Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(5): 2537-2547, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629519

RESUMO

To explore the content and variation characteristics of water-soluble ions of atmospheric fine particles (PM2.5) in a Beijing urban area and put forward the pollution prevention and control scheme, the water-soluble ions, gaseous precursors (SO2, NO2), and meteorological factors (temperature, RH) of PM2.5 in 2022 were analyzed and determined. The results showed that the water-soluble ions with the highest proportion in PM2.5 in the Beijing City urban area were NO3-, NH4+, and SO42-, accounting for 52.7% of PM2.5. The mass concentrations of PM2.5 and SNA were lower than the historical results, whereas the proportion of SNA, SOR, and NOR was higher than the historical results. This showed that the fine particulate matter pollution in Beijing has been significantly improved, but it still has strong secondary pollution characteristics. NO3-/SO42-(2.2) was higher than those of historical and nearby provinces and cities, reflecting the expanding influence of mobile sources. In terms of seasonal variation, PM2.5 showed the characteristic of high in autumn and low in summer. The proportion of NO3- was the highest in autumn, spring, and winter; the proportion of SO42- was the highest in summer; and the proportion of NH4+ changed little in each season. The seasonal variation rules of NOR and SOR were almost opposite, which reflected the difference in transformation factors between NOR and SOR. The main forms of SNA in the Beijing urban area were NH4NO3 and (NH4)2SO4. The neutralization degree of cations and anions was the highest in winter, the cation NH4+ was slightly insufficient in summer, and NH4+ was in excess in spring and autumn. The Beijing urban area was an ammonia-rich environment. In terms of pollution level, RH, particulate matter moisture, and water-soluble ions mass concentration all increased with the increase in pollution level, and SNA increased fastest, with its proportion in PM2.5 increasing first and then stabilizing, whereas the contribution rate of other water-soluble ions decreased gradually. In terms of spatial distribution, the mass concentration relationship of SNA at the central urban area and suburbs was NO3- > SO42- > NH4+, which reflected the pollution characteristics dominated by NO3-. The highest contribution rate of SNA to PM2.5 occurred in the eastern region, the central urban area, and the transmission point, indicating that the secondary reaction was relatively active in the central urban area and the eastern region, and the regional transport was also an important source of secondary ions.

2.
Environ Sci Pollut Res Int ; 31(22): 32901-32913, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38668944

RESUMO

To investigate the influence of COVID-19 lockdown measures on PM2.5 and its chemical components in Shenyang, PM2.5 samples were continuously collected from January 1 to May 31, 2020. The samples were then analyzed for water-soluble inorganic ions, metal elements, organic carbon, and elemental carbon. The findings indicated a significant decrease in PM2.5 and its various chemical components during the lockdown period, compared to pre-lockdown levels (p < 0.05), suggesting a substantial improvement in air quality. Water-soluble inorganic ions (WSIIs) were identified as the primary contributors to PM2.5, accounting for 47% before the lockdown, 46% during the lockdown, and 37% after the lockdown. Ionic balance analysis revealed that PM2.5 exhibited neutral, weakly alkaline, and alkaline characteristics before, during, and after the lockdown, respectively. NH4+ was identified as the main balancing cation and was predominantly present in the form of NH4NO3 in the absence of complete neutralization of SO42- and NO3-. Moreover, the higher sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR), along with the significant increase in PM2.5/EC, suggested intense secondary transformation during the lockdown period. The elevated OC/EC ratio during the lockdown period implied higher secondary organic carbon (SOC), and the notable increase in SOC/EC ratio indicated a significant secondary transformation of total carbon. The enrichment factor (EF) results revealed that during the lockdown, 9 metal elements (As, Sn, Pb, Zn, Cu, Sb, Ag, Cd, and Se) were substantially impacted by anthropogenic emissions. Source analysis of PMF was employed to identify the sources of PM2.5 in Shenyang during the study period, and the analysis identified six factors: secondary sulfate and vehicle emissions, catering fume sources, secondary nitrate and coal combustion emissions, dust sources, biomass combustion, and industrial emissions, with secondary sulfate and vehicle emissions and catering fume sources contributing the most to PM2.5.


Assuntos
Poluentes Atmosféricos , COVID-19 , Monitoramento Ambiental , Material Particulado , Material Particulado/análise , China , Poluentes Atmosféricos/análise , COVID-19/epidemiologia , Poluição do Ar , Cidades , Humanos
3.
Huan Jing Ke Xue ; 45(3): 1349-1360, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471851

RESUMO

Pollution variation, source characteristics, and meteorological effects of water-soluble inorganic ions (WSIIs) in PM2.5 were analyzed in Xinxiang city, Henan Province. PM2.5 samples and their chemical components were monitored online by using URG-9000 in four seasons:winter (January, 2022), spring (April, 2022), summer (July, 2022), and fall (October, 2022). The results showed that the TWSIIs had the same seasonal fluctuations as PM2.5. The average seasonal concentrations of WSIIs ranged from 19.62-72.15 µg·m-3, accounting for more than 60% of PM2.5, demonstrating that WSIIs were the major components of PM2.5. The annual concentration value of NO3-/SO42- was 2.11, which showed an increasing trend, suggesting predominantly mobile sources for secondary inorganic aerosols (SNA). Further, the molar concentration value [NH4+]/[NO3-] was 1.95, demonstrating that agriculture emissions were the dominant contributors to atmospheric nitrogen. Furthermore, the backward trajectory analysis showed that the concentrations of Ca2+ and Mg2+ were higher when the northeasterly wind prevailed and the wind speed was high. High values of SOR and NOR were correlated with low temperatures and high relative humidity (T < 8℃, RH > 60%), demonstrating that more gaseous precursors were converted into sulfate and nitrate. At high temperatures (T > 24℃), there was no apparent high NOR value like that for SOR, mainly due to the decomposition of NH4NO3 at high temperatures. Finally, backward trajectories associated with the PMF-resolved results were used to explore the regional transport characteristics. The results illustrated that dust sources in the study areas were mainly influenced by air trajectories originating from the northwest regions, whereas secondary sulfate, secondary nitrate, and biomass sources contributed more to WSIIs when wind speed and altitude air masses were low in the area surrounding the observation site.

4.
Sci Total Environ ; 932: 170795, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38342471

RESUMO

We conducted the source apportionment of fine aerosol particles (aerodynamic diameter ≤1.6µm) collected with the indigenously designed-fabricated submicron aerosol sampler (SAS) in the eastern Indo-Gangetic plain (IGP) semi-urban (Kharagpur, KGP) and megacity (Kolkata, KOL) atmospheres, examining the chemical characteristics at KGP (January 2015-February 2016), and accentuating their abundance and the sources of anthropogenic pollution relative to KOL. The fine water-soluble inorganic ions (WSII) at KGP predominantly constituted Ca2+ (52 %) and equivalent amounts (12 % each) of Cl-, Mg2+ and secondary inorganic aerosols (sum of SO42-, NO3- and NH4+). The annual mean of SO42- at KGP was twice (thrice) larger than NO3- (NH4+); this of organic carbon (OC) was thrice elemental carbon (EC), with secondary OC being 37 % of the total OC. The concordance in peaks of OC with K+ concentrations was identified during the seasonal open biomass burning at KGP (November and May). While the annual mean of OC (EC) concentration at KGP was slightly lower than (nearly equivalent to) KOL; K+, NO3-, NH4+ and F- concentrations at KOL were twice larger than KGP. Source quantification using Positive Matrix Factorization (PMF) revealed the regional dust with crustal elements marked as clean (polluted) at KGP (KOL) constituted the largest fractional contribution among the six identified factors at both KGP and KOL. The combustion-derived anthropogenic pollution comprising about 60 % (50 %) of fine particles at KOL (KGP) was predominantly from the transportation sector (in vehicular emissions and regional dust), coal combustion (industries) and open biomass burning at KOL; it was from brick kilns, residential biofuel combustion, and open biomass burning at KGP. The source-wide distribution of measured aerosol species showed their emergence from largely different sources at KGP and KOL; thereby suggesting a prioritised strategy for sustainable emissions mitigation considering the prominent sources of combustion-derived anthropogenic pollution and aerosol species for megacity and semi-urban atmospheres.

5.
Chemosphere ; 349: 140886, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38065265

RESUMO

Snowpack, which serves as a natural archive of atmospheric deposition of multiple pollutants, is a practical environmental media that can be used for assessing atmospheric records and input of the pollutants to the surface environments and ecosystems. A total of 29 snowpack samples were collected at 20 sampling sites covering three different functional areas of a major city (Harbin) in Northeast China. Two samples at the "snow layer" and one or two samples at the "particulate layer" were collected at each sampling site in the industrial areas characterized by multi-layer snowpack, and only one sample at the "snow layer" was collected at each sampling site in the cultural and recreational as well as agricultural areas. The snow contents of 31 elements (Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Y, Cd, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Pb) and six major water-soluble inorganic ions (WSIIs, NH4+, K+, Ca2+, NO2-, NO3-, and SO42-) were analyzed. The total mass of the measured elements is dominated (95.8%-99.2%) by crustal elements. Heavy metals only account for 0.77%-4.07% of the total mass of the elements, but are occasionally close to or even above the standard limit in the "Environmental Quality Standards for Surface Water" of China (GB3838-2002). SO42- and Ca2+ are the main anion and cation, accounting for 34.9%-81.1% and 1.43%-29.9%, respectively, of the measured total ions. Total atmospheric deposition of crustal elements and heavy metals is dominated by wet deposition in areas near the petrochemical plant and by dry deposition in areas near the cement plant. Coal combustion, industrial emissions, and traffic-related activities lead to the enrichment of heavy metals in the snowpacks of urban and suburban areas, while coal combustion and biomass burning contribute to pollution in rural areas. The cities and regions situated in the western, northwestern, northern, and northeastern directions from Harbin are potential source regions of these pollutant species.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Metais Pesados , Ecossistema , Poeira/análise , China , Poluentes Atmosféricos/análise , Metais Pesados/análise , Cidades , Íons/análise , Carvão Mineral/análise , Água , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano
6.
Sci Total Environ ; 905: 166985, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37704142

RESUMO

Aerosol pH is not only a diagnostic indicator of secondary aerosol formation, but also a key factor in the specific chemical reaction routes that produce sulfate and nitrate. To understand the characteristics of aerosol acidity in the Mt. Hua, the chemical fractions of water-soluble inorganic ions in the atmospheric PM2.5 and size-resolved particle at the top and foot of Mt. Hua in summer 2020 were studied. The results showed the mass concentrations of PM2.5 and water-soluble ions at the foot were 2.0-2.6 times higher than those at the top. The secondary inorganic ions, i.e., SO42-, NO3-, and NH4+ (SNA) were 56 %-61 % higher by day than by night. SO42- was mainly distributed in the fine particles (Dp < 2.1 µm). NO3- showed a unimodal size distribution (peaking at 0.7-1.1 µm) at the foot and a bimodal (0.7-1.1 µm and 4.7-5.8 µm) size distribution at the top. At the top site, the distribution of NO3- in coarse particles (> 2.1 µm) was mainly attributed to the gaseous HNO3 volatilized from fine particles reacting with cations in coarse particles to form non-volatile salts (such as Ca(NO3)2). The pH values of PM2.5 were 2.7 ± 1.3 and 3.3 ± 0.42 at the top and foot, respectively. NH4+/NH3(g) plays a decisive role in stabilizing aerosol acidity. In addition, the increase of the liquid water content (LWC) at the foot facilitates the gas-particle conversion of NH3, while the H+ concentration was diluted, resulting in a decrease in acidity at the foot. NH4+/NH3 had good linear correlations with SO42-, NO3-, and LWC during the daytime at both sites, indicating that SO42-, NO3-, and LWC together affect the gas-particle distribution of ammonia by day: however, the effect of LWC at night was not evident.

7.
Chemosphere ; 340: 139870, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37633612

RESUMO

Worldwide coal is still used for household heating purposes not only because it is available and cheap but also due to behavioural issues. Regional variability in fuels and combustion appliances make accurate emission estimates from this source hard to achieve. In the present study, gaseous (CO, VOCs, SO2 and NOX) and particulate matter (TSP) emission factors (EFs) were determined for Spanish household coal combustion covering three commercial coals and distinct combustion stages and mimicking usage patterns in real households. TSP samples were analysed to determine water-soluble inorganic ions, metal(loid)s, and organic and elemental carbon (OC and EC). Additionally, the morphology of the emitted particles was also characterised. CO (3.43-169 g kg-1), NOX (1.29-6.00 g kg-1) and SO2 (8.96-22.3 g kg-1) EFs showed no trend regarding the combustion stage or coal type tested. On the other hand, VOC, TSP and EC EFs were higher for the ignition/devolatilisation combustion stage, regardless of the fuel tested. TSP EFs (0.085-1.08 g kg-1) increased with increasing coal volatile matter while the opposite trend was recorded for VOC emissions (0.045-3.39 gC kg-1). TSP carbonaceous matter was dominated by EC while OC represented a small fraction of the particulate mass emitted (less than 8 %wt.). Inorganic compounds composed an important fraction of the TSP samples. Sulphate particulate mass fractions (8.66-22.9 %wt.) appeared to increase with coal S-content. Coal combustion released particles with diverse morphologies, including silicate-rich particles, ferro- and glassy-spheres. This study provides novel emission factors to update emission inventories of residential coal combustion. Additionally, detailed chemical profiles were obtained for source apportionment.


Assuntos
Compostos Orgânicos Voláteis , Carbono , Carvão Mineral , Poeira , Gases
8.
Environ Sci Pollut Res Int ; 30(43): 97040-97051, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37582892

RESUMO

Air pollution is a global issue that often transcends national borders, leading to disputes over environmental concerns and climate-mitigation responsibilities. Between March and July 2020, we collected aerosol samples in Jimunai, a town in western China neighboring Kazakhstan, to assess transboundary air pollution in the region. Our analysis focused on major water-soluble inorganic ions (WSIs), with Ca2+ and SO42- accounting for almost 60% of the total ion loading. The ratio of cations to anions was greater than one (1.33 ± 0.27), indicating alkaline aerosols during the sampling period. Our results suggest that the pollutants measured were primarily sourced from Kazakhstan, as demonstrated by local meteorological data, air-mass trajectory analysis, and pollutant emission inventories in Kazakhstan. Correlation and primary component analysis indicated that NH4+ played an important role in neutralizing NO3- and SO42-, while Cl- was significantly depleted by the probable reaction HNO3↑ + NaCl = HCl↑ + NaNO3. These findings highlight the need for continued monitoring and regulation of air pollution sources in the region to address transboundary air pollution.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Água/análise , Material Particulado/análise , Poluentes Atmosféricos/análise , Estações do Ano , Íons/análise , Cátions/análise , China , Aerossóis/análise , Poluentes Ambientais/análise , Monitoramento Ambiental , Tamanho da Partícula
9.
J Hazard Mater ; 459: 132236, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37572604

RESUMO

The water-soluble inorganic ions (WSII) in diesel particulate matter (DPM) have a significant impact on ambient air quality and human health. In this study, the 12 groups of bench tests were conducted to analyze the emission characteristics of two diesel engines, taking into account the influence of engine parameters, test cycle, fuel types, and after-treatment measures. Compared to conventional diesel, a blend of diesel with 5 % biodiesel resulted in a reduction of the WSII emission factors by 23.7-48.0 %. The emission factors of WSII decreased by 8.4 % after installing selective catalytic reduction (SCR). Dummy variable regression analysis was used to analyze the relationship between WSII and influencing factors. The emission factors of Na+, K+, and Ca2+ were mostly affected by the engine, potentially due to the use of coolants and lubricants containing metal oxides in the engine. The emission factors of NO3- were mainly affected by the test cycle. Techniques for order preference by similarity to ideal solution (TOPSIS) were used to analyze the priority of emission reduction technologies. The results indicated that SCR, biodiesel, and low-sulfur diesel could effectively reduce WSII. This study aims to explore the influence of multiple factors on WSII, providing valuable insights for future research on WSII in DPM.

10.
Environ Pollut ; 335: 122288, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37544180

RESUMO

Dust storms are one of the largest sources of non-exhaust emissions in China, which can adversely affect air quality and human health during long-distance transportation. To study the influence of dust storms on aerosol particle composition, samples of fine aerosol (PM2.5) were collected before, during, and after the severe dust storm episodes in a coastal city of North China. Then the water-soluble inorganic ions in the filters were analyzed. The results showed that the chemical composition varied significantly in different sampling periods. Before the dust storm periods (Phase 1), the weather was characterized by high relative humidity. NO3- was the main water-soluble inorganic ion, accounting for about 1/3 of the total mass of PM2.5, which is very different from the situation a few years ago when sulfate was the dominant. The results indicated that the chemical composition of the atmosphere in China has changed significantly after the implementation of strict air pollution control measures. During the severe dust storm periods (within a few hours after the dust invasion, Phase 2), the proportion of Ca2+ in PM2.5 was high; the sulfate formation was limited due to adiabatic air mass affected by the cold front, and the sulfate content might be mainly from desert soil. However, a small amount of nitrate can be formed during their long-distance transportation. After the dust storm periods (Phase 3), dust plums and local polluted air mass mixed well. The proportion of secondary inorganic ions increased, and nitrate formation was still the main. The changes in the chemical composition from a few years ago during Phase 1 and the sharp changes in different water-soluble inorganic ions during different Phases should be carefully considered to evaluate their implications for air quality and human health.


Assuntos
Poluentes Atmosféricos , Nitratos , Humanos , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Poeira/análise , Monitoramento Ambiental/métodos , Nitratos/análise , Material Particulado/análise , Sulfatos/análise , Óxidos de Enxofre , Água/química
11.
Environ Sci Pollut Res Int ; 30(26): 69241-69257, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37133667

RESUMO

The study was carried out to understand the chemical, spatiotemporal characteristics of water-soluble inorganic ions (WSIIs), their association with PM2.5 mass, and aerosol acidity in three COALESCE (carbonaceous aerosol emissions, source apportionment, and climate impacts) network sites of India (Mesra - Eastern India, Bhopal - Central India and Mysuru - Southern India). Alternate-day 24-h integrated bulk PM2.5 samples were collected during 2019 along with on-site meteorological parameters. Annual average PM2.5 concentrations were 67 ± 46 µg m-3, 54 ± 47 µg m-3, and 30 ± 24 µg m-3 at Mesra, Bhopal, and Mysuru, respectively. PM2.5 concentrations exceeded the annual mean (40 µg m-3) recommended by the National Ambient Air Quality Standards (NAAQS) at Mesra and Bhopal. WSIIs existed in PM2.5 mass at Mesra (50.5%), Bhopal (39.6%), and Mysuru (29.2%). SO42-, NO3-, and NH4+ (SNA) were major secondary inorganic ions in total WSIIs, with an annual average of 88.4% in Mesra and 82.0% in Bhopal 78.4% in Mysuru. Low NO3-/SO42- ratios annually at Mesra (0.41), Bhopal (0.44), and Mysuru (0.24) indicated that stationary sources dominated vehicular emissions (1.0). Aerosol acidity varied from region to region and season to season depending on the presence of NH4+, the dominant counter-ion to neutralize anions. Aerosols were near-neutral or alkaline at all three sites, except during the pre-monsoon season in Mysuru. An assessment of neutralization pathways for major anions [SO42- + NO3-] suggests that they mainly existed as sulfate and nitrate salts such as ammonium sulfate ((NH4)2SO4) and ammonium bisulfate (NH4HSO4) in conjunction with ammonium nitrate (NH4NO3).


Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/análise , Água/química , Poluentes Atmosféricos/análise , Íons/análise , Ânions , Estações do Ano , Aerossóis/análise , Monitoramento Ambiental
12.
Huan Jing Ke Xue ; 44(2): 602-610, 2023 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-36775585

RESUMO

In order to explore the pollution characteristics, seasonal variations, and sources of water-soluble inorganic ions (WSIIs) in PM2.5 in Zhengzhou, PM2.5 samples were seasonally collected from December 2020 to October 2021; then, combining gaseous pollutants (SO2, NO2, and O3) and meteorological parameters (temperature and relative humidity), nine WSIIs (NO3-, NH4+, SO42-, Ca2+, K+, Na+, Mg2+, F-, and Cl-) were analyzed. The results showed that the annual average concentration of the total water-soluble ions (TWSIIs) was (39.34±21.56) µg·m-3for the four seasons, showing obvious seasonal variations with the maximum value in winter and the minimum value in summer. Annual PM2.5 was slightly alkaline in Zhengzhou, and NH4+ most likely existed in the form of NH4NO3 and (NH4)2SO4. The average sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) were 0.35 and 0.19, respectively, indicating that SO42- and NO3- mainly derived from secondary formation. The main potential source regions of WSIIs obtained by the concentration weight trajectory (CWT) model showed temporal and spatial variations. The significant sources of WSIIs based on principal component analysis (PCA) were dust, secondary generation, combustion, and industrial activities, which were obviously influenced by wind direction and speed in Zhengzhou.

13.
Mar Pollut Bull ; 187: 114608, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36652864

RESUMO

Total of 172 total suspended particulate (TSP) samples and its chemical compositions were collected and analyzed from January to December 2010 in Pengjia Yu Island, an open region in East China Sea (ECS). Despite the predominance of sea-salt major ions (Na+, Cl-), the presence of non-sea-salt SO42- (nss-SO42-) and NO3- as well as combustion-derived trace metals clearly establishes the impact of anthropogenic sources over ECS. The annual contributions of coal, heavy-fuel oil and traffic to the measured chemical species were 21.0 %, 15.0 % and 15.5 %, respectively. Especially in spring, the contributions of crustal minerals to measured chemical species during dust period (33.6 %) were higher than that (13.2 %) during non-dust period. The calculated annual average dry deposition fluxes for trace metals and total inorganic nitrogen were 246.1 ± 345.8 µg/m2/d and 2950.4 ± 2245.0 µg/m2/d, suggesting that atmospheric deposition is an important source of nutrient elements for the south of ECS.


Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/análise , Poluentes Atmosféricos/análise , Estações do Ano , Poeira/análise , China , Íons/análise , Minerais , Carvão Mineral/análise , Monitoramento Ambiental , Aerossóis/análise
14.
Huan Jing Ke Xue ; 43(11): 5009-5017, 2022 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-36437073

RESUMO

The simultaneous observation and analysis of atmospheric particles on a regional scale is an important approach to developing control strategies for air pollution. To study the spatial distribution characteristics of particulate matter and water-soluble inorganic ions in the Ili Valley Urban agglomeration, PM2.5 and PM10 samples were synchronously collected from July 19 to July 29, 2021 in Yining City and the surrounding three counties, and then nine types of water-soluble inorganic ions (WSIIs) were analyzed. The spatial distribution characteristics, existence form of WSIIs, and influencing factors were discussed in depth. The results showed that the average ρ(PM2.5) and ρ(PM10) in the Ili River Valley urban agglomeration in summer were 23 µg·m-3 and 59 µg·m-3, respectively. The emission of local industrial and mobile sources in Yining City was higher than that of the surrounding three counties, resulting in the highest ρ(PM2.5) in the region (25 µg·m-3). Due to the influence of dust sources and topography, the ρ(PM10) in Yining county was the highest in the region (63 µg·m-3). Huocheng county is located upwind of the region, and these favorable diffusion conditions resulted in the lowest ρ(PM2.5) and ρ(PM10) (20 µg·m-3 and 49 µg·m-3, respectively). The concentrations of WSIIs in PM2.5 and PM10 ranged from 28.2%-29.9% and 16.0%-20.2%, respectively. The four main ions (SO42-, NO3-, NH4+, and Ca2+) accounted for approximately 90% of WSIIs mass concentrations. The concentration order of the four main ions in PM2.5 was SO42->Ca2+>NH4+>NO3- and SO42->Ca2+>NO3->NH4+ in PM10. The results of correlation analysis showed that the similar SO42- concentrations in the four cities were mainly caused by regional transport. Ca2+ was the highest-concentration ion in PM10 of Yining City and Qapqal Xibe Autonomous county, and the proportion of Ca2+ was significantly higher than that in most cities in China, which reflected that the cities in the core area of the Ili Valley were greatly affected by the dust sources. The ratios of n(NO3-)/n(SO42-) in PM2.5 and PM10 were 0.78 and 0.76, respectively, indicating that the influence of stationary sources was greater than that of mobile sources. The ratio of n(NO3-)/n(SO42-) in Yining City>Huocheng county>Yining county>Qapqal Xibe Autonomous county, which was consistent with the motor vehicle populations of the four cities, reflecting that Yining City was affected by motor vehicle sources more than the surrounding three counties. The secondary components mainly existed in the form of (NH4)2SO4, NH4HSO4, and NH4NO3. There was excess ammonia after the reaction between NH4+ and SO42- in each city. NH4NO3 mainly existed in Yining City, which was mainly related to high NO2 in Yining City. The NOR of the four cities were 0.03-0.10 and 0.03-0.16 in PM2.5 and PM10, respectively, and the secondary transformation of NO3- was weak due to the influence of high temperatures in summer. The SOR were 0.21-0.41 and 0.23-0.44, respectively. The SOR of Qapqal Xibe Autonomous county was the highest due to the relatively high humidity, whereas the SOR of Huocheng county was higher than that of the three sites in Yining City due to the influence of regional transportation. The formation mechanisms showed that SO42- in Qapqal Xibe Autonomous county and Yining City were mainly produced by the heterogeneous reaction, and in Yining county it was mainly formed via the homogeneous reaction. However, the formation mechanism in Huocheng county was complex and was affected by both homogeneous and heterogeneous reactions.


Assuntos
Poluentes Atmosféricos , Rios , Poluentes Atmosféricos/análise , Água/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Íons/análise , Poeira/análise
15.
Ecotoxicol Environ Saf ; 240: 113679, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35640352

RESUMO

The leaf surfaces of plants are important organs for retaining particulate matter (PM). They can be renewed via washout processes (e.g., rainfall), thereby restoring the ability to retain new PM. Most of the current studies have focused on the mechanisms of rainfall characteristics on the renewal of PM on plant leaf surfaces and interspecific differences, while the effects of different leaf heights on PM renewal within the same plant canopy have been less studied. In addition, the dynamics of PM during rainfall, especially the water-soluble ions (WSII) component, are often neglected. This research used Salix matsudana, a tree species with a significant natural height difference between the upper and lower leaves of its canopy, as its study object. Using artificially simulated rainfall, the rainfall intensity was quantified as low, medium, and high (i.e., 30 mm/h, 45 mm/h, and 60 mm/h), and the rainfall process was divided into three sub-stages: pre (0-20 min), mid (20-40 min), and post (40-60 min). The experimental setup was divided into upper (2 m) and lower leaves (1 m) according to the height of the canopy. The concentration and distribution of water-insoluble PM (WIPM) were obtained using the elution weighing method, whereas WSII were obtained using ion chromatography. The dynamics of WIPM and WSII during the removal of PM from the leaf surface by rainfall were studied at different canopy heights, and the results showed that the composition and proportions of WIPM and WSII varied at different stages of the rainfall process and that the concentrations of WIPM and WSII removed from the upper leaves differed slightly from those of the lower leaves. In particular, the concentrations of WIPM and WSII removed from the lower leaves were greater than those from the upper leaves at high rainfall intensity (60 mm/h), showing consistency between rainfall removal of PM from the leaf surface at different heights within the plant canopy and deposition of PM, while at low (30 mm/h) and medium (45 mm/h) rainfall intensities the performance was slightly different.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Íons/análise , Material Particulado/análise , Folhas de Planta/química , Plantas , Árvores/química , Água/análise
16.
Environ Pollut ; 305: 119212, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35395350

RESUMO

Proteinaceous matter is an important component of PM2.5, which can cause adverse health effects and also influence the air quality and climate change. However, there is little attention to high time-resolved variations and potential role of aerosol proteins during haze pollution periods. In this study, PM2.5 samples were first collected by a medium flow sampler in autumn and winter in Xi'an, China. Then three high time-resolved monitoring campaigns during haze pollution periods were conducted to determine the evolving characteristics of total protein concentration and explore the interactive relationship between protein and other chemical compositions. The results showed that the average protein concentration in PM2.5 in Xi'an (5.46 ± 3.32 µg m-3) was higher than those in most cities of China, and varied by seasons and air pollution conditions. In particular, the protein concentration in PM2.5 increased with the increase of air quality index (AQI). The continuous variations of aerosol proteins during the haze pollution periods further showed that PM2.5, atmospheric humidity and long-distance air mass transport exerted the significant impacts on the protein components in aerosols. Based on the present observation, it is suggested that aerosol proteins might affect the generation of secondary aerosols under haze weather conditions. The present results may provide a new possible insight into the variations and the role of aerosol proteinaceous matter during the formation and development of haze pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Monitoramento Ambiental/métodos , Material Particulado/análise , Estações do Ano
17.
Chemosphere ; 287(Pt 4): 132309, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34601373

RESUMO

This study aims to determine the inorganic and carbonaceous components depending on the seasonal variation and size distribution of urban air particles in Kuala Lumpur. Different fractions of particulate matter (PM) were measured using a Nanosampler from 17 February 2017 until 27 November 2017. The water-soluble inorganic ions (WSIIs) and carbonaceous components in all samples were analysed using ion chromatography and carbon analyser thermal/optical reflectance, respectively. Total PM concentration reached its peak during the southwest (SW) season (70.99 ± 6.04 µg/m3), and the greatest accumulation were observed at PM0.5-1.0 (22%-30%, 9.55 ± 1.03 µg/m3) and PM2.5-10 (22%-25%, 10.34 ± 0.81 µg/m3). SO42-, NO3- and NH4+ were major contributors of WSIIs, and their formation was favoured mainly during SW season (80.5% of total ions). PM0.5-1.0 and PM2.5-10 exhibited the highest percentage of WSII size distribution, accounted for 28.4% and 13.5% of the total mass, respectively. The average contribution of carbonaceous species (OC + EC) to total carbonaceous concentrations were higher in PM0.5-1.0 (35.2%) and PM2.5-10 (26.6%). Ultrafine particles (PM<0.1) consistently indicated that the sources were from vehicle emission while the SW season was constantly dominated by biomass burning sources. Using the positive matrix factorization (PMF) model, secondary inorganic aerosol and biomass burning (30.3%) was known as a significant source of overall PM. As a conclusion, ratio and source apportionment indicate the mixture of biomass burning, secondary inorganic aerosols and motor vehicle contributed to the size-segregated PM and seasonal variation of inorganic and carbonaceous components of urban air particles.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Malásia , Material Particulado/análise , Estações do Ano , Emissões de Veículos/análise
18.
Environ Res ; 204(Pt B): 112064, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34534519

RESUMO

This study investigated the physicochemical properties of the particles in a typical commercial laying hen barn in Southeast China. Mass concentrations and size distributions of the particulate matter (PM) and the key components (incl. organic carbon (OC), element carbon (EC), and the water-soluble inorganic ions (WSIIs)) were analyzed. The result shows that the mass concentrations of PM accumulated along with the airflow inside the house, with the total mass of the sampling particles increasing from 843.66 ± 160.74 µg/m3 at the center of the house to 1264.93 ± 285.70 µg/m3 at the place close to exhaust fans. The particles with the aerodynamic equivalent diameter, Dp > 9 µm, coarse particles (2.1 µm < Dp ≤ 9 µm), fine particles (Dp ≤ 2.1 µm) accounted for around 50%, 40%, and 10% of the total mass of the sampling particles, respectively. Mass closure analysis shows secondary inorganic ions (NH4+, SO42- and NO3-) were abundant in the fine-mode fraction and OC accounted for more than 40% of the coarse particles. Size distribution analysis shows that the three secondary inorganic ions were bimodally distributed, and the rest tested components were unimodally distributed. The ratios of OC/EC in fine particles were smaller than those in the coarse particles. The equivalent concentration of WSIIs indicated that fine particles were slightly acidic, and the large size particles were slightly alkaline. Knowledge gained from this study will lead to a better understanding of physicochemical properties, sources, and formation of PM.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Animais , Galinhas , China , Monitoramento Ambiental , Feminino , Tamanho da Partícula , Material Particulado/análise , Estações do Ano
19.
Huan Jing Ke Xue ; 42(9): 4095-4103, 2021 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-34414708

RESUMO

This study used sampling analysis and a CAMx-PSAT coupling model to analyze the components, transmission, and source apportionment of PM2.5 in Beijing and Tangshan in January 2018. The results showed that in January 2018, water-soluble inorganic ions (WSⅡs) accounted for 49.59% and 39.13% of PM2.5 mass concentrations in Beijing and Tangshan, respectively. The ratios of NO3- to SO42- were 2.02 and 1.51, respectively, indicating that pollution in both cities was dominated by mobile sources. In Beijing and Tangshan, PM2.5 accounted for 48.74% and 30.67% of transmission, respectively. Regional transmissions were mainly contributed by neighboring areas, northwest masses, and southwest masses. However, the contribution of the southwest passage to pollution in the respective cities increased by 9.65% and 15.02% during pollution periods. The principal sources contributing to PM2.5 pollution in Beijing were mobile and dust sources. Secondary ions were more obviously affected by regional contributions, mobile and industrial sources had the most significant effect in Tangshan, and most particulate matter and sulfate were contributed by local emissions. From 2013 to 2018, the dominant component of WSⅡs changed from sulfate to nitrate while the main pollution sources changed from coal-fired and industrial sources to mobile and dust sources. Meanwhile, in January 2018, the meteorological factors were more favorable for pollution mitigation than in 2013. The meteorological impact of secondary ions is closely related to the lower relative humidity in 2018, compared to 2013.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Pequim , Cidades , Monitoramento Ambiental , Nitratos , Material Particulado/análise
20.
Environ Sci Pollut Res Int ; 28(24): 31207-31217, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33598838

RESUMO

A long-term measurement on rainfall was conducted in urban Xi'an, China, from 2009 to 2016. The seasonal and annual variations of major inorganic components and their chemical properties in the rainfall were studied. The annual rainfall ranged from 165.3 to 916.3 mm. The pH value of the rainfall ranged from 6.36 to 7.19, with an average value of 6.70. The electric conductivity (EC) in the rainfall was in a range of 55.91 to 227.44 µS·cm-1. Ammonium (NH4+), calcium (Ca2+), nitrate (NO3-), and sulfate (SO42-) were the four major components, accounting for 88.5% of the total quantified inorganic ion concentration. Neutralization factors were determined for Ca2+ (1.03), NH4+ (0.57), Mg2+ (0.10), Na+ (0.06), and K+ (0.04). The high abundance of NH4+ that formed from its precursor of ammonia gas (NH3) suggested the contribution of agricultural fertilization. Ca2+ in the rainfall was mainly from natural sources such as soil dust, while anions of NO3- and SO42- originated from fossil fuel combustion. Source apportionment was conducted with positive matrix factorization (PMF) which identified that secondary inorganic formation, crustal dust, coal combustion, and biomass burning are the contributors to the rainfall. In between, secondary inorganic formation was the largest contributor, which accounted for 27.8-58.1% of the total sources, followed by crustal dust of 0.4-42.6%. The results of this long-term study demonstrated the decreasing trends of contributions from coal combustion and biomass burning under a series of air pollution control measures implemented by the government. However, continuous urbanization and development of the city caused substantial increases of the construction activities, inducing more crustal dusts to the environment in urban Xi'an.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Cidades , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano , Emissões de Veículos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA