Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
BMC Microbiol ; 24(1): 205, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851713

RESUMO

The Non-tuberculous mycobacterial (NTM) isolates should be distinguished from tuberculosis and identified at the species level for choosing an appropriate treatment plan. In this study, two molecular methods were used to differentiate NTM species, including a new designed High Resolution Melting (HRM) and Multilocus Sequence Analysis (MLSA). Seventy-five mycobacterial isolates were evaluated by sequencing four genes ( MLSA) and a HRM assay specifically targeting atpE was designed to rapidly and accurately identify and differentiate mycobacterium species. Out of 70 NTM isolates, 66 (94.3%), 65 (92.9%), 65 (92.9%) and 64 (91.4%) isolates were identified to the species level by PCR of atpE, tuf, rpoB and dnaK genes. We could identify 100% of the isolates to the species level (14 different species) by MLSA. By using HRM assay, all NTM isolates were identified and classified into eight groups, in addition, Mycobacterium tuberculosis and Nocardia were also detected simultaneously. The MLSA technique was able to differentiate all 14 species of NTM isolates. According to the results, the HRM assay is a rapid and beneficial method for identifying NTM, M. tuberculosis (MTB), and Nocardia isolates without sequencing.


Assuntos
Tipagem de Sequências Multilocus , Humanos , Tipagem de Sequências Multilocus/métodos , Temperatura de Transição , Mycobacterium/genética , Mycobacterium/classificação , Mycobacterium/isolamento & purificação , Proteínas de Bactérias/genética , Micobactérias não Tuberculosas/genética , Micobactérias não Tuberculosas/classificação , Micobactérias não Tuberculosas/isolamento & purificação , DNA Bacteriano/genética , Infecções por Mycobacterium não Tuberculosas/microbiologia , Infecções por Mycobacterium não Tuberculosas/diagnóstico
3.
ACS Nano ; 18(4): 3783-3790, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38236194

RESUMO

Significant advancements in electronic devices and integrated circuits have been facilitated by semiconducting single-walled carbon nanotubes (SWCNTs) sorted by conjugated polymers (CPs). However, the variety of CPs with single-chirality selectivity is limited, and the sorting results are strongly dependent on the chiral distribution of the starting materials. To address this, we develop an iterative strategy to achieve single-chirality SWCNT separation from aqueous to organic systems, based on a multistep tandem extraction technique that allows a gentle and nondestructive separation of surfactants from SWCNTs, ensuring an efficient system transfer. In parallel, we refined the iterative sorting process between CPs. Employing two starting materials with narrow diameter distributions, using three CPs, we successfully sorted out five single-chirality SWCNTs of the (9,5), (8,6), (10,5), (8,7), and (11,3) species in organic systems. This strategy bridges the gap between aqueous and organic separation systems, achieving efficient complementarity between them.

4.
Microbes Infect ; 26(3): 105279, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38128751

RESUMO

Tuberculosis is a contagious bacterial ailment that primarily affects the lungs and is brought on by the bacterium Mycobacterium tuberculosis (MTB). An antimycobacterial medication called bedaquiline (BQ) is specified to treat multidrug-resistant tuberculosis (MDR-TB). Despite its contemporary use in clinical practice, the mutations (D32 A/G/N/V/P) constrain the potential of BQ by causing transitions in the structural conformation of the atpE subunit-c after binding. In this study, we have taken the benzylisoquinoline alkaloids from thalictrum foliolosum due to its antimicrobial activity reported in prior literature. We used an efficient and optimized structure-based strategy to examine the wild type (WT) and mutated protein upon molecule binding. Our results emphasize the drastic decline in BQ binding affinity of mutant and WT atpE subunit-c complexes compared to thalirugidine (top hit) from thalictrum foliolosum. The decrease in BQ binding free energy is due to electrostatic energy because nearly every atom in a macromolecule harbors a partial charge, and molecules taking part in molecular recognition will interact electrostatically. Similarly, the high potential mean force of thalirugidine than BQ in WT and mutant complexes demonstrated the remarkable ability to eradicate mycobacteria efficiently. Furthermore, the Alamar blue cell viability and ATP determination assay were performed to validate the computational outcomes in search of novel antimycobacterial. Upon closer examination of the ATP determination assay, it became apparent that both BQ and thalirugidine showed similar reductions in ATP levels at their respective MICs, presenting a potential common mechanism of action.


Assuntos
Diarilquinolinas , Mycobacterium tuberculosis , Plantas Medicinais , Tuberculose , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose/microbiologia , Mycobacterium tuberculosis/genética , Testes de Sensibilidade Microbiana , Trifosfato de Adenosina
5.
J Biomol Struct Dyn ; : 1-13, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37728541

RESUMO

Clinical resistance against bedaquiline (BDQ) remains intractable to anti-tuberculosis therapies since its introduction to the market over a decade ago. Herein, we investigated the structural and mechanical aspects of BDQ resistance in AtpE, MmpR5, and PepQ. The known target-specific resistant single non-synonymous mutations were refined to high-grade candidates. Thus, 7 (AtpE), 5 (MmpR5), and 1 (PepQ) single nucleotide polymorphisms (SNPs) and one insertion frameshift mutation in MmpR5 were recreated at the molecular level, and these phenotypic models were then directed to stringent dynamics to define time-scaled changes. The AtpE variants destabilized the structure; mainly, L59V, E61D, and I66M were detrimental to the complex fitness, while L74V and L114P boosted the BDQ binding to MmpR5. The first three and last two alterations gave rise to loss- and gain-of-function to AtpE and MmpR5, respectively. Hence, these five mutants are functionally relevant and therapeutically targetable hotspots of BDQ resistance. There were no noticeable changes in PepQ data analysis. The present study revealed that MmpR5 mutations confer BDQ resistance, whereas AtpE and PepQ SNPs display low susceptibility. These results were tallied with the published findings, which testified to the pursued method's reliability and accuracy. We hope these data and inferences could be helpful for the futuristic design of novel TB drugs.Communicated by Ramaswamy H. Sarma.

6.
Int J Mycobacteriol ; 12(2): 122-128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37338471

RESUMO

Background: The atpE gene is a target for bedaquiline (Bdq)-activating drug action and mutations in the gene are fixed to cause resistance. However, changes in the amino acid of ATPase have been little reported from a clinical setting since it was first used in 2015 in Indonesia. This study aims to observe the sequence of nucleotide and amino acid from rifampicin-resistant (RR) pulmonary tuberculosis (TB) patients, both new and relapse cases treated with Bdq. Methods: This is an observational descriptive study performed in the referral hospital Dr Soetomo, Indonesia, at August 2022-November 2022. We performed Sanger sequencing and comparison of the atpE gene from the patient's sputum from August to November 2022 to wild-type Mycobacterium tuberculosis H37Rv and species of mycobacteria using BioEdit version 7.2 and BLAST NCBI software. We also conducted an epidemiological study on patients' characteristics. This study uses a descriptive statistic to show the percentage of data. Results: The total of 12 M. tuberculosis isolates showed that the atpE gene sequence was 100% similar to the wild-type M. tuberculosis H37Rv. No single-nucleotide polymorphisms or mutations were found, and no change in the amino acid structure at position 28 (Asp), 61 (Glu), 63 (Ala), and 66 (Ile). The percentage identity of atpE to M. tuberculosis H37Rv and M. tuberculosis complex was 99%-100%, while the similarity with the other mycobacteria species other than TB (Mycobacterium avium complex, Mycobacterium abscessus, and Mycobacterium lepraemurium) was 88%-91%. Conclusions: This study revealed M. tuberculosis -atpE gene sequence profile of RR-TB patients had no mutations, as the specific gene region, and no change in the amino acid structure. Therefore, Bdq can be continually trusted as an effective anti-tubercular drug in RR-TB patients.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Pulmonar , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Indonésia , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Nucleotídeos/farmacologia , Testes de Sensibilidade Microbiana
7.
Antimicrob Agents Chemother ; 67(7): e0153222, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37255473

RESUMO

Bedaquiline (BDQ) is an effective drug for the treatment of drug-resistant tuberculosis. Mutations in atpE, which encodes the target of BDQ, are associated with large increases in MICs. Mutations in Rv0678 that derepress the transcription of the MmpL5-MmpS5 efflux transporter are associated with smaller increases in MICs. However, Rv0678 mutations are the most common mutations that are associated with BDQ resistance in clinical isolates, and they also confer cross-resistance to clofazimine (CFZ). To investigate the mechanism of BDQ resistance and the correlation between Rv0678 mutations and target-based atpE mutations, M. tuberculosis strains were exposed to different concentrations of BDQ or CFZ to select Rv0678 mutations and atpE mutations. Gene overexpression strains were constructed to illustrate the roles of MmpL5 and MmpS5. A quantitative proteome analysis was performed to compare the BDQ-resistant mutants to the isogenic strain H37Rv. Here, we report that the Rv0678 mutations were more readily selected than were the atpE mutations at low concentrations of BDQ or CFZ. The atpE mutations were selected by high concentrations of BDQ exposure. The overexpression of both mmpL5 and mmpS5 reduced the susceptibility of Mycobacterium tuberculosis to BDQ and CFZ. Secreted immunogenic proteins and proteins involved in the biosynthesis and transport of phthiocerol dimycocerosates were associated with Rv0678 mutations conferring BDQ resistance in the proteome analysis. In conclusion, exposure to different bedaquiline concentrations resulted in the selection of different mutations. The coexpression of MmpL5 and MmpS5 contributed to drug resistance and upregulated pathogenic proteins in M. tuberculosis, suggesting MmpL5-MmpS5 as a new potential target for antituberculosis drug development. These results warrant further surveillance for the evolution of BDQ resistance during clinical usage.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Proteoma/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Diarilquinolinas/farmacologia , Diarilquinolinas/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/genética , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Mutação/genética , Testes de Sensibilidade Microbiana
8.
Molecules ; 27(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080313

RESUMO

A hyphenated pressurized hot water­aqueous two-phase extraction (PHW-ATPE) method was applied to extract solasodine from Solanum mauritianum (S. mauritianum). A central composite design (CCD) was applied to determine the optimal conditions for the extraction of solasodine. The parameters evaluated included the percentage concentration of salt (NaCl or Na2CO3) and temperature. The fit of the central composite design response surface model for PHW-ATPE to the data generated a model with a good quadratic fit (R2 = 0.901). The statistically significant (p < 0.05) parameters, such as the linear and quadratic effects of the concentration of salt (%) powder, had a significant impact on the extraction of solasodine. The application of multiply charged salts such as Na2CO3 (kosmotrope) was shown to be a comparably better extractant of solasodine than NaCl (chaotrope) due to the salting-out effect. The optimized conditions for extraction of solasodine with NaCl or Na2CO3 were a temperature of 80 °C at a salt concentration of 20%. The maximum extraction of solasodine was 300.79 mg kg−1 and 162.34 mg kg−1 for Na2CO3 and NaCl, respectively.


Assuntos
Alcaloides de Solanáceas , Solanum , Folhas de Planta , Cloreto de Sódio , Água
9.
Mol Biol Rep ; 49(8): 7967-7977, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35717471

RESUMO

BACKGROUND: Differentiating Mycobacterium tuberculosis (MTB) from nontuberculous mycobacteria (NTM) is very important in the treatment process of patients. According to the American Thoracic Society guideline (ATS), NTM clinical isolates should be identified at the species level proper treatment and patient management. This study aimed to identify NTM clinical isolates by evaluationg rpoB, ssrA, tuf, atpE, ku, and dnaK genes, and use multilocus sequence analysis (MLSA) to concatenate the six genes. METHODS: Ninety-six Mycobacterium isolates, including 86 NTM and 10 MTB isolates, from all the patients referred to the certain TB Reference Centres were included. All isolates were evaluated by PCR amplification of rpoB, ssrA, tuf, ku, atpE, and dnaK genes and MLSA. RESULTS: Out of 96 isolates, 91 (94.8%), 87 (90.6%), 72 (75%), 84 (87.5%) and 79 (82.3%) were differentiated to the species level by rpoB, tuf, ssrA, dnaK and atpE genes, respectively. The ku gene was able to identify 69 (80.2%) isolates of the 86 NTM isolates to the species level. We could identify 100% of the isolates to the species level by MLSA. CONCLUSIONS: None of the PCR targets used in this study were able to completely differentiate all species. The MLSA technique used to concatenate the six genes could increase the identification of clinical Mycobacterium isolates and all 16 species were well-differentiated.


Assuntos
Mycobacterium tuberculosis , Micobactérias não Tuberculosas , Humanos , Tipagem de Sequências Multilocus , Mycobacterium tuberculosis/genética , Micobactérias não Tuberculosas/genética , Reação em Cadeia da Polimerase
10.
BMC Microbiol ; 22(1): 154, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35689185

RESUMO

BACKGROUND: Mycobacterium bovis notoriously causes detrimental infections in bovines and humans. In this study, 1500 buffaloes and 2200 cattle were tested by single intradermal comparative cervical tuberculin test and compared with the detection rates of M. bovis isolation, real-time and simplex PCR, and flow Cytometry. RESULTS: The tuberculin test is the reference test in Egypt, the positive rate was 54/3700 (1.5%) composed of 18/1500 (1.2%) buffaloes and 36/2200 (1.6%) cattle which were mandatorily slaughtered under the Egyptian legislation, after postmortem examination the non-visible-lesion proportion was 39/54 (72.2%) which surpassed the visible-lesion rate 15/54 (27.8%) with (p < 0.0001). The samples from each case were pooled into one sample representing the case, and the isolation rate of M. bovis was 25/54 (46.3%). Real-time PCR using atpE was positive for mycobacteria on the genus level in 18/18 (100%) and 5/5 (100%) of tissue samples and isolates, respectively; simplex PCR detected M. bovis in 44/54 (81.5%) and 25/25 (100%) of tissue samples and isolates, respectively. Flow Cytometry evaluation of the CD4+, CD8+, WC1+δγ, and CD2+ cell phenotypes showed increased counts in the tuberculin-positive cases compared with negative cases (p < 0.0001), and these phenotypes in the tuberculin-positive cases increased after antigen stimulation than in the negative cases (p < 0.0001). Detection rates of PCR techniques and flow Cytometry exceeded that of bacterial isolation (p < 0.0001) and exhibited a strong correlation. CONCLUSIONS: The skin test suffers from interference from non-tuberculous mycobacteria able to cause false-positive reactions in cattle and other species. Real-time PCR using atpE, conventional PCR targeting RDs, and flow Cytometry are rapid and accurate methods that correlate with the isolation and can be promising for detection and confirmation of infected live and slaughtered cases.


Assuntos
Mycobacterium bovis , Tuberculose Bovina , Animais , Búfalos/microbiologia , Bovinos , Egito , Citometria de Fluxo , Mycobacterium bovis/genética , Reação em Cadeia da Polimerase em Tempo Real , Tuberculina , Tuberculose Bovina/diagnóstico , Tuberculose Bovina/microbiologia
11.
Emerg Infect Dis ; 28(5): 1062-1064, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35447056

RESUMO

We report the emergence of an atpE mutation in a clinical Mycobacterium tuberculosis strain. Genotypic and phenotypic bedaquiline susceptibility testing displayed variable results over time and ultimately were not predictive of treatment outcome. This observation highlights the limits of current genotypic and phenotypic methods for detection of bedaquiline resistance.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Diarilquinolinas/farmacologia , Diarilquinolinas/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/genética , Falha de Tratamento , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
12.
Comput Struct Biotechnol J ; 20: 287-295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35024100

RESUMO

Investigations of phytoplankton responses to iron stress in seawater are complicated by the fact that iron concentrations do not necessarily reflect bioavailability. Most studies to date have been based on single species or field samples and are problematic to interpret. Here, we report results from an experimental cocultivation model system that enabled us to evaluate interspecific competition as a function of iron content and form, and to study the effect of nutritional conditions on the proteomic profiles of individual species. Our study revealed that the dinoflagellate Amphidinium carterae was able to utilize iron from a hydroxamate siderophore, a strategy that could provide an ecological advantage in environments where siderophores present an important source of iron. Additionally, proteomic analysis allowed us to identify a potential candidate protein involved in iron acquisition from hydroxamate siderophores, a strategy that is largely unknown in eukaryotic phytoplankton.

13.
Heliyon ; 7(12): e08482, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34934830

RESUMO

ATP synthase subunit c (AtpE) is an enzyme that catalyzes the production of ATP from ADP in the presence of sodium or proton gradient from Mycobacterium tuberculosis (MTB). This enzyme considered an essential target for drug design and shares the same pathway with the target of Isoniazid. Thus, this enzyme would serve as an alternative target of the Isoniazid. The three dimensional (3D) model structure of the AtpE was constructed based on the principle of homology modeling using the Modeller9.16. The developed model was subjected to energy minimization and refinement using molecular dynamic (MD) simulation. The minimized model structure was searched against Zinc and PubChem database to determine ligands that bind to the enzyme with minimum binding energy using RASPD and PyRx tool. A total of 4776 compounds capable of bindings to AtpE with minimum binding energy were selected. These compounds further screened for physicochemical properties (Lipinski rule of five). All the compounds that possessed the desirable property selected and used for molecular docking analysis. Five (5) compounds with minimum binding energies ranged between ─8.69, and ─8.44 kcal/mol, less than the free binding energy of ATP were selected. These compounds further screened for the absorption, distribution, metabolism, excretion, and toxicity (ADME and toxicity) properties. Of the five compounds, three (ZINC14732869, ZINC14742188, and ZINC12205447) fitted all the ADME and toxicity properties and subjected to MD simulation and Molecular Mechanics Generalized Born and Surface Area (MM-GBSA) analyses. The results indicated that the ligands formed relatively stable complexes and had free binding energies, less than the binding energy of the ATP. Therefore, these ligands considered as prospective inhibitors of MTB after successful experimental validation.

14.
Front Microbiol ; 11: 559469, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042066

RESUMO

Tuberculosis (TB) is one of the major causes of death related to antimicrobial resistance worldwide because of the spread of Mycobacterium tuberculosis multi- and extensively drug resistant (multi-drug resistant (MDR) and extensively drug-resistant (XDR), respectively) clinical isolates. To fight MDR and XDR tuberculosis, three new antitubercular drugs, bedaquiline (BDQ), delamanid, and pretomanid were approved for use in clinical setting. Unfortunately, BDQ quickly acquired two main mechanisms of resistance, consisting in mutations in either atpE gene, encoding the target, or in Rv0678, coding for the repressor of the MmpS5-MmpL5 efflux pump. To better understand the spreading of BDQ resistance in MDR- and XDR-TB, in vitro studies could be a valuable tool. To this aim, in this work an in vitro generation of M. tuberculosis mutants resistant to BDQ was performed starting from two MDR clinical isolates as parental cultures. The two M. tuberculosis MDR clinical isolates were firstly characterized by whole genome sequencing, finding the main mutations responsible for their MDR phenotype. Furthermore, several M. tuberculosis BDQ resistant mutants were isolated by both MDR strains, harboring mutations in both atpE and Rv0678 genes. These BDQ resistant mutants were further characterized by studying their growth rate that could be related to their spreading in clinical settings. Finally, we also constructed a data sheet including the mutations associated with BDQ resistance that could be useful for the early detection of BDQ-resistance in MDR/XDR patients with the purpose of a better management of antibiotic resistance in clinical settings.

15.
J Infect ; 80(5): 527-535, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31981638

RESUMO

OBJECTIVES: Bedaquiline is an effective drug used to treat MDR and XDR tuberculosis, providing high cure rates in complex therapy. Mutations in the mmpR (rv0678) and atpE genes are associated with reduced susceptibility to bedaquiline and have been identified in both in vitro selected strains and clinical isolates. However, the phenotypic criteria used to detect bedaquiline resistance have yet to be established due to the collection of few clinical isolates from patients receiving bedaquiline-containing treatment regimens. METHODS: One hundred eighty-two clinical isolates from 74 patients receiving bedaquiline and 163 isolates from 107 patients not exposed to bedaquiline were analysed. The bedaquiline MICs were tested using serial dilutions on 7H11 agar plates and the Bactec MGIT 960 system. The mmpR and atpE genes were sequenced by Sanger sequencing. RESULTS: The 7H11 agar method allowed for rapid discrimination between mutated and wild-type isolates and between exposed and non-exposed isolates. Seventy-three percent of bedaquiline-exposed isolates, as well as 91% of isolates with mutations, had an elevated bedaquiline MIC (≥ 0.12 mg/L on 7H11 media) compared to the reference isolates (89% had an MIC ≤ 0.03 mg/L). Previously reported in vitro-selected mutants (E61D and A63P) and novel AtpE substitutions (G25S and D28G) were observed in the clinical isolates. Substitutions in codon 63 of AtpE were likely associated with a higher bedaquiline MIC. Five new cases of pre-existing reduced susceptibility to bedaquiline, accompanied by mmpR mutations in most isolates, without a history of bedaquiline treatment were identified. CONCLUSIONS: Bedaquiline treatment leads to an elevated bedaquiline MIC and the acquisition of mmpR and atpE gene mutations in tuberculosis strains. The standardisation of bedaquiline phenotypic susceptibility testing is urgently needed based on observed discrepancies between our study and previous studies and differences in solid and liquid media MIC determinations.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Diarilquinolinas/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/genética , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
16.
ACS Nano ; 14(1): 948-963, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31742998

RESUMO

The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in diameter is demonstrated using a two-stage aqueous two-phase extraction (ATPE) technique. In total, five different nanotube species of ∼1.41 nm diameter are isolated, including both metallics and semiconductors. We characterize these populations by absorbance spectroscopy, circular dichroism spectroscopy, resonance Raman spectroscopy, and photoluminescence mapping, revealing and substantiating mod-dependent optical dependencies. Using knowledge of the competitive adsorption of surfactants to the SWCNTs that controls partitioning within the ATPE separation, we describe an advanced acid addition methodology that enables the fine control of the separation of these select nanotubes. Furthermore, we show that endohedral filling is a previously unrecognized but important factor to ensure a homogeneous starting material and further enhance the separation yield, with the best results for alkane-filled SWCNTs, followed by empty SWCNTs, with the intrinsic inhomogeneity of water-filled SWCNTs causing them to be worse for separations. Lastly, we demonstrate the potential use of these nanotubes in field-effect transistors.

17.
Artigo em Inglês | MEDLINE | ID: mdl-31138569

RESUMO

Bedaquiline resistance within Mycobacterium tuberculosis may arise through efflux-based (rv0678) or target-based (atpE) pathway mutations. M. tuberculosis mutant populations from each of five sequential steps in a passaging approach, using a pyrazinamide-resistant ATCC strain, were subjected to MIC determinations and whole-genome sequencing. Exposure to increasing bedaquiline concentrations resulted in increasing phenotypic resistance (up to >2 µg/ml) through MIC determination on solid medium (Middlebrook 7H10). rv0678 mutations were dynamic, while atpE mutations were fixed, once occurring. We present the following hypothesis for in vitro emergence of bedaquiline resistance: rv0678 mutations may be the first transient step in low-level resistance acquisition, followed by high-level resistance due to fixed atpE mutations.


Assuntos
Proteínas de Bactérias/genética , Diarilquinolinas/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , ATPases Bacterianas Próton-Translocadoras/genética , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana
18.
Foods ; 8(1)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669365

RESUMO

At present, peptides are separated by molecular exclusion chromatography and liquid chromatography. A separation method is needed in any case, which can be scaled up for industrial scale. In this study, aqueous two-phase extraction (ATPE) and aqueous two-phase flotation (ATPF) were applied to separate and enrich antioxidant peptides from trypsin hydrolysates of whey protein isolates (WPI). The best experimental conditions were investigated, and the results were evaluated using the 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) free radical scavenging activity of the peptides-per-unit concentration and the recovery rate (Y) of peptides in the top phase of both ATPE and ATPF. Under optimal conditions, the Y and ABTS free radical scavenging activity per unit concentration in top phase of ATPE could reach 38.75% and 12.94%, respectively, and in ATPF could reach 11.71% and 29.18%, respectively. The purified peptides were characterized by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and reversed-phase high-performance liquid chromatography (RP-HPLC). PeptideCutter and PeptideMass were applied to analyze and calculate the peptide sequencing. KILDKVGINYWLAHK, VGINYWLAHKALCSEK, and TPEVDDEALEKFDKALK sequences having antioxidant activity were detected in the top phase of ATPE, and VGINYWLAHKALCSEK, KILLDKVGINYWLAHK, ILLDKVGINYWLAHK, IIAEKTKIPAVFK, KIIAEKTKIPAVFK, and VYVEELKPTPEGDLEILLQK sequences having antioxidant activity were detected in the top phase of ATPF. In conclusion, antioxidant peptides were successfully separated from the WPI hydrolysate by ATPE and ATPF; compared with ATPE, ATPF has superior specificity in separating antioxidant peptides.

19.
ACS Nano ; 13(2): 2567-2578, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30673278

RESUMO

An aqueous two-phase extraction (ATPE) technique capable of separating small-diameter single-walled carbon nanotubes in one, two, or at the most three steps is presented. Separation is performed in the well-studied two-phase system containing polyethylene glycol and dextran, but it is achieved without changing the global concentration or ratio of cosurfactants. Instead, the technique is reliant upon the different surfactant shell around each nanotube diameter at a fixed surfactant concentration. The methodology to obtain a single set of surfactant conditions is provided, and strategies to optimize these for other diameter regimes are discussed. In total, 11 different chiralities in the diameter range 0.69-0.91 nm are separated. These include semiconducting and both armchair and nonarmchair metallic nanotube species. Titration of cosurfactant suspensions reveal separation to be driven by the pH of the suspension with each ( n, m) species partitioning at a fixed pH. This allows for an ( n, m) separation approach to be presented that is as simple as pipetting known volumes of acid into the ATPE system.

20.
J Membr Biol ; 251(1): 105-117, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29098330

RESUMO

Infections caused by mycobacteria are difficult to treat due to their inherent physiology, cellular structure, and intracellular lifestyle. Mycobacterium tuberculosis is a pathogen of global concern as it causes tuberculosis (TB) in humans, which requires 6-9 months of chemotherapy. The situation is further exacerbated in the case of infections caused by drug-resistant strains, which necessitate the prolonged use of agents associated with increased host toxicities. Great effort has been invested into the development of new agents for the treatment of drug-resistant infections, in addition to novel strategies to reduce treatment time. Energy production using oxidative phosphorylation is essential for the survival of M. tuberculosis, even under conditions of dormancy. Many compounds have been recently discovered that inhibit different aspects of energy metabolism in mycobacteria, some of which have been approved for human use or are currently undergoing development. The most successful examples include inhibitors of QcrB and AtpE, which are part of the cytochrome bc 1 complex and FoF1-ATP synthase, respectively. In addition, many of the discovered inhibitors are active against drug-resistant strains of M. tuberculosis, inhibit nonreplicating cells, and also show potential for the treatment of other mycobacterial infections. In the current review, we focus on the discovery of mycobacterial QcrB and AtpE inhibitors, their modes of action, and the associated mechanisms of resistance observed to date.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mycobacterium tuberculosis/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Proteínas de Membrana/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA