers internationally.


Assuntos
Epilepsia , Técnicas Estereotáxicas , Humanos , Japão , Eletrodos Implantados , Epilepsia/diagnóstico , Epilepsia/cirurgia , Eletroencefalografia/métodos
13.
Epilepsia ; 64(6): 1568-1581, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37013668

RESUMO

OBJECTIVE: Stereotactic laser amygdalohippocampotomy (SLAH) is an appealing option for patients with temporal lobe epilepsy, who often require intracranial monitoring to confirm mesial temporal seizure onset. However, given limited spatial sampling, it is possible that stereotactic electroencephalography (stereo-EEG) may miss seizure onset elsewhere. We hypothesized that stereo-EEG seizure onset patterns (SOPs) may differentiate between primary onset and secondary spread and predict postoperative seizure control. In this study, we characterized the 2-year outcomes of patients who underwent single-fiber SLAH after stereo-EEG and evaluated whether stereo-EEG SOPs predict postoperative seizure freedom. METHODS: This retrospective five-center study included patients with or without mesial temporal sclerosis (MTS) who underwent stereo-EEG followed by single-fiber SLAH between August 2014 and January 2022. Patients with causative hippocampal lesions apart from MTS or for whom the SLAH was considered palliative were excluded. An SOP catalogue was developed based on literature review. The dominant pattern for each patient was used for survival analysis. The primary outcome was 2-year Engel I classification or recurrent seizures before then, stratified by SOP category. RESULTS: Fifty-eight patients were included, with a mean follow-up duration of 39 ± 12 months after SLAH. Overall 1-, 2-, and 3-year Engel I seizure freedom probability was 54%, 36%, and 33%, respectively. Patients with SOPs, including low-voltage fast activity or low-frequency repetitive spiking, had a 46% 2-year seizure freedom probability, compared to 0% for patients with alpha or theta frequency repetitive spiking or theta or delta frequency rhythmic slowing (log-rank test, p = .00015). SIGNIFICANCE: Patients who underwent SLAH after stereo-EEG had a low probability of seizure freedom at 2 years, but SOPs successfully predicted seizure recurrence in a subset of patients. This study provides proof of concept that SOPs distinguish between hippocampal seizure onset and spread and supports using SOPs to improve selection of SLAH candidates.


Assuntos
Epilepsia do Lobo Temporal , Humanos , Estudos Retrospectivos , Resultado do Tratamento , Epilepsia do Lobo Temporal/diagnóstico , Epilepsia do Lobo Temporal/cirurgia , Epilepsia do Lobo Temporal/complicações , Convulsões/diagnóstico , Convulsões/cirurgia , Convulsões/complicações , Eletroencefalografia , Lasers , Imageamento por Ressonância Magnética
14.
Cureus ; 15(2): e35279, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36968898

RESUMO

The use of invasive intracranial electroencephalogram (EEG) monitoring in the patient with a cerebrospinal fluid (CSF) diversionary shunt presents a conundrum -- the presence of a percutaneous electrode passing into the intracranial compartment presents a pathway for entry of pathogens to which a chronically implanted device like a shunt is especially susceptible to infection. In this case report, we describe the clinical and radiological features, medical and surgical management, and treatment outcomes of pediatric patients with shunted hydrocephalus who underwent invasive intracranial monitoring over an eight-year period. Three cases of children undergoing invasive intracranial monitoring were included in this study. Invasive monitoring for each patient occurred over three to six days. In each case, invasive intracranial monitoring was completed successfully, without resulting infection or shunt malfunction. While the second procedure was complicated by the formation of a pneumocephalus, there was no associated midline shift, and invasive intracranial monitoring was completed without incidence. Each patient received further surgery that successfully reduced seizure frequency. This study suggests that, while children with CSF diversionary shunts are at an inherently increased risk for infection and other complications, invasive intracranial monitoring is a relatively safe and feasible option in these patients. Future studies should explore the optimal duration for intracranial monitoring in pediatric patients with chronically implanted devices.

15.
Brain Sci ; 13(3)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36979250

RESUMO

The complication rate of stereotactic electroencephalography (SEEG) is generally low, but various types of postoperative hemorrhage have been reported. We presented an unusual hemorrhagic complication after SEEG placement. A 20-year-old man presented with suspected frontal lobe epilepsy. We implanted 11 SEEG electrodes in the bilateral frontal lobes and the left insula. Computed tomography after implantation showed intraparenchymal hemorrhage in the left temporal lobe and insula and subarachnoid hemorrhage in the left Sylvian cistern. Later, the point of vessel injury was revealed from the identification of a pseudoaneurysm, but this location was not along the planned or actual electrode trajectory. The cause of hemorrhage was suggested to be indirect injury from stretching of the arachnoid trabeculae by the puncture needle.

16.
Neurosurg Focus ; 54(2): E4, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36724521

RESUMO

OBJECTIVE: Stereotactic electroencephalography (sEEG) is an increasingly utilized method for identifying electrophysiological processes underlying sensorimotor, cognitive, and emotional behaviors. In this review, the authors outline current research using sEEG to investigate the neural activity underlying emotional and psychiatric behaviors. Understanding the current structure of intracranial research using sEEG will inform future studies of psychiatric disease and therapeutics for effective neuromodulation. METHODS: The authors conducted a comprehensive systematic review of studies according to PRISMA guidelines to investigate behaviors related to psychiatric conditions in patients with epilepsy undergoing monitoring with sEEG. Articles indexed on PubMed between 2010 and 2022 were included if they studied emotions or affective behaviors or met the National Institute of Mental Health Research Domain Criteria positive and negative valence domains. Data extracted from articles included study sample size, paradigms and behavioral tasks employed, cortical and subcortical targets, EEG analysis methods, and identified electrophysiological activity underlying the studied behavior. The Newcastle-Ottawa Scale was used to assess bias risk. RESULTS: Thirty-two primary articles met inclusion criteria. Study populations ranged from 3 to 39 patients. The most common structures investigated were the amygdala, insula, orbitofrontal cortex (OFC), hippocampus, and anterior cingulate cortex (ACC). Paradigms, stimuli, and behavioral tasks widely varied. Time-frequency analyses were the most common, followed by connectivity analyses. Multiple oscillations encoded a variety of behaviors related to emotional and psychiatric conditions. High gamma activity was observed in the amygdala and anterior insula in response to aversive audiovisual stimuli and in the OFC in response to reward processing. ACC beta band power increases and hippocampal-amygdala beta coherence variations were predictive of worsening mood states. Insular and amygdalar theta oscillations encoded social pain and fear learning, respectively. Most studies performed passing recordings, allowing for the decoding of affective states and depression symptoms, while other studies utilized direct stimulation, such as in the OFC to improve mood symptoms. CONCLUSIONS: Stereotactic EEG in epilepsy has identified multiple corticolimbic structures with specific oscillatory and synchronization activity underlying a diverse range of behaviors related to emotions and affective conditions. Given the heterogeneity of psychiatric conditions, sEEG provides an opportunity to study these neural correlates to develop personalized effective neuromodulatory treatments. Future studies should focus on optimizing paradigms and tasks to investigate a broad range of behavioral phenotypes that overlap across psychiatric conditions.


Assuntos
Emoções , Epilepsia , Humanos , Emoções/fisiologia , Eletroencefalografia/métodos , Epilepsia/cirurgia , Córtex Pré-Frontal , Medo
17.
Neuroimage ; 269: 119913, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36731812

RESUMO

Recent studies have demonstrated that it is possible to decode and synthesize various aspects of acoustic speech directly from intracranial measurements of electrophysiological brain activity. In order to continue progressing toward the development of a practical speech neuroprosthesis for the individuals with speech impairments, better understanding and modeling of imagined speech processes are required. The present study uses intracranial brain recordings from participants that performed a speaking task with trials consisting of overt, mouthed, and imagined speech modes, representing various degrees of decreasing behavioral output. Speech activity detection models are constructed using spatial, spectral, and temporal brain activity features, and the features and model performances are characterized and compared across the three degrees of behavioral output. The results indicate the existence of a hierarchy in which the relevant channels for the lower behavioral output modes form nested subsets of the relevant channels from the higher behavioral output modes. This provides important insights for the elusive goal of developing more effective imagined speech decoding models with respect to the better-established overt speech decoding counterparts.


Assuntos
Interfaces Cérebro-Computador , Fala , Humanos , Fala/fisiologia , Encéfalo/fisiologia , Boca , Face , Eletroencefalografia/métodos
18.
Epilepsy Behav ; 138: 109003, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470059

RESUMO

OBJECTIVE: We investigated the network between the medial temporal lobe (MTL) and extratemporal structures in patients with mesial temporal lobe epilepsy (MTLE) in order to explain the recurrence of MTLE after surgery. This study contributes to our current understanding of MTLE with stereotactic electroencephalography (SEEG). METHODS: We conducted a retrospective study of SEEG in 20 patients with MTLE in order to observe and analyze the intensity of interictal high-frequency oscillations (HFOs), as well as the dynamic course of coherence connectivity values of the MTL and extratemporal structures during the initial phase of the seizure. The results correlated with the patient prognosis. RESULTS: First, the presence of HFOs was observed during the interictal period in all 20 patients; these were localized to the MTL in 17 patients and the orbitofrontal cortex in seven patients and the insula in six patients. The better the prognosis, the greater the localization of the HFOs concentration in the MTL structures (p < 0.05). Second, significantly enhanced connectivity of MTL structures with the orbitofrontal cortex and insula was observed in most patients with MTLE, before and after the seizure onset (p < 0.05). Finally, the connectivity between extratemporal structures, such as the orbitofrontal cortex and insula, and MTL structures was significantly stronger in patients who had a worse prognosis than in other patients, before and after seizure onset (p < 0.05). INTERPRETATION: The epileptogenic network in recurrent MTLE is not limited to MTL structures but is also associated with the orbitofrontal cortex and insula. This can be used as a potential indicator for predicting the prognosis of patients after surgery, providing an important avenue for future clinical evaluation.


Assuntos
Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Estudos Retrospectivos , Convulsões , Eletroencefalografia/métodos , Prognóstico , Córtex Pré-Frontal , Imageamento por Ressonância Magnética , Hipocampo
19.
Neurosurg Rev ; 46(1): 14, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36504244

RESUMO

The transition to performing procedures robotically generally entails a period of adjustment known as a learning curve as the surgeon develops a familiarity with the technology. However, no study has comprehensively examined robotic learning curves across the field of neurosurgery. We conducted a systematic review to characterize the scope of literature on robotic learning curves in neurosurgery, assess operative parameters that may involve a learning curve, and delineate areas for future investigation. PubMed, Embase, and Scopus were searched. Following deduplication, articles were screened by title and abstract for relevance. Remaining articles were screened via full text for final inclusion. Bibliographic and learning curve data were extracted. Of 746 resultant articles, 32 articles describing 3074 patients were included, of which 23 (71.9%) examined spine, 4 (12.5%) pediatric, 4 (12.5%) functional, and 1 (3.1%) general neurosurgery. The parameters assessed for learning curves were heterogeneous. In total, 8 (57.1%) of 14 studies found reduced operative time with increased cases, while the remainder demonstrated no learning curve. Six (60.0%) of 10 studies reported reduced operative time per component with increased cases, while the remainder indicated no learning curve. Radiation time, radiation time per component, robot time, registration time, setup time, and radiation dose were assessed by ≤ 4 studies each, with 0-66.7% of studies demonstrated a learning curve. Four (44.4%) of 9 studies on accuracy showed improvement over time, while the others indicated no improvement over time. The number of cases required to reverse the learning curve ranged from 3 to 75. Learning curves are common in robotic neurosurgery. However, existing studies demonstrate high heterogeneity in assessed parameters and the number of cases that comprise the learning curve. Future studies should seek to develop strategies to reduce the number of cases required to reach the learning curve.


Assuntos
Neurocirurgia , Cirurgiões , Humanos , Criança , Procedimentos Neurocirúrgicos , Duração da Cirurgia , Coluna Vertebral
20.
Eur J Neurosci ; 56(7): 5070-5089, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35997580

RESUMO

The current standard model of language production involves a sensorimotor dorsal stream connecting areas in the temporo-parietal junction with those in the inferior frontal gyrus and lateral premotor cortex. These regions have been linked to various aspects of word production such as phonological processing or articulatory programming, primarily through neuropsychological and functional imaging group studies. Most if not all the theoretical descriptions of this model imply that the same network should be identifiable across individual speakers. We tested this hypothesis by quantifying the variability of activation observed across individuals within each dorsal stream anatomical region. This estimate was based on electrical activity recorded directly from the cerebral cortex with millisecond accuracy in awake epileptic patients clinically implanted with intracerebral depth electrodes for pre-surgical diagnosis. Each region's activity was quantified using two different metrics-intra-cerebral evoked related potentials and high gamma activity-at the level of the group, the individual and the recording contact. The two metrics show simultaneous activation of parietal and frontal regions during a picture naming task, in line with models that posit interactive processing during word retrieval. They also reveal different levels of between-patient variability across brain regions, except in core auditory and motor regions. The independence and non-uniformity of cortical activity estimated through the two metrics push the current model towards sub-second and sub-region explorations focused on individualized language speech production. Several hypotheses are considered for this within-region heterogeneity.


Assuntos
Epilepsia , Córtex Motor , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Humanos , Idioma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA