Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biotechnol Prog ; : e3492, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888046

RESUMO

N-methylated tryptamines, such as the hallucinogenic natural products, psilocybin and N,N-dimethyltryptamine (DMT), are gaining interest from the medical community due to their potential as next generation treatments for mental health disorders. The clinical relevance of these compounds has driven scientists to develop biosynthetic production routes to a number of tryptamine drug candidates, and efforts are ongoing to expand and further develop these biosynthetic capabilities. To that end, we have further characterized the substrate preferences of two enzymes involved in tryptamine biosynthesis: TrpM, a tryptophan N-methyltransferase from Psilocybe serbica, and PsiD, the gateway decarboxylase of the psilocybin biosynthesis pathway. Here, we show that TrpM can N-methylate the non-native amino acid substrate, 4-hydroxytryptophan, a key intermediate in the Escherichia coli-based recombinant psilocybin biosynthesis pathway. However, the ability to incorporate TrpM into a functional psilocybin biosynthesis pathway was thwarted by PsiD's inability to use N,N-dimethyl-4-hydroxytryptophan as substrate, under the culturing conditions tested, despite demonstrating activity on N-methylated and 4-hydroxylated tryptophan derivatives individually. Taken together, this work expands upon the known substrates for TrpM and PsiD, further increasing the diversity of tryptamine biosynthetic products.

2.
Proc Natl Acad Sci U S A ; 121(26): e2405524121, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38885378

RESUMO

Aminotransferases (ATs) are an ancient enzyme family that play central roles in core nitrogen metabolism, essential to all organisms. However, many of the AT enzyme functions remain poorly defined, limiting our fundamental understanding of the nitrogen metabolic networks that exist in different organisms. Here, we traced the deep evolutionary history of the AT family by analyzing AT enzymes from 90 species spanning the tree of life (ToL). We found that each organism has maintained a relatively small and constant number of ATs. Mapping the distribution of ATs across the ToL uncovered that many essential AT reactions are carried out by taxon-specific AT enzymes due to wide-spread nonorthologous gene displacements. This complex evolutionary history explains the difficulty of homology-based AT functional prediction. Biochemical characterization of diverse aromatic ATs further revealed their broad substrate specificity, unlike other core metabolic enzymes that evolved to catalyze specific reactions today. Interestingly, however, we found that these AT enzymes that diverged over billion years share common signatures of multisubstrate specificity by employing different nonconserved active site residues. These findings illustrate that AT family enzymes had leveraged their inherent substrate promiscuity to maintain a small yet distinct set of multifunctional AT enzymes in different taxa. This evolutionary history of versatile ATs likely contributed to the establishment of robust and diverse nitrogen metabolic networks that exist throughout the ToL. The study provides a critical foundation to systematically determine diverse AT functions and underlying nitrogen metabolic networks across the ToL.


Assuntos
Evolução Molecular , Filogenia , Transaminases , Especificidade por Substrato , Transaminases/genética , Transaminases/metabolismo , Domínio Catalítico/genética , Nitrogênio/metabolismo
3.
Beilstein J Org Chem ; 20: 959-972, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711588

RESUMO

Terpenoids are one of the largest class of natural products with diverse structures and activities. This enormous diversity is embedded in enzymes called terpene synthases (TSs), which generate diverse terpene skeletons via sophisticated cyclization cascades. In addition to the many highly selective TSs, there are many promiscuous TSs that accept multiple prenyl substrates, or even noncanonical ones, with 6, 7, 8, 11, and 16 carbon atoms, synthesized via chemical approaches, C-methyltransferases, or engineered lepidopteran mevalonate pathways. The substrate promiscuity of TSs not only expands the structural diversity of terpenes but also highlights their potential for the discovery of novel terpenoids via combinatorial biosynthesis. In this review, we focus on the current knowledge on multisubstrate terpene synthases (MSTSs) and highlight their potential applications.

4.
Int J Biol Macromol ; 256(Pt 2): 128487, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042324

RESUMO

CotA laccases are multicopper oxidases known for promiscuously oxidizing a broad range of substrates. However, studying substrate promiscuity is limited by the complexity of electron transfer (ET) between substrates and laccases. Here, a systematic analysis of factors affecting ET including electron donor acceptor coupling (ΗDA), driving force (ΔG) and reorganization energy (λ) was done. Catalysis rates of syringic acid (SA), syringaldehyde (SAD) and acetosyringone (AS) (kcat(SAD) > kcat(SA) > kcat(AS)) are not entirely dependent on the ability to form phenol radicals indicated by ΔG and λ calculated by Density Functional Theory (SA < SAD ≈ AS). In determined CotA/SA and CotA/SAD structures, SA and SAD bound at 3.9 and 3.7 Å away from T1 Cu coordinating His419 ensuring a similar ΗDA. Abilities of substrate to form phenol radicals could mainly account for difference between kcat(SAD) and kcat(SA). Furthermore, substrate pocket is solvent exposed at the para site of substrate's phenol hydroxyl, which would destabilize binding of AS in the same orientation and position resulting in low kcat. Our results indicated shallow partially covered binding site with propensity of amino acids distribution might help CotA discriminate lignin-phenol derivatives. These findings give new insights for developing specific catalysts for industrial application.


Assuntos
Lacase , Lignina , Lacase/química , Lignina/metabolismo , Fenol , Transporte de Elétrons , Fenóis
5.
ACS Catal ; 13(3): 1899-1905, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38106463

RESUMO

Amide N-methylation is important for the activity and permeability of bioactive compounds but can be challenging to perform selectively. The broad-spectrum antimicrobial natural products thiolutin and holomycin differ only by an N-methyl group at the endocyclic amide of thiolutin, but only thiolutin exhibits antifungal activity. The enzyme responsible for amide N--methylation in thiolutin biosynthesis has remained elusive. Here, we identified and characterized the amide N-methyltransferase DtpM that is encoded >400 kb outside of the thiolutin gene cluster. DtpM catalyzes efficient conversion of holomycin to thiolutin, exhibits broad substrate scope toward dithiolopyrrolones, and has high thermal stability. In addition, sequence similarity network analysis suggests DtpM is more closely related to phenol O-methyltransferases than some amide methyltransferases. This study expands the limited examples of amide N-methyltransferases and may facilitate chemoenzymatic synthesis of diverse dithiolopyrrolone compounds as potential therapeutics.

6.
Methods Enzymol ; 687: 139-155, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37666630

RESUMO

Kinetic study of human ZIPs is crucial for understanding the transport mechanism and the molecular basis of substrate specificity. In this chapter, we describe the detailed experimental procedures for functional studies of two human ZIPs, including the zinc-preferring ZIP4 and the multi-metal transporter ZIP8, by using the cell-based transport assays. Kinetic study of ZIP4 is elaborated in the first section; in the second section, comparison of ZIP4 and ZIP8 in terms of the zinc/cadmium selectivity is performed by using an internal competition assay adapted from the established cell-based approach. The protocols provided in this chapter will facilitate mechanistic and engineering studies of the ZIPs.


Assuntos
Bioensaio , Proteínas de Membrana Transportadoras , Humanos , Especificidade por Substrato , Cinética , Zinco
7.
J Cell Physiol ; 238(10): 2499-2511, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37642286

RESUMO

Family 1 UDP-glycosyltransferases (UGTs) are known to glycosylate multiple secondary plant metabolites and have been extensively studied. The increased availability of plant genome resources allows the identification of wide gene families, both functional and organizational. In this investigation, two MpUGT isoforms were cloned and functionally characterized from liverworts marchantia polymorpha and had high glycosylation activity against several flavonoids. MpUGT735A2 protein, in particular, tolerates a wide spectrum of substrates (flavonols, flavanones, flavones, stilbenes, bibenzyls, dihydrochalcone, phenylpropanoids, xanthones, and isoflavones). Overexpression of MpUGT735A2 and MpUGT743A1 in Arabidopsis thaliana enhances the accumulation of 3-O-glycosylated flavonol (kaempferol 3-O-glucoside-7-O-rhamnose), consistent with its in vitro enzymatic activity. Docking and mutagenesis techniques were applied to identify the structural and functional properties of MpUGT735A2 with promiscuous substrates. Mutation of Pro87 to Ser, or Gln88 to Val, substantially altered the regioselectivity for luteolin glycosylation, predominantly from the 3'-O- to the 7-O-position. The results were elucidated by focusing on the novel biocatalysts designed for producing therapeutic flavonoids. This investigation provides an approach to modulate MpUGT735A2 as a candidate gene for diverse glycosylation catalysis and a tool to design GTs with new substrate specificities for biomedical applications.

8.
Proc Natl Acad Sci U S A ; 120(28): e2301007120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399371

RESUMO

Wood-decaying fungi are the major decomposers of plant litter. Heavy sequencing efforts on genomes of wood-decaying fungi have recently been made due to the interest in their lignocellulolytic enzymes; however, most parts of their proteomes remain uncharted. We hypothesized that wood-decaying fungi would possess promiscuous enzymes for detoxifying antifungal phytochemicals remaining in the dead plant bodies, which can be useful biocatalysts. We designed a computational mass spectrometry-based untargeted metabolomics pipeline for the phenotyping of biotransformation and applied it to 264 fungal cultures supplemented with antifungal plant phenolics. The analysis identified the occurrence of diverse reactivities by the tested fungal species. Among those, we focused on O-xylosylation of multiple phenolics by one of the species tested, Lentinus brumalis. By integrating the metabolic phenotyping results with publicly available genome sequences and transcriptome analysis, a UDP-glycosyltransferase designated UGT66A1 was identified and validated as an enzyme catalyzing O-xylosylation with broad substrate specificity. We anticipate that our analytical workflow will accelerate the further characterization of fungal enzymes as promising biocatalysts.


Assuntos
Glucosiltransferases , Lentinula , Metabolômica , Metabolômica/métodos , Lentinula/enzimologia , Glucosiltransferases/química , Glucosiltransferases/isolamento & purificação , Glucosiltransferases/metabolismo , Compostos Fitoquímicos/metabolismo , Xilose/metabolismo , Genoma Fúngico , Espectrometria de Massa com Cromatografia Líquida
9.
J Inorg Biochem ; 244: 112211, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37080138

RESUMO

Cytochrome P450 3A4 (CYP3A4) metabolizes a wide range of drugs and toxins. Interactions of CYP3A4 with ligands are difficult to predict due to promiscuity and conformational flexibility. To better understand CYP3A4 conformational responses to ligands we use hydrogen deuterium exchange mass spectrometry (HDX-MS) to investigate the effect of ligands on nanodisc-embedded CYP3A4. For a subset of CYP3A4-ligand complexes, differences in the low-frequency modes derived by principal component analyses of molecular dynamics trajectories mirrored the HDX-MS results. The effects of ligands are distributed to flexible elements of CYP3A4 between stretches of secondary structure. The largest effects occur in the F- and G-helices, where most ligands increase the flexibility of the F-helix and connecting loops and decrease the flexibility of the C-term of the G-helix. Most ligands affect the E-F-G, CD and HI regions of the protein. Ligand-dependent differences are observed in the A"-A' loop, BC region, E-helix, K-ß1 region, proximal loop, and C-term loop. Correlated HDX responses were observed in the CD region and the C-term of the G-helix that were most pronounced for Type II ligands. Collectively, the HDX and molecular dynamics results suggest that CYP3A4 accommodates diverse binding partners by propagating local backbone fluctuations from the binding site onto the flexible regions of the enzyme via long-range interactions that are differentially modulated by ligands. In contrast to the paradigm wherein ligands decrease protein dynamics at their binding site, a wide range of ligands modestly increase CYP3A4 dynamics throughout the protein including effects remote from the active site.


Assuntos
Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450 , Citocromo P-450 CYP3A/química , Ligantes , Sistema Enzimático do Citocromo P-450/metabolismo , Sítios de Ligação , Estrutura Secundária de Proteína , Conformação Proteica
10.
Angew Chem Int Ed Engl ; 62(18): e202217212, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36867112

RESUMO

Fungal epidithiodiketopiperazines (ETPs) possess large structural diversity and complexity due to modifications of the cyclodipeptide skeleton. Elucidation of the biosynthetic pathway of pretrichodermamide A (1) in Trichoderma hypoxylon revealed a flexible catalytic machinery of multiple enzymes for generating ETP diversity. Seven tailoring enzymes encoded by the tda cluster are involved in 1 biosynthesis, that is, four P450s TdaB and TdaQ for 1,2-oxazine formation, TdaI for C7'-hydroxylation, and TdaG for C4, C5-epoxidation, two methyltransferases TdaH for C6'- and TdaO for C7'-O-methylation, and a reductase TdaD for furan opening. Gene deletions led to the identification of 25 novel ETPs, including 20 shunt products, indicating the catalytic promiscuity of Tda enzymes. Particularly, TdaG and TdaD accept various substrates and catalyze regiospecific reactions at different stages of 1 biosynthesis. Our study not only uncovers a hidden library of ETP alkaloids, but also helps to understand the hidden chemical diversity of natural products by pathway manipulation.


Assuntos
Metiltransferases , Oxazinas/química , Estrutura Molecular , Metiltransferases/metabolismo , Modelos Moleculares
11.
Biomolecules ; 13(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36830698

RESUMO

High concentrations of electrophilic lipid alkenals formed during oxidative stress are implicated in cytotoxicity and disease. However, low concentrations of alkenals are required to induce antioxidative stress responses. An established clearance pathway for lipid alkenals includes conjugation to glutathione (GSH) via Michael addition, which is catalyzed mainly by glutathione transferase isoform A4 (GSTA4-4). Based on the ability of GSTs to catalyze hydrolysis or retro-Michael addition of GSH conjugates, and the antioxidant function of low concentrations of lipid alkenals, we hypothesize that GSTA4-4 contributes a homeostatic role in lipid metabolism. Enzymatic kinetic parameters for retro-Michael addition with trans-2-Nonenal (NE) reveal the chemical competence of GSTA4-4 in this putative role. The forward GSTA4-4-catalyzed Michael addition occurs with the rapid exchange of the C2 proton of NE in D2O as observed by NMR. The isotope exchange was completely dependent on the presence of GSH. The overall commitment to catalysis, or the ratio of first order kcat,f for 'forward' Michael addition to the first order kcat,ex for H/D exchange is remarkably low, approximately 3:1. This behavior is consistent with the possibility that GSTA4-4 is a regulatory enzyme that contributes to steady-state levels of lipid alkenals, rather than a strict 'one way' detoxication enzyme.


Assuntos
Aldeídos , Glutationa Transferase , Catálise , Aldeídos/química , Glutationa Transferase/metabolismo , Antioxidantes , Glutationa/metabolismo , Lipídeos
12.
J Agric Food Chem ; 71(3): 1679-1689, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36633228

RESUMO

Flavanone 3-hydroxylases (F3Hs) belong to the 2-oxoglutarate-dependent dioxygenase family and play an important role in plant flavonoid biosynthesis. However, the stereoselective catalytic mechanism and substrate promiscuity of this type of enzyme are not well understood. In this study, we identified and biochemically characterized CtF3H1, an F3H from Carthamus tinctorius, a plant used in traditional Chinese medicine that exhibits high stereoselectivity and substrate promiscuity toward structurally diverse (2S)-flavanones. Isothermal titration calorimetry revealed that CtF3H1 exhibits distinctly different binding behaviors with (2S)-flavanone (2S-naringenin) and (2R)-flavanone (2R-naringenin), and these differences govern its stereoselectivity. An investigation of the structure-activity relationships between the enzyme and its substrates demonstrated that 7-OH and/or 4'-OH are necessary for regio- and stereoselective 3-hydroxylation of (2S)-flavanones. Homology modeling and molecular docking combined with site-directed mutagenesis identified the amino acid residues necessary for hydroxylation. These findings demonstrate the potential versatility of CtF3H1 in regio- and stereohydroxylation and provide molecular insights into the catalytic mechanism of F3H for further enzyme engineering.


Assuntos
Carthamus tinctorius , Flavanonas , Carthamus tinctorius/genética , Carthamus tinctorius/metabolismo , Simulação de Acoplamento Molecular , Oxigenases de Função Mista/metabolismo , Flavanonas/metabolismo , Plantas/metabolismo
13.
Acta Pharmaceutica Sinica ; (12): 1372-1382, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-978678

RESUMO

italic>O-methyltransferases (OMTs) are one of the key tailoring enzymes in the biosynthesis of many natural products, O-methylation can not only reduce the reactivity of natural products, but also alter their solubility, stability and biological activities. Based on the transcriptome data of Ardisia japonica, a full-length cDNA sequence of candidate OMT (termed as AjOMT1) was cloned by reverse transcription-polymerase chain reaction (RT-PCR) and expressed in Escherichia coli (E. coli) for the first time. In vitro enzyme catalytic activity assay showed that the recombinant AjOMT1 could effectively catalyze quercetin to form O-methylated products. Most importantly, AjOMT1 showed unprecedented substrate promiscuity towards structurally various compounds including flavonoids, stilbenes, coumarins, alkaloids and phenylpropanoids, especially preferring to the compounds with adjacent phenolic hydroxyl groups, and showed regio-selectivity. These results suggested that AjOMT1 could be used as the tool enzyme to conduct O-methylation of different types of compounds to produce diverse active methylated products, and provide a new method for drug discovery, even universal part for synthetic biology of natural products.

14.
Front Microbiol ; 13: 873555, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495641

RESUMO

Serotonin is a phylogenetically ancient compound found in animals, plants, and some bacteria. In eukaryotes, serotonin is synthesized from the aromatic amino acid tryptophan via the key enzymes aromatic amino acid hydroxylase (AAAH) and aromatic amino acid decarboxylase (AAAD). Serotonin is also an intermediate in the melatonin biosynthetic pathway and is involved in several vital functions. In humans, serotonin is produced in the gut and in the brain, is critical in the regulation of multiple body functions, and its depletion has been implicated in multiple neurological disorders including depression and Alzheimer's disease, as well as other peripheral conditions namely irritable bowel syndrome and fibromyalgia. The serotonin biosynthetic pathway is well described in eukaryotes, but very little is known about this pathway in bacteria. Evidence points to similar pathways since eukaryote-like AAAH and AAAD (and their genes) have been identified in multiple bacteria, even though serotonin production has not yet been detected in most species. Although data on bacterial tryptophan decarboxylase genes are very limited and no bacterial tryptophan hydroxylase genes have been identified to date, evidence suggests that serotonin production in bacteria might occur through different AAAH and AAAD. Substrate promiscuity in these enzymes has been previously reported and seems to be the key aspect in bacterial serotonin synthesis. Considering the human gut microbiota as a potential source of serotonin, further investigation on its biosynthetic pathways in microbes might lead to important discoveries, which may ultimately foster the development of new therapeutic strategies to treat serotonin depletion-related disorders in humans.

15.
Plant J ; 110(3): 802-813, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35141962

RESUMO

High pliability and promiscuity are observed widely exist in plant specialized metabolism, especially the hydroxycinnamic acid metabolism. Here, we identified an addition BAHD acyltransferase (EpHMT) that catalyzes phaselic acid biosynthesis and found that the substrate promiscuities of identified BAHD and SCPL acyltransferases are responsible for the diversity of hydroxycinnamic acid derivatives in purple coneflower.


Assuntos
Produtos Biológicos , Echinacea , Aciltransferases/genética , Aciltransferases/metabolismo , Ácidos Cumáricos , Echinacea/metabolismo , Plantas/metabolismo
16.
Int J Mol Sci ; 24(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36613844

RESUMO

Xenobiotic reductase B (XenB) catalyzes the reduction of the aromatic ring or nitro groups of nitroaromatic compounds with methyl, amino or hydroxyl radicals. This reaction is of biotechnological interest for bioremediation, the reuse of industrial waste or the activation of prodrugs. However, the structural factors that explain the binding of XenB to different substrates are unknown. Molecular dynamics simulations and quantum mechanical calculations were performed to identify the residues involved in the formation and stabilization of the enzyme/substrate complex and to explain the use of different substrates by this enzyme. Our results show that Tyr65 and Tyr335 residues stabilize the ligands through hydrophobic interactions mediated by the aromatic rings of these aminoacids. The higher XenB activity determined with the substrates 1,3,5-trinitrobenzene and 2,4,6-trinitrotoluene is consistent with the lower energy of the highest occupied molecular orbital (LUMO) orbitals and a lower energy of the homo orbital (LUMO), which favors electrophile and nucleophilic activity, respectively. The electrostatic potential maps of these compounds suggest that the bonding requires a large hydrophobic region in the aromatic ring, which is promoted by substituents in ortho and para positions. These results are consistent with experimental data and could be used to propose point mutations that allow this enzyme to process new molecules of biotechnological interest.


Assuntos
Pseudomonas putida , Trinitrotolueno , Oxirredutases/metabolismo , Pseudomonas putida/metabolismo , Xenobióticos , Trinitrotolueno/química , Trinitrotolueno/metabolismo , Simulação de Dinâmica Molecular
17.
Front Bioeng Biotechnol ; 9: 686362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277586

RESUMO

Despite the success of some nitrilases in industrial applications, there is a constant demand to broaden the catalog of these hydrolases, especially robust ones with high operational stability. By using the criteria of thermoresistance to screen a collection of candidate enzymes heterologously expressed in Escherichia coli, the enzyme Nit phym from the mesophilic organism Paraburkholderia phymatum was selected and further characterized. Its quick and efficient purification by heat treatment is of major interest for large-scale applications. The purified nitrilase displayed a high thermostability with 90% of remaining activity after 2 days at 30°C and a half-life of 18 h at 60°C, together with a broad pH range of 5.5-8.5. Its high resistance to various miscible cosolvents and tolerance to high substrate loadings enabled the quantitative conversion of 65.5 g⋅L-1 of 3-phenylpropionitrile into 3-phenylpropionic acid at 50°C in 8 h at low enzyme loadings of 0.5 g⋅L-1, with an isolated yield of 90%. This study highlights that thermophilic organisms are not the only source of industrially relevant thermostable enzymes and extends the scope of efficient nitrilases for the hydrolysis of a wide range of nitriles, especially trans-cinnamonitrile, terephthalonitrile, cyanopyridines, and 3-phenylpropionitrile.

18.
Int J Biol Macromol ; 185: 949-958, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34237366

RESUMO

Acyclic terpenes, commonly found in plants, are of high physiological importance and commercial value, and their diversity was controlled by different terpene synthases. During the screen of sesquiterpene synthases from Tripterygium wilfordii, we observed that Ses-TwTPS1-1 and Ses-TwTPS2 promiscuously accepted GPP, FPP, and GGPP to produce corresponding terpene alcohols (linalool/nerolidol/geranyllinalool). The Ses-TwTPS1-2, Ses-TwTPS3, and Ses-TwTPS4 also showed unusual substrate promiscuity by catalyzing GGPP or GPP in addition to FPP as substrate. Furthermore, key residues for the generation of diterpene product, (E, E)-geranyllinalool, were screened depending on mutagenesis studies. The functional analysis of Ses-TwTPS1-1:V199I and Ses-TwTPS1-2:I199V showed that Val in 199 site assisted the produce of diterpene product geranyllinalool by enzyme mutation studies, which indicated that subtle differences away from the active site could alter the product outcome. Moreover, an engineered sesquiterpene high-yielding yeast that produced 162 mg/L nerolidol in shake flask conditions was constructed to quickly identify the function of sesquiterpene synthases in vivo and develop potential applications in microbial fermentation. Our functional characterization of acyclic sesquiterpene synthases will give some insights into the substrate promiscuity of diverse acyclic terpene synthases and provide key residues for expanding the product portfolio.


Assuntos
Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Tripterygium/enzimologia , Alquil e Aril Transferases/química , Domínio Catalítico , Cromatografia Gasosa-Espectrometria de Massas , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutagênese Sítio-Dirigida , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidade por Substrato , Terpenos/metabolismo , Tripterygium/genética
19.
Angew Chem Int Ed Engl ; 60(4): 2030-2035, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33026145

RESUMO

Genome mining of microbial natural products enables chemists not only to discover the bioactive molecules with novel skeletons, but also to identify the enzymes that catalyze diverse chemical reactions. Exploring the substrate promiscuity and catalytic mechanism of those biosynthetic enzymes facilitates the development of potential biocatalysts. SfaB is an acyl adenylate-forming enzyme that adenylates a unique building block, 3-isocyanobutanoic acid, in the biosynthetic pathway of the diisonitrile natural product SF2768 produced by Streptomyces thioluteus, and this AMP-ligase was demonstrated to accept a broad range of short-chain fatty acids (SCFAs). Herein, we repurpose SfaB to catalyze amidation or thioesterification between those SCFAs and various amine or thiol nucleophiles, thereby providing an alternative enzymatic approach to prepare the corresponding amides and thioesters in vitro.


Assuntos
Monofosfato de Adenosina/metabolismo , Ácido Butírico/metabolismo , Enzimas/metabolismo , Trifosfato de Adenosina/metabolismo , Catálise , Estabilidade Enzimática , Esterificação , Streptomyces/enzimologia , Streptomyces/metabolismo , Especificidade por Substrato , Compostos de Sulfidrila/metabolismo
20.
FEBS J ; 288(11): 3570-3584, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33342083

RESUMO

Bacterial lipolytic enzymes of family IV are homologs of the mammalian hormone-sensitive lipases (HSL) and have been successfully used for various biotechnological applications. The broad substrate specificity and ability for enantio-, regio-, and stereoselective hydrolysis are remarkable features of enzymes from this class. Many crystal structures are available for esterases and lipases, but structures of enzyme-substrate or enzyme-inhibitor complexes are less frequent although important to understand the molecular basis of enzyme-substrate interaction and to rationalize biochemical enzyme characteristics. Here, we report on the structures of a novel family IV esterase isolated from a metagenomic screen, which shows a broad substrate specificity. We solved the crystal structures in the apo form and with a bound substrate analogue at 1.35 and 1.81 Å resolution, respectively. This enzyme named PtEst1 hydrolyzed more than 60 out 96 structurally different ester substrates thus being substrate promiscuous. Its broad substrate specificity is in accord with a large active site cavity, which is covered by an α-helical cap domain. The substrate analogue methyl 4-methylumbelliferyl hexylphosphonate was rapidly hydrolyzed by the enzyme leading to a complete inactivation caused by covalent binding of phosphinic acid to the catalytic serine. Interestingly, the alcohol leaving group 4-methylumbelliferone was found remaining in the active site cavity, and additionally, a complete inhibitor molecule was found at the cap domain next to the entrance of the substrate tunnel. This unique situation allowed gaining valuable insights into the role of the cap domain for enzyme-substrate interaction of esterases belonging to family IV. DATABASE: Structural data of PtEst1 are available in the worldwide protein data bank (https://www.rcsb.org) under the accession codes: 6Z68 (apo-PtEst1) and 6Z69 (PtEst1-inhibitor complex).


Assuntos
Esterases/ultraestrutura , Lipase/ultraestrutura , Conformação Proteica , Cristalografia por Raios X , Metagenoma/genética , Pseudonocardia/química , Pseudonocardia/genética , Pseudonocardia/ultraestrutura , Especificidade por Substrato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA