Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 885
Filtrar
1.
Methods Mol Biol ; 2834: 293-301, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39312171

RESUMO

The development of novel drug candidates is a current challenge in pharmacology where therapeutic benefits must exceed side effects. Toxicology testing is therefore a fundamental step in drug discovery research. Herein, we describe the first line of toxicology testing program, consisting in cell-based high-throughput screening assays, which have the advantage of being easy, rapid, cheap, and reproducible while providing quantitative information. We illustrate MTT and Crystal Violet assays, two common colorimetric tests able to assess both cytostatic and cytotoxic effects, respectively, of a drug candidate. MTT assay allows evaluation of cellular metabolic activity, by which cell viability can be inferred; Crystal Violet staining is directly correlated with attached viable cells, thus allowing direct assessment of cell survival and death. Therefore, combination of the two methodologies represents a useful tool for predicting drug sensitivity and efficacy, the first milestones in pre-clinical toxicology workflow.


Assuntos
Sobrevivência Celular , Avaliação Pré-Clínica de Medicamentos , Violeta Genciana , Ensaios de Triagem em Larga Escala , Sais de Tetrazólio , Testes de Toxicidade , Testes de Toxicidade/métodos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Avaliação Pré-Clínica de Medicamentos/métodos , Sais de Tetrazólio/química , Ensaios de Triagem em Larga Escala/métodos , Animais , Colorimetria/métodos , Tiazóis/toxicidade
2.
Biometals ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356411

RESUMO

Iron-chelating siderophores such as aerobactin and petrobactin are produced by marine bacteria to sequester iron under low iron stress. Those that contain a citrate moiety undergo light-catalyzed ligand-to-metal charge transfer, inducing decarboxylation and formation of photoproducts. In this work, we employed density functional theory to obtain the optimized geometries and determine the relative energies and geometric parameters of different configurations of Fe(III)-coordinated aerobactin, petrobactin, and their photoproducts. Time-dependent density functional theory was then used to compute the UV-Vis absorption spectra of these species, and the comparison against experimental spectra further elucidated the structural configurations most likely to be adopted by these compounds. Frequency calculations provided Fe-O force constants on the same order as other siderophores. The relative energies and predicted spectra support the cis-cis C-fac configuration for ferric aerobactin and the cis-trans C-mer configuration for its photoproduct, while only mild support is found for specific configurations of the ferric petrobactin structures (meta-mer and meta-fac for the precursor, cis-cis para-fac for the photoproduct). The predicted ferric petrobactin spectra are found to be fairly insensitive to the configuration of the ferric complex.

3.
Mikrochim Acta ; 191(10): 635, 2024 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-39347992

RESUMO

The 3-phenoxybenzoic acid (3-PBA) residues in environment are posing a significant challenge to our daily lives. To establish a more sensitive and rapid detection method, anti-3-PBA nanobodies (Nbs) were immobilized onto magnetosomes (bacterial magnetic nanoparticles, termed as BMPs), forming a robust BMP-Nb complex. The 3-PBA derivative was labeled with horseradish peroxidase (HRP) and further associated with gold nanoparticles (AuNPs) to create a highly sensitive probe (3-PBA-HRP-AuNP). An innovative immunoassay that combined BMP-Nb complex with 3-PBA-HRP-AuNP was developed for determinaton of 3-PBA. This method enabled the determination of 3-PBA with a half-maximum signal inhibition concentration (IC50) of 1.03 ng/mL, which was more sensitive than that of using 3-PBA-HRP as tracer with an IC50 of 2.18 ng/mL. The reliability of the assay was evidenced by the quantitative recovery of 3-PBA from water and soil samples ranging from 76.85 to 95.64%. The 3-PBA residues determined by this assay in actual water samples were between < LOD and 2.54 ng/mL and were between < LOD and 11.25 ng/g (dw) in real soils, respectively, which agreed well with those of liquid chromatography mass spectrometry (LC-MS). Collectively, the BMP-Nb and 3-PBA-HRP-AuNP-based immunoassay provides a powerful tool for the precise detection of 3-PBA residues in environment matrices, reinforcing our capacity to monitor and mitigate potential ecological and health impacts associated with this prevalent pollutant.


Assuntos
Benzoatos , Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Benzoatos/química , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Limite de Detecção , Imunoensaio/métodos , Peroxidase do Rábano Silvestre/química , Separação Imunomagnética/métodos , Anticorpos Imobilizados/imunologia , Poluentes Químicos da Água/análise
4.
New Phytol ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294895

RESUMO

Certain species in the Brassicaceae family exhibit high photosynthesis rates, potentially providing a valuable route toward improving agricultural productivity. However, factors contributing to their high photosynthesis rates are still unknown. We compared Hirschfeldia incana, Brassica nigra, Brassica rapa and Arabidopsis thaliana, grown under two contrasting light intensities. Hirschfeldia incana matched B. nigra and B. rapa in achieving very high photosynthesis rates under high growth-light condition, outperforming A. thaliana. Photosynthesis was relatively more limited by maximum photosynthesis capacity in H. incana and B. rapa and by mesophyll conductance in A. thaliana and B. nigra. Leaf traits such as greater exposed mesophyll specific surface enabled by thicker leaf or high-density small palisade cells contributed to the variation in mesophyll conductance among the species. The species exhibited contrasting leaf construction strategies and acclimation responses to low light intensity. High-light plants distributed Chl deeper in leaf tissue, ensuring even distribution of photosynthesis capacity, unlike low-light plants. Leaf anatomy of H. incana, B. nigra and B. rapa facilitated effective CO2 diffusion, efficient light use and provided ample volume for their high maximum photosynthetic capacity, indicating that a combination of adaptations is required to increase CO2-assimilation rates in plants.

5.
ACS Appl Mater Interfaces ; 16(37): 48854-48869, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39231951

RESUMO

The optoelectronic properties of polythiophene (PT) graft block copolymers are most important for fabricating optoelectronic devices, and recently, we reported a single-pot atom-transfer radical polymerization (ATRP) technique for preparation of PT graft block copolymers between thermoresponsive poly(diethylene glycol methyl ether methacrylate) (PDEGMEM) and pH-responsive poly(dimethyl amino ethyl methacrylate) (PDMAEMA) from the PT backbone via the "grafting from" strategy with an 11 mol % contamination. A "grafting onto" strategy has been opted to eliminate the contamination from the block copolymer where we synthesized poly(thiophene acetic acid) (P3TAA) followed by the coupling with PDEGMEM-b-PDMAEMA-Cl, PDMAEMA-b-PDEGMEM-Cl, and PDMAEMA-ran-PDEGMEM-Cl copolymers, produced separately by the ATRP technique. The polymers were characterized using 1H NMR, SEC, etc. TEM study exhibits mostly vesicular morphology and optical properties measured using UV-vis and photoluminescence spectroscopy showing pH dependent behavior. dc conductivity values indicate semiconducting nature in the order P2 > P3 > P1. The abrupt hike of P2 (∼80 times) in conductivity at pH 3 from that of previously prepared P2 copolymers formed by the grafting from process is attributed to the absence of ∼11 mol % contamination. Conductivity decreases with increasing pH, due to coiling of the PT backbone in accordance with the blue shifts of λabs peaks. The current (I)-voltage (V) plots exhibit bimodal memory and organic mixed ionic and electronic conductivity. Higher current (3.3 mA for P2, pH 3) and electronic memory occur upon light irradiation than that of dark. Photoswitching property decreases with increase of pH, showing highest photocurrent gain of 8.05 for P2 at pH 3. Photocurrent gain follows the order P2 > P3 > P1 indicating P2 is the best to develop photoswitches in the P-series polymers. Fitting of growth and decay curves suggests that they are a two-stage process: photocurrent raises fast at the on state initially and then at a slower rate and similar at an off state. Impedance spectra suggest charge-transfer resistance and Warburg impedance values follow the order of P1 > P3 > P2, whereas capacitance value follows the opposite order.

6.
Indian J Clin Biochem ; 39(4): 519-528, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39346708

RESUMO

The metachromatic dye dimethylmethylene blue is used to quantify total glycosaminoglycans in urine. Understanding the interaction of dimethylmethylene blue with glycosaminoglycans is pertinent to optimize the assay procedure depending on the type of sample and interpret the findings meaningfully. The present spectrophotometric study determined the optimum sample-to-dye ratio, primary wavelength for measuring absorbance, after studying the interaction of two different chondroitin sulfate species (unfractionated chondroitin sulfate from bovine trachea vs. chondroitin sulfate oligosaccharide with degree of polymerization of 12, from shark cartilage) with dimethylmethylene blue. Respective dye-glycosaminoglycan complexes of the two chondroitin sulfate species showed significantly different absorbance maxima, while that of the chondroitin sulfate oligosaccharide was closer to absorbance maxima of urine glycosaminoglycans. The chondroitin sulfate oligosaccharide showed relatively less stable absorbance readings at higher concentrations in the reaction volume. Furthermore, the chondroitin sulfate reference materials exhibited differences in the linearity of standard curves and hence parallelism. Based on the findings, the method was semiautomated on Beckman Coulter D✕C 700 biochemistry analyzer using the chondroitin sulfate oligosaccharide as the standard. The urine glycosaminoglycan concentration obtained was slightly lower but reasonably close to that obtained through the External Quality Assurance (EQA) scheme administrated by ERNDIM (European Research Network, Inherited Disorders of Metabolism). The findings of the present study can be used to guide the dimethylmethylene blue assay optimization, redevelopment efforts, and harmonization across laboratories. The chondroitin sulfate oligosaccharide is better than the unfractionated chondroitin sulfate from bovine trachea due to its absorbance maxima closer to urine glycosaminoglycans. On the other hand, unfractionated chondroitin sulfate exhibit poor parallelism leading to falsely lower urine glycosaminoglycan levels.

7.
Nanotechnology ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39321821

RESUMO

Faormamadinium (FA) based perovskites have been proposed to replace the methylammonium lead tri-iodide (MAPbI3) perovskite as the light absorbing layer of photovoltaic cells owing to their photo-active and chemically stable properties. However, the crystal phase transition from the photo-active -FAPbI3 to the non-perovksite -FAPbI3 still occurs in un-doped FAPbI3 films owing to the existence of crack defects, which degrads the photovoltaic responses. To investigate the crack ratio (CR)-dependent structure and excitonic characteristics of the polycrystalline FAPbI3 thin films deposited on the carboxylic acid functionalized ITO/glass substrates, various spectra and images were measured and analyzed, which can be utilized to make sense of the different devices responses of the resultant perovskite based photovoltaic cells. Our experimental results show that the there is a trade-off between the formations of surface defects and trapped iodide-mediated defects, thereby resulting in an optimal crack density or CR of the un-doped -FAPbI3 active layer in the range from 4.86% to 9.27%. The decrease in the CR (tensile stress) results in the compressive lattice and thereby trapping the iodides near the PbI6 octahedra in the bottom region of the FAPbI3 perovskite films. When the CR of the FAPbI3 film is 8.47%, the open-circuit voltage (short-circuit current density) of the resultant photovoltaic cells significantly increased from 0.773 V (16.62 mA/cm2) to 0.945 V (18.20 mA/cm2) after 3 days. Our findings help understanding the photovoltaic responses of the FAPbI3 perovskite based photovoltaic cells on the different days.

8.
Antibiotics (Basel) ; 13(9)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39335025

RESUMO

It is increasingly important to rapidly receive information on the antimicrobial susceptibility of bacteria due to the rise in antimicrobial resistance worldwide. However, traditional phenotypic methods are time-consuming. Thus, the objective of this study was to develop a rapid assay that can detect antibiotic-resistant bacterial isolates phenotypically in less than 2 h. The microplate assay used in this study is based on absorbance measurements of pure bacterial isolates grown in liquid media with and without antibiotics. Absorbance was measured at the beginning of the assay and after 90 min of incubation at 37 °C. Susceptibility was calculated for bacterial isolates that, in the absence of antibiotics, exhibited more than a 50% growth increase by comparing the absorbance value of the culture in the presence of an antibiotic at 90 min with its initial value. Here, we show that it is possible to phenotypically screen the antibiotic susceptibility of Enterobacterales and Acinetobacter spp. isolates to three different antibiotics in 90 min. The test demonstrated an accuracy of 98.8%, sensitivity of 97.6%, and specificity of 99.6%. The false susceptibility rates were 0.2% and false resistance rates were 1.0%. This rapid and simple absorbance test has proven suitable for the screening of antibiotic susceptibility for a large number of strains with high accuracy and sensitivity. This method can be performed without specialized and costly materials and/or equipment, which makes it highly suitable for laboratories with limited resources.

9.
Sci Total Environ ; : 176600, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39349194

RESUMO

In this study we investigate the compositional changes in dissolved organic matter (DOM) fractions across diverse water sources and treatment processes in three Drinking Water Treatment Plants (DWTPs). High-Performance Size Exclusion Chromatography coupled with Diode Array Detection and Organic Carbon Detection (HPSEC-DAD-OCD) was employed to characterize DOM fractions, offering insights into treatment optimization. We examine bulk water parameters, DOM distributions, and the efficiency of treatment trains in reducing DOM fractions. Results reveal distinct DOM composition profiles in river-sourced versus reservoir-sourced waters, with implications for treatment processes. Coagulation, Granular Activated Carbon (GAC) adsorption, Electrodialysis Reversal (EDR), and Ion Exchange (IEX) were evaluated for their efficacy in removing DOM fractions. The analysis highlights the effectiveness of coagulation in reducing high molecular weight (MW) fractions, while GAC filtration targets lower MW fractions. EDR shows significant removal of anions and aromatics, while IEX demonstrates high removal efficiencies for removing humic substances (HS) fractions. Spectroscopic analysis further elucidates changes HS sub-fractions and their role in disinfection by-products (DBP) formation. To quantitatively assess the relationship between HS sub-fractions and trihalomethane formation potentials (THMFP), Pearson correlation analysis were conducted, unveiling robust associations between HS sub-fractions and THM-FP that can be predicted by surrogate parameters such as A254.

10.
Biomolecules ; 14(9)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39334815

RESUMO

The growing demand for effective alternatives to red blood cells (RBCs) has spurred significant research into hemoglobin (Hb)-based oxygen carriers (HBOCs). Accurate characterization of HBOCs-including Hb content, encapsulation efficiency, and yield-is crucial for ensuring effective oxygen delivery, economic viability, and the prevention of adverse effects caused by free Hb. However, the choice of quantification methods for HBOCs is often driven more by tradition than by a thorough assessment of available options. This study meticulously compares various UV-vis spectroscopy-based methods for Hb quantification, focusing on their efficacy in measuring Hb extracted from bovine RBCs across different concentration levels. The findings identify the sodium lauryl sulfate Hb method as the preferred choice due to its specificity, ease of use, cost-effectiveness, and safety, particularly when compared to cyanmethemoglobin-based methods. Additionally, the study discusses the suitability of these methods for HBOC characterization, emphasizing the importance of considering carrier components and potential interferences by analyzing the absorbance spectrum before selecting a method. Overall, this study provides valuable insights into the selection of accurate and reliable Hb quantification methods, which are essential for rigorous HBOC characterization and advancements in medical research.


Assuntos
Eritrócitos , Hemoglobinas , Espectrofotometria Ultravioleta , Hemoglobinas/química , Hemoglobinas/análise , Bovinos , Animais , Espectrofotometria Ultravioleta/métodos , Eritrócitos/química , Eritrócitos/metabolismo , Dodecilsulfato de Sódio/química , Substitutos Sanguíneos/química
11.
J Clin Med ; 13(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39274342

RESUMO

Background: Cochlear implant (CI) electrode insertion can change the mechanical state of the ear whereby wideband tympanometry absorbance (WBTA) may serve as a sensitive tool to monitor these mechanical changes of the peripheral auditory pathway after CI surgery. In WBTA, the amount of acoustic energy reflected by the tympanic membrane is assessed over a wide frequency range from 226 Hz to 8000 Hz. The objective of this study was to monitor changes in WBTA in CI recipients before and after surgery. Methods: Following otoscopy, WBTA measurements were conducted twice in both ears of 38 standard CI recipients before and in the range of 4 to 15 weeks after CI implantation. Changes from pre- to postoperative absorbance patterns were compared for the implanted as well as the contralateral control ear for six different frequencies (500 Hz, 750 Hz, 1000 Hz, 2000 Hz, 3000 Hz, 4000 Hz). Furthermore, the influence of the time point of the measurement, surgical access, electrode type, sex and side of the implantation were assessed for the implanted and the control ear in a linear mixed model. Results: A significant decrease in WBTA could be observed in the implanted ear when compared with the contralateral control ear for 750 Hz (p < 0.01) and 1000 Hz (p < 0.05). The typical two-peak pattern of WBTA measurements was seen in both ears preoperatively but changed to a one-peak pattern in the newly implanted ear. The linear mixed model showed that not only the cochlear implantation in general but also the insertion through the round window compared to the cochleostomy leads to a decreased absorbance at 750 and 1000 Hz. Conclusions: With WBTA, we were able to detect mechanical changes of the acoustical pathway after CI surgery. The implantation of a CI led to decreased absorbance in the lower frequencies and the two-peak pattern was shifted to a one-peak pattern. The result of the linear mixed model indicates that WBTA can detect mechanical changes due to cochlear implantation not only in the middle ear but also in the inner ear.

12.
ACS Appl Mater Interfaces ; 16(37): 49249-49261, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39235429

RESUMO

Bismuth vanadate (BVO) having suitable band edges is one of the effective photocatalysts for water oxidation, which is the rate-determining step in the water splitting process. Incorporating cocatalysts can reduce activation energy, create hole sinks, and improve photocatalytic ability of BVO. In this work, the visible light active nickel tellurium oxide (NTO) is used as the cocatalyst on the BVO photoanode to improve photocatalytic properties. Different NTO amounts are deposited on the BVO to balance optical and electrical contributions. Higher visible light absorbance and effective charge cascades are developed in the NTO and BVO composite (NTO/BVO). The highest photocurrent density of 6.05 mA/cm2 at 1.23 V versus reversible hydrogen electrode (VRHE) and the largest applied bias photon-to-current efficiency (ABPE) of 2.13% are achieved for NTO/BVO, while BVO shows a photocurrent density of 4.19 mA/cm2 at 1.23 VRHE and ABPE of 1.54%. Excellent long-term stability under light illumination is obtained for NTO/BVO with photocurrent retention of 91.31% after 10,000 s. The photoelectrochemical catalytic mechanism of NTO/BVO is also proposed based on measured band structures and possible interactions between NTO and BVO. This work has depicted a novel cocatalytic BVO system with a new photocharging material and successfully achieves high photocurrent densities for catalyzing water oxidation.

13.
Diagnostics (Basel) ; 14(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39272671

RESUMO

Fine-needle aspiration biopsy is crucial for modern diagnostics of endoscopic procedures and thus an efficient and reliable method for increasing biopsy yields is urgently needed. In our study, we address the limited availability and high price of the rapid onsite evaluation (ROSE) technique by introducing the technique of near-infrared on-site evaluation (NOSE) consisting of spectral measurement of near-infrared radiation (NIR) transmitted through the evaluated material. For this purpose, we designed a special optical probe consisting of two fibres, of which one is a source fibre and the second is a detector fibre. The distal ends of both fibres are brought together into one bundle which is, with the help of a special extension, applied to a cuvette with an analysed sample at a defined distance from the cuvette bottom and fixed in place. A portion of the NIR radiation received by the detector fibre after it propagates through the sample then depends on the optical and therefore morphological characteristics of the sample. Based on the measured spectral curve, we can calculate the attenuation coefficient curve and subsequently the parameter of the sample richness and the parameter characterising the autofluorescence peak as well. We found that the value of our introduced parameters is in significant relation to sample richness as well as to sample malignity. NOSE evaluation of EBUS/EUSb (endobronchial/oesophageal ultrasound bronchoscopy) specimens can be considered an easy new technique aiming to improve sampling diagnostic accuracy and to diminish costs related to the presence of a cytopathologist and related instrumentation in the endoscopy suite.

14.
Methods Enzymol ; 704: 259-290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39300650

RESUMO

Rieske oxygenases catalyze an exceptionally broad range of discrete types of reactions despite the utilization of a highly conserved quaternary structure and metal cofactor complement. Oxygen activation within this family occurs at a mononuclear FeII site, which is located approximately 12 Å from a one-electron reduced Rieske-type iron-sulfur cluster. Electron transfer from the Rieske cluster to the mononuclear iron site occurs during O2 activation and product formation. A key question is whether all Rieske oxygenase reactions involve the same type of activated oxygen species. This question has been explored using the Rieske oxygenase salicylate 5-hydroxylase, which catalyzes both aromatic hydroxylation of salicylate and aromatic methyl hydroxylation when a methyl substituent is placed in the normal position of aromatic ring hydroxylation. We show here that the combined application of kinetic, biophysical, computational, and isotope effect methods reveals a uniform mechanism for initial O2 activation and substrate attack for both types of reactivity. However, the mechanism diverges during the later phases of the reactions in response to the electronic nature and geometry of the substrates as well as the lifetime of intermediates. Similar factors may be encountered broadly in the Rieske oxygenase family.


Assuntos
Oxigenases de Função Mista , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/química , Cinética , Hidroxilação , Oxigênio/metabolismo , Especificidade por Substrato , Modelos Moleculares , Complexo III da Cadeia de Transporte de Elétrons
15.
Hear Res ; 453: 109108, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39244840

RESUMO

The middle-ear muscle reflex (MEMR) and medial olivocochlear reflex (MOCR) modify peripheral auditory function, which may reduce masking and improve speech-in-noise (SIN) recognition. Previous work and our pilot data suggest that the two reflexes respond differently to static versus dynamic noise elicitors. However, little is known about how the two reflexes work in tandem to contribute to SIN recognition. We hypothesized that SIN recognition would be significantly correlated with the strength of the MEMR and with the strength of the MOCR. Additionally, we hypothesized that SIN recognition would be best when both reflexes were activated. A total of 43 healthy, normal-hearing adults met the inclusion/exclusion criteria (35 females, age range: 19-29 years). MEMR strength was assessed using wideband absorbance. MOCR strength was assessed using transient-evoked otoacoustic emissions. SIN recognition was assessed using a modified version of the QuickSIN. All measurements were made with and without two types of contralateral noise elicitors (steady and pulsed) at two levels (50 and 65 dB SPL). Steady noise was used to primarily elicit the MOCR and pulsed noise was used to elicit both reflexes. Two baseline conditions without a contralateral elicitor were also obtained. Results revealed differences in how the MEMR and MOCR responded to elicitor type and level. Contrary to hypotheses, SIN recognition was not significantly improved in the presence of any contralateral elicitors relative to the baseline conditions. Additionally, there were no significant correlations between MEMR strength and SIN recognition, or between MOCR strength and SIN recognition. MEMR and MOCR strength were significantly correlated for pulsed noise elicitors but not steady noise elicitors. Results suggest no association between SIN recognition and the MEMR or MOCR, at least as measured and analyzed in this study. SIN recognition may have been influenced by factors not accounted for in this study, such as contextual cues, warranting further study.

16.
J Biol Chem ; : 107799, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39305957

RESUMO

Human cytochrome P450 enzymes are membrane-embedded monooxygenases responsible for xenobiotic metabolism, steroidogenesis, fatty acid metabolism, and vitamin metabolism. Their active sites can accommodate diverse small molecules and understanding these interactions is key to decoding enzymatic functionality and designing drugs. The most common method for characterizing small molecule binding is quantifying absorbance changes that typically occur when substrates enter the active site near the heme iron. Traditionally such titrations are monitored by a spectrophotometer, requiring significant manual time, protein, and increasing solvents. This assay was adapted for semi-automated high throughput screening, increasing throughput 50-fold while requiring less protein and keeping solvent concentrations constant. This 384-well assay was validated for both type I and II shifts typically observed for substrates and heme-coordinating inhibitors, respectively. This assay was used to screen a library of ∼100 diverse imidazole-containing compounds which can coordinate with the heme iron if compatible with the overall active site. Three human cytochrome P450 enzymes were screened: drug-metabolizing CYP2A6 and CYP2D6 and sterol-metabolizing CYP8B1. Each bound different sets of imidazole compounds with varying Kd values, providing a unique binding fingerprint. As a final validation, the Kd values were used to generate pharmacophores to compare to experimental structures. Applications for the high-throughput assay include 1) facilitating generation of pharmacophores for enzymes where structures are not available, 2) screening to identify ligands for P450 orphans, 3) screening for inhibitors of P450s drug targets, 4) screening potential new drugs to avoid and/or control P450 metabolism, and 5) efficient validation of computational predictions.

17.
ACS Sens ; 9(9): 4364-4379, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39175278

RESUMO

Breast cancer is a major challenge in the field of oncology, with around 2.3 million cases and around 670,000 deaths globally based on the GLOBOCAN 2022 data. Despite having advanced technologies, breast cancer remains the major type of cancer among women. This review highlights various collagen signatures and the role of different collagen types in breast tumor development, progression, and metastasis, along with the use of photoacoustic spectroscopy to offer insights into future cancer diagnostic applications without the need for surgery or other invasive techniques. Through mapping of the tumor microenvironment and spotlighting key components and their absorption wavelengths, we emphasize the need for extensive preclinical and clinical investigations.


Assuntos
Neoplasias da Mama , Colágeno , Microambiente Tumoral , Humanos , Neoplasias da Mama/patologia , Colágeno/química , Feminino , Técnicas Fotoacústicas/métodos , Animais
18.
Sci Rep ; 14(1): 19657, 2024 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179633

RESUMO

Special attention is given to the pharmacological treatment of combined medication of Carvedilol and hydrochlorothiazide which is the most effective and the most beneficial therapy for hypertensive patients with diabetes and various metabolic comorbidities. This work represents spectrophotometric platform scenarios based on factorized spectrum (FS) using interpoint data difference resolution scenarios (IDDRS) coupled with spectrum subtraction method (SS) for the concurrent quantification of carvedilol (CAR) and hydrochlorothiazide (HCT) when present together in a combination without the need for any initial physical separation steps. This IDD resolution scenario based on manipulating the zero-order spectra (D0) of both drugs in the mixture with various spectral features at different wavelength regions (200-400 nm), region I (220-250 nm), region II (240-300 nm) and region III (270-320 nm) via absorbance resolution (AR) and induced absorbance resolution (IAR) methods coupled with corresponding spectrum subtraction (SS). The calibration curves were established across the linearity ranges of 2.0-12.0 µg/mL at 242.50 nm and 4.0-40.0 µg/mL at 285.5 nm for CAR and 1.0-11.0 µg/mL at 226.10 nm and 2.0-20.0 µg/mL at 270.5 nm for HCT. Moreover, methods' validation was confirmed via ICH guidelines. A Multicenter comparison between sensitivity, specificity in respect resolution sequence were applied using different wavelength regions with various concentration ranges was applied and finally spectral resolution recommendation is issued and cumulative validation score (CVS) is calculated as an indicator in the risk analysis. In quality control laboratories, the studied approaches are applicable for conducting analysis on the mentioned drugs. In addition, the selection of spectrophotometry aligns with the principles of green analytical chemistry, an approach that resonates with the overarching theme of minimizing environmental impact. Via four metric tools named: analytical greenness (AGREE), green analytical procedure index (GAPI), analytical eco-scale, and national environmental method index (NEMI), methods' greenness profile was guaranteed.


Assuntos
Carvedilol , Hidroclorotiazida , Espectrofotometria , Carvedilol/análise , Hidroclorotiazida/análise , Espectrofotometria/métodos , Medição de Risco , Humanos , Anti-Hipertensivos/análise
19.
Chemosphere ; 364: 143047, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39121958

RESUMO

Assessing historical records of DOC concentrations (DOC) in drinking water sources is important for water utilities to understand long-term planning for infrastructure needs. This study investigates 15-20 years of historical data of the Woronora water supply catchment in Australia inclusive of the water filtration plant (WFP), the lake from where the water was drawn for WFP supply, and the two primary river inputs. The DOC at each site ranged from 0.8 mg L-1 to 13.9 mg L-1, with the highest and lowest concentrations observed in Waratah Rivulet. The DOC in the lake and WFP significantly (p < 0.001) increased at annual change rates of 0.192 and 0.180 mg L-1 yr-1. However, Woronora River showed a ∼50% lower rate of DOC increase at 0.096 mg L-1 yr-1 (p < 0.001), while Waratah Rivulet showed no trend (p > 0.05). UV254 also showed increasing trends at Woronora River, Lake Woronora, and Woronora WFP, indicating an increase in aromatic DOC compounds in all three sites. Waratah Rivulet, however, transported more than 60% of the total DOC load into Lake Woronora due to high flow volumes (more than 65% of total annual system flow). Annual DOC load to the lake is positively correlated with annual rainfall (R2 > 0.92; p < 0.001). The higher percentage (>73%) of the samples had SUVA254 greater than 2 L mg -1 m-1 in all four sites indicating a dominance of hydrophobic DOC. The terrestrial plant-derived DOC has increased in Lake Woronora, predominantly influenced by historical rainfall magnitude. The results underscore the importance of considering the impact of increased DOC at the treatment plant intake for the planning and operation of the Woronora water supply system.


Assuntos
Carbono , Água Potável , Monitoramento Ambiental , Lagos , Poluentes Químicos da Água , Abastecimento de Água , Austrália , Água Potável/química , Poluentes Químicos da Água/análise , Lagos/química , Carbono/análise , Abastecimento de Água/estatística & dados numéricos , Rios/química , Purificação da Água/métodos
20.
J Biophotonics ; : e202400079, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39128483

RESUMO

Since both top and bottom illuminations are widely used in infrared transmission measurements, in this paper, we study the effects of different illuminations on the signatures in infrared microspectroscopy. By simulating a series of dielectric samples, we show that their extinction efficiency, Q ext $$ {Q}_{\mathrm{ext}} $$ , remains unchanged when the direction of the incident plane wave is reversed, even though the field distributions both inside and outside of the sample may be dramatically different. We find features in Q ext $$ {Q}_{\mathrm{ext}} $$ that are correlated with whispering gallery modes for one beam direction and correspond to completely different field distributions for the opposite beam direction. In addition, by linking the optical theorem and the reciprocity relation of far-field scattered field, we rigorously prove the invariance of Q ext $$ {Q}_{\mathrm{ext}} $$ for arbitrary dielectric targets under opposite plane-wave illuminations. Furthermore, we show the difference in the apparent absorbance spectrum for opposite beam directions when considering numerical apertures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA