Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mater Today Bio ; 28: 101199, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39205875

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease where standard-of-care chemotherapeutic drugs have limited efficacy due to the development of drug resistance and poor drug delivery caused by a highly desmoplastic tumor microenvironment. Combining multiple drugs in a tumor-targeting carrier would be a favorable approach to overcome these limitations. Hence, a tumor-targeted peptide (TTP) conjugated amphiphilic tri-block copolymer was developed to make targeted polymer nanoparticles (TTP-PNPs) serving as a vehicle for carrying gemcitabine (Gem), paclitaxel (PTX), and their combination (Gem + PTX). The TTP-PNPs in the form of empty polymer (P), single drug-loaded [P(Gem) and P(PTX)], and dual drug-loaded [P(Gem + PTX)] polymer nanoformulations exhibited stable and homogenous spherical shapes with 110-160 nm size. These nanoformulations demonstrated excellent stability under in vitro physiological conditions and led to an efficient release of the drugs in the presence of reduced glutathione (GSH). The efficacy of these nanoparticles was thoroughly evaluated in vitro and in vivo, demonstrating a notable capacity to selectively target and restrict PDAC cells (PANC-1 and KPC) growth. The cellular uptake and biodistribution study showed a significantly higher tumor-targeting ability of TTP-PNPs than PNPs without TTP. Notably, P(Gem + PTX) exhibited the lowest IC50 compared to all other controls and showed heightened synergistic effects in both cell lines. Furthermore, P(Gem + PTX) showed a significantly better tumor reduction and median overall survival in mouse models than single drug-loaded TTP-PNPs or a combination of free drugs (Gem + PTX). In summary, our TTP-PNP system shows great promise as a novel platform for delivering Gem + PTX specifically to pancreatic cancer (PC), maximizing the therapeutic benefits with lower concentrations of the drugs and potentially reducing toxic side effects.

2.
Int J Biol Macromol ; 269(Pt 1): 131748, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670194

RESUMO

Bio-based shape memory materials have attracted wide attention due to their biocompatibility, degradability and safety. However, designing and manufacturing wearable bio-based shape memory films with excellent flexibility and toughness is still a challenge. In this work, silk fibroin substrate with a ß-sheet structure was combined with a tri-block shape memory copolymer to prepare a transparent composited shape memory film. The silk fibroin-based film showed a dual-responsive shape memory function, which can respond to both temperature and water stimuli. This film has a sensitive water-responsive shape memory, which starts deforming after exposure to water for 3 s and fully recovers in 30 s. In addition, the composite film shows highly stretchable (>300 %) and could maintain its high tensile properties after 5 cycles of regeneration. The films also exhibited rapid degradation ability. This study provides new insights for the design of dual-responsive shape memory materials by combining biocompatible matrix and multi-block SMP to simultaneously enhance the mechanical properties, which can be used for intelligent packaging, medical supplies, soft actuators and wearable devices.


Assuntos
Materiais Biocompatíveis , Fibroínas , Fibroínas/química , Materiais Biocompatíveis/química , Materiais Inteligentes/química , Resistência à Tração , Temperatura , Água/química , Bombyx/química
3.
Life (Basel) ; 11(4)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917288

RESUMO

Traumatic brain injury (TBI) leads to morbidity and mortality worldwide. Reperfusion after ischemia adds detrimental injury to cells. Ischemia/reperfusion (I/R) injures cells in a variety of ways including cell membrane disruption. Hence, methods to improve endogenous membrane resealing capacity are crucial. Poloxamer (P) 188, an amphiphilic triblock copolymer, was found to be effective against I/R and mechanical injury in various experimental settings. The aim of this study was to establish an in vitro mouse neuronal TBI model and, further, to investigate if postconditioning with P188 directly interacts with neurons after compression and simulated I/R injury, when administered at the start of reoxygenation. Cellular function was assessed by cell number/viability, mitochondrial viability, membrane damage by lactated dehydrogenase (LDH) release and FM1-43 incorporation as well as apoptosis-activation by Caspase 3. Five hours hypoxia ± compression with 2 h reoxygenation proved to be a suitable model for TBI. Compared to normoxic cells not exposed to compression, cell number and mitochondrial viability decreased, whereas membrane injury by LDH release/FM1-43 dye incorporation and Caspase 3 activity increased in cells exposed to hypoxic conditions with compression followed by reoxygenation. P188 did not protect neurons from simulated I/R and/or compression injury. Future research is indicated.

4.
Pharmacol Res Perspect ; 8(6): e00639, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33073927

RESUMO

Reperfusion injury is a complex pathological event involving processes that can lead to further disruption of the cell membrane and function following an ischemic event. Return of blood flow allows for the needed reperfusion; however, for a period of time before remaining viable cells stabilize, reperfusion results in additional cellular injury. In cardiomyocytes, loss of membrane integrity allows abnormal influx of extracellular calcium, leading to hyper-contracture and cell death. Methods to improve the membrane integrity of cardiomyocytes overwhelmed by pathological disruptions, such as reperfusion injury, are needed to prevent cell death, because of the myocardium's limited ability to regenerate. Research has shown administration of the copolymer P(oloxamer) 188 before ischemia/reperfusion can protect cardiomyocytes through membrane stabilization. This study sought to determine whether the administration of P188 at the beginning of the clinically more relevant time of reperfusion after ischemia will attenuate any additional damage to cardiomyocytes by stabilizing membrane integrity to allow the cells to maintain function. Using an in-vitro cardiomyocyte model subjected to hypoxia/reoxygenation to simulate ischemia/reperfusion injury, we show that reoxygenation significantly potentiates the injury caused by hypoxia itself. P188, with its unique combination of hydrophobic and hydrophilic chemical properties, and only delivered at the beginning of reoxygenation, dose-dependently protected cardiomyocytes from injury due to reoxygenation by repairing cell membranes, decreasing calcium influx, and maintaining cellular morphology. Our study also shows the hydrophobic portion of P188 is necessary for the stabilization of cell membrane integrity in providing protection to cardiomyocytes against reoxygenation injury.


Assuntos
Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Poloxâmero/farmacologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Excipientes/farmacologia , Excipientes/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/patologia , Poloxâmero/uso terapêutico
5.
R Soc Open Sci ; 6(6): 190536, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31312502

RESUMO

A styrene-butadiene-styrene tri-block copolymer (SBS) with a high cis-1,4 unit content (greater than 97%) was synthesized by a novel synthetic strategy based on changing the catalytic active centres using n-butyllithium and a nickel-based catalyst. Firstly, styrene was polymerized via anionic polymerization using butyllithium as the initiator (Li, activity centre Li) at 50°C. The obtained alkylated macroinitiator (PSLi) was aged with nickel naphthenate (Ni) and boron trifluoride etherate (B) to prepare a second reactive centre (Ni-F), which was used to initiate the polymerization of butadiene (Bd). Finally, triphenyl phosphine (PPh3) was added to adjust the electron density of the third active centre (P-Ni-F), and styrene monomer was added again to synthesize the second polystyrene block to obtain SBS. The polymerization technique presented here is simple and has an efficient initiation effect due to the high initiation activities for the different monomers. It also exhibits excellent control over the stereo-structure of the butadiene segments in the prepared copolymers, and the SBS polymers with high cis-1,4 unit content were easily achieved.

6.
Biomaterials ; 176: 84-93, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29870899

RESUMO

Tri-block copolymers have exhibited great potentials in small interfering RNA (siRNA) therapeutics. To reveal structure-activity relationships, we here synthesized a series of tri-block copolymers with different hydrophobic segments, PEG-PAMA-P(C6Ax-C7Ay-DPAz-DBAm) (EAAS) and PEG-PDAMAEMA-P(C6Ax-C7Ay-DPAz-DBAm) (EDAS), termed from EAASa to EAASh and EDASa to EDASh, with pKa ranging from 5.2 to 7.0. Our data showed that the better gene silencing efficiency was located in pKa of 5.8-6.2, which was contributed from higher endosomal escape observed with confocal images and hemolysis assay. EAASc, the leader polymer, showed excellent gene knockdown at w/w ratio of 14.5 on HepG2 (89.94%), MDA-MB-231 (92.45%), 293A (83.06%), and Hela cells (80.27%), all better than lipofectamine 2000. Besides, EAASc mediated effective gene silencing in tumor when performed peritumoral injection. This work found out that polymers with pKa ranging from 5.8 to 6.2 were efficient in siRNA delivery, which provided an optimization strategy for siRNA delivery systems, especially for tri-block copolymers.


Assuntos
Polímeros/química , RNA Interferente Pequeno/administração & dosagem , Animais , Sobrevivência Celular , Endossomos/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Inativação Gênica , Técnicas de Transferência de Genes , Células Hep G2 , Xenoenxertos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Injeções Intralesionais , Injeções Intravenosas , Lipídeos/química , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo
7.
Colloids Surf B Biointerfaces ; 155: 390-398, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28458188

RESUMO

Two tri-block copolymers P123 (PEO19PPO69PEO19) and F127 (PEO100PPO65PEO100) have been employed to form polymeric nanomicelles and function as potential nanocarriers for an anticancer pyrazoline derivative (PYZ) in aqueous buffer solution for biological studies. Encapsulation within these nanomicelles considerably enhanced the fluorescence of the PYZ compared to its low fluorescence in aqueous buffer medium. The effect of the micellar structures on the photophysical properties of PYZ have been demonstrated by means of steady state and time resolved fluorescence spectroscopy. Variation in hydrophilicity of the corona region was found to be a prime factor in modulating the location of the PYZ within the micelles which in turn influenced its corresponding enhanced emission and cytotoxicity. These drug encapsulated nanomicelles were found to be successfully internalized into the MCF-7 cells to demonstrate high-quality fluorescent images. The location of PYZ within the polymeric micelles influenced the CAC (Critical Aggregation Concentration)/CMC (Critical Micellar Concentration) ratio which modulated their drug release capacity resulting in a variation in their cytotoxicity.


Assuntos
Portadores de Fármacos/química , Nanoestruturas/química , Poloxaleno/química , Poloxâmero/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Fluorescência , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Nanoestruturas/ultraestrutura , Pirazóis/química , Pirazóis/farmacologia , Espectrometria de Fluorescência
8.
Colloids Surf B Biointerfaces ; 144: 73-80, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27070054

RESUMO

We have developed nanomedicine vehicle based on a biocompatible tri-block copolymer, poly(ethylene glycol)-block-poly(lactic acid)-block-poly(ethylene glycol) (PEG-PLA-PEG) by simple approach without toxic linker to escalate therapeutic efficacy of anticancer agent by enhanced targeting to metastasized breast cancers. The synthesized ABA type copolymer had a low polydispersity index and formed small, highly stable spherical micelles. Furthermore, a functional group at the end site of the copolymer can be decorated with imaging agents and targeting moieties. The doxorubicin loaded micelles (DLM) showed higher drug-loading capacity, faster drug release, and better cell toxicity compared to those using di-block copolymers. DLM efficiently delivered to the metastatic breast cancers in brain and bone and suppressed growing of metastasis. In demonstration of treating metastasized animal model, we present a tri-block copolymer as a potential nanomedicine vehicle to efficiently deliver anticancer drug and to effectively treat metastatic breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Poliésteres/química , Polietilenoglicóis/química , Animais , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Estudos de Viabilidade , Feminino , Humanos , Cinética , Medições Luminescentes , Camundongos Endogâmicos BALB C , Camundongos Nus , Micelas , Metástase Neoplásica
9.
Toxicol Rep ; 3: 279-287, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28959548

RESUMO

INTRODUCTION: Several studies towards the development of an effective treatment for intestinal mucositis have been reported, since this condition represents a major problem in clinical oncology practice due to cytotoxic effects of chemotherapy. However standardized protocols and universally accepted treatment options are yet to be established. OBJECTIVES: Given above, this study evaluated the protective effects of a mucoadhesive formulation containing both Bidens pilosa L. (Asteraceae) (BP) and curcuminoids from Curcuma longa L. (Zingiberaceae) (CL) on intestinal mucositis induced by 5-fluoruoacil (5-FU) in mice. RESULTS: As expected, animals only treated with 5-FU (200 mg/kg) showed a significant reduction of 60.3 and 42.4% in villi and crypts size, respectively, when compared to control. On the other hand, the proposed therapeutic/prophylactic treatment with mucoadhesive formulations managed to reduce histopathologic changes in mice bearing mucositis, especially at 125 mg/kg BP + 15 mg/kg CL dose. The formulation promoted an increase of 275.5% and 148.7% for villi and crypts size, respectively. Moreover, chemotherapy-related weight loss was reduced by 7.4% following the treatment. In addition, an increase of 10 and 30.5% in red and white blood cells was observed when compared to 5-FU group. Furthermore, treatments with the mucoadhesive formulation containing BP/CL up modulated Ki-67 and Bcl-2 expression while reduced pro-apoptotic regulator Bax. The formulation also modulated inflammatory response triggered by 5-FU through reduction of 68% of myeloperoxidase activity and a 4-fold increase in anti-inflammatory IL-10 levels. In parallel, the oxidative stress via lipid peroxidation was reduced as indicated by decrease of 63% of malondialdehyde concentrations. Additionally, the new formulation presented low acute oral systemic toxicity, being classified in the category 5 (2000 mg/kg < LD50 < 5000 mg/kg) of the Globally Harmonized Classification System. CONCLUSIONS: This study showed an interesting potential of the mucoadhesive formulation of BP/CL for the treatment of 5-FU-induced intestinal mucositis. Given the perspectives for the development of a new medicine, clinical studies are in progress to better understand the protective effects of this innovative formulation in treating mucositis.

10.
Polymers (Basel) ; 8(9)2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30974618

RESUMO

Although the research of the self-assembly of tri-block copolymers has been carried out widely, little attention has been paid to study the mechanical properties and to establish its structure-property relation, which is of utmost significance for its practical applications. Here, we adopt molecular dynamics simulation to study the static and dynamic mechanical properties of the ABA tri-block copolymer, by systematically varying the morphology, the interaction strength between A-A blocks, the temperature, the dynamic shear amplitude and frequency. In our simulation, we set the self-assembled structure formed by A-blocks to be in the glassy state, with the B-blocks in the rubbery state. With the increase of the content of A-blocks, the spherical, cylindrical and lamellar domains are formed, respectively, exhibiting a gradual increase of the stress-strain behavior. During the self-assembly process, the stress-strain curve is as well enhanced. The increase of the interaction strength between A-A blocks improves the stress-strain behavior and reduces the dynamic hysteresis loss. Since the cylindrical domains are randomly dispersed, the stress-strain behavior exhibits the isotropic mechanical property; while for the lamellar domains, the mechanical property seems to be better along the direction perpendicular to than parallel to the lamellar direction. In addition, we observe that with the increase of the dynamic shear amplitude and frequency, the self-assembled domains become broken up, resulting in the decrease of the storage modulus and the increase of the hysteresis loss, which holds the same conclusion for the increase of the temperature. Our work provides some valuable guidance to tune the static and dynamic mechanical properties of ABA tri-block copolymer in the field of various applications.

11.
Nanoscale Res Lett ; 9(1): 520, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25288914

RESUMO

In the present work, we prepare thermo- and pH-sensitive polymer-based nanoparticles incorporating with magnetic iron oxide as the remote-controlled, stimuli-response nanocarriers. Well-defined, dual functional tri-block copolymer poly[(acrylic acid)-block-(N-isopropylacrylamide)-block-(acrylic acid)], was synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization with S,S'-bis(α,α'-dimethyl-α″-acetic acid)trithiocarbonate (CMP) as a chain transfer agent (CTA). With the aid of using 3-aminopropyltriethoxysilane, the surface-modified iron oxides, Fe3O4-NH2, was then attached on the surface of self-assembled tri-block copolymer micelles via 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride/N-hydroxysuccinamide (EDC/NHS) crosslinking method in order to furnish not only the magnetic resources for remote control but also the structure maintenance for spherical morphology of our nanocarriers. The nanocarrier was characterized by transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), and ultraviolet-visible (UV/Vis) spectral analysis. Rhodamine 6G (R6G), as the modeling drugs, was encapsulated into the magnetic nanocarriers by a simple swelling method for fluorescence-labeling and controlled release monitoring. Biocompatibility of the nanocarriers was studied via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, which revealed that neither the pristine nanocarrier nor the R6G-loaded nanocarriers were cytotoxic to the normal fibroblast cells (L-929 cells). The in vitro stimuli-triggered release measurement showed that the intelligent nanocarriers were highly sensitive to the change of pH value and temperature rising by the high-frequency magnetic field (HFMF) treatment, which provided the significant potential to apply this technology to biomedical therapy by stimuli-responsive controlled release.

12.
Materials (Basel) ; 6(3): 713-725, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-28809336

RESUMO

Lu2O3:Eu3+ transparent, high density, and optical quality thin films were prepared using the sol-gel dip-coating technique, starting with lutetium and europium nitrates as precursors and followed by hydrolysis in an ethanol-ethylene glycol solution. Acetic acid and acetylacetonate were incorporated in order to adjust pH and as a sol stabilizer. In order to increment the thickness of the films and orient the structure, F127 Pluronic acid was incorporated during the sol formation. Structural, morphological, and optical properties of the films were investigated for different F127/Lu molar ratios (0-5) in order to obtain high optical quality films with enhanced thickness compared with the traditional method. X-ray diffraction (XRD) shows that the films present a highly oriented cubic structure <111> beyond 1073 K for a 3-layer film, on silica glass substrates. The thickness, density, porosity, and refractive index evolution of the films were investigated by means of m-lines microscopy along with the morphology by scanning electron microscope (SEM) and luminescent properties.

13.
Int J Mol Sci ; 12(2): 1371-88, 2011 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21541064

RESUMO

Low cytotoxicity and high gene transfection efficiency are critical issues in designing current non-viral gene delivery vectors. The purpose of the present work was to synthesize the novel biodegradable poly (lactic acid)-poly(ethylene glycol)-poly(l-lysine) (PLA-PEG-PLL) copolymer, and explore its applicability and feasibility as a non-viral vector for gene transport. PLA-PEG-PLL was obtained by the ring-opening polymerization of Lys(Z)-NCA onto amine-terminated NH(2)-PEG-PLA, then acidolysis to remove benzyloxycarbonyl. The tri-block copolymer PLA-PEG-PLL combined the characters of cationic polymer PLL, PLA and PEG: the self-assembled nanoparticles (NPs) possessed a PEG loop structure to increase the stability, hydrophobic PLA segments as the core, and the primary ɛ-amine groups of lysine in PLL to electrostatically interact with negatively charged phosphate groups of DNA to deposit with the PLA core. The physicochemical properties (morphology, particle size and surface charge) and the biological properties (protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in HeLa and HepG2 cells) of the gene-loaded PLA-PEG-PLL nanoparticles (PLA-PEG-PLL NPs) were evaluated, respectively. Agarose gel electrophoresis assay confirmed that the PLA-PEG-PLL NPs could condense DNA thoroughly and protect DNA from nuclease degradation. Initial experiments showed that PLA-PEG-PLL NPs/DNA complexes exhibited almost no toxicity and higher gene expression (up to 21.64% in HepG2 cells and 31.63% in HeLa cells) than PEI/DNA complexes (14.01% and 24.22%). These results revealed that the biodegradable tri-block copolymer PLA-PEG-PLL might be a very attractive candidate as a non-viral vector and might alleviate the drawbacks of the conventional cationic vectors/DNA complexes for gene delivery in vivo.


Assuntos
Plásticos Biodegradáveis/síntese química , Poliésteres/química , Polietilenoglicóis/química , Polilisina/análogos & derivados , Polilisina/química , Transfecção/métodos , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/farmacologia , DNA/genética , DNA/metabolismo , Células HeLa , Células Hep G2 , Humanos , Nanopartículas/química , Poliésteres/farmacologia , Polietilenoglicóis/farmacologia , Polilisina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA