Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
1.
Environ Sci Ecotechnol ; 23: 100482, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39318543

RESUMO

Coastal wetlands are important blue carbon ecosystems that play a significant role in the global carbon cycle. However, there is insufficient understanding of the variations in soil organic carbon (SOC) stocks and the mechanisms driving these ecosystems. Here we analyze a comprehensive multi-source dataset of SOC in topsoil (0-20 cm) and subsoil (20-100 cm) across 31 coastal wetlands in China to identify the factors influencing their distribution. Structural equation models (SEMs) reveal that hydrology has the greatest overall effect on SOC in both soil layers, followed by vegetation, soil properties, and climate. Notably, the mechanisms driving SOC density differ between the two layers. In topsoil, vegetation type and productivity directly impact carbon density as primary sources of carbon input, while hydrology, primarily through seawater salinity, exerts the largest indirect influence. Conversely, in subsoil, hydrology has the strongest direct effect on SOC, with seawater salinity also influencing SOC indirectly through soil and vegetation mediation. Soil properties, particularly pH, negatively affect carbon accumulation, while climate influences SOC indirectly via its effects on vegetation and soil, with a diminishing impact at greater depths. Using Random Forest, we generate high-resolution maps (90 m × 90 m) of topsoil and subsoil carbon density (R 2 of 0.53 and 0.62, respectively), providing the most detailed spatial distribution of SOC in Chinese coastal wetlands to date. Based on these maps, we estimate that SOC storage to a depth of 1 m in Chinese coastal wetlands totals 74.58 ± 3.85 Tg C, with subsoil carbon storage being 2.5 times greater than that in topsoil. These findings provide important insights into mechanism on driving spatial pattern of blue carbon and effective ways to assess carbon status on a national scale, thus contributing to the advancement of global blue carbon monitoring and management.

2.
J Environ Sci (China) ; 148: 1-12, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095148

RESUMO

In present work, blue carbon dots (b-CDs) were derived from ammonium citrate and guanidine hydrochloride, and red carbon dots (r-CDs) were stemmed from malonate, ethylenediamine and meso­tetra (4-carboxyphenyl) porphin based on facile hydrothermal method. Eco-friendly ratiometric fluorescence probe was innovatively constructed to effectively measure Hg2+ utilizing b-CDs and r-CDs. The developed probe displayed two typical emission peaks at 450 nm from b-CDs and 650 nm from r-CDs under the excitation at 360 nm. Mercury ion has strong quenching effect on the fluorescence intensity at 450 nm due to the electron transfer process and the fluorescence change at 450 nm was used as the response signal, whereas the fluorescence intensity at 650 nm kept unchangeable which resulted from the chemical inertness between Hg2+ and r-CDs, serving as the reference signal in the sensing system. Under optimal circumstances, this probe exhibited an excellent linearity between the fluorescence response values of ΔF450/F650 and Hg2+ concentrations over range of 0.01-10 µmol/L, and the limit of detection was down to 5.3 nmol/L. Furthermore, this probe was successfully employed for sensing Hg2+ in practical environmental water samples with satisfied recoveries of 98.5%-105.0%. The constructed ratiometric fluorescent probe provided a rapid, environmental-friendly, reliable, and efficient platform for measuring trace Hg2+ in environmental field.


Assuntos
Carbono , Corantes Fluorescentes , Mercúrio , Pontos Quânticos , Poluentes Químicos da Água , Mercúrio/análise , Carbono/química , Corantes Fluorescentes/química , Poluentes Químicos da Água/análise , Pontos Quânticos/química , Monitoramento Ambiental/métodos , Espectrometria de Fluorescência/métodos , Limite de Detecção , Fluorescência
3.
Mar Pollut Bull ; 208: 117017, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39317107

RESUMO

For four decades, cordgrass (Spartina alterniflora) has invaded salt marshes in the Yellow Sea, altering physical, biogeochemical, and biological processes. Here, we investigated the ecological effects of S. alterniflora invasion on benthic environments compared to native halophytes. S. alterniflora contributed to higher carbon accumulation rates compared with bare tidal flat in sediments (3.4 times), through greater primary production and root biomass, compared to Suaeda japonica (2.5 times) and Phragmites australis (2.4 times) over the given period. The results showed that S. alterniflora eradication treatments inhibited its growth but did not significantly affect the benthic communities. Compared to P. australis and bare tidal flats, S. alterniflora invasion resulted in lower greenhouse gas emission and higher contributions to macrobenthos nutrition, and increased sediment stability and carbon burial. Overall, these multiple lines of evidence provide new insights on S. alterniflora invasion, suggesting that the current eradication policy would be carefully reviewed.

4.
Sci Total Environ ; 953: 176251, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39277004

RESUMO

High coastal nutrient loading can cause changes in seagrass chemistry traits that may lead to variability in seagrass litter decomposition processes. Such changes in decomposition have the potential to alter the carbon (C) sequestration capacity within seagrass meadows ('blue carbon'). However, the external and internal factors that drive the variability in decomposition rates of the different organic matter (OM) types of seagrass are poorly understood, especially recalcitrant OM (i.e. cellulose-associated OM and lignin-associated OM), thereby limiting our ability to evaluate the C sequestration potential. It was conducted a laboratory incubation to compare differences in the decomposition of Halophila beccarii litter collected from seagrass meadows with contrasting nutrient loading histories. The exponential decay constants of seagrass litter mass, cellulose-associated OM and lignin-associated OM were 0.009-0.032, 0.014-0.054 and 0.009-0.033 d-1, respectively. The seagrass litter collected from meadows with high nutrient loading exhibited greater losses of mass (25.0-41.2 %), cellulose-associated OM (2.8-18.5 %) and lignin-associated OM (9.6-31.2 %) than litter from relatively low nutrient loading meadows. The initial and temporal changes of the litter nitrogen (N) and phosphorus (P) concentrations, stoichiometric ratios of lignin/N, C/N, and C/P, and cellulose-associated OM content, were strongly correlated with the losses of litter mass and different types of OM. Further, temporal changes of litter C and OM types, particularly the OM and labile OM concentrations, were identified as the main driving factors for the loss of litter mass and loss of different OM types. These results indicated that nutrient-loaded seagrass litter, characterized by elevated nutrient levels and diminished amounts of recalcitrant OM, exhibits an accelerated decay rate for the recalcitrant OM. These differences in litter quality would lead to a reduced contribution of seagrass litter to long-term C stocks in eutrophic meadows, thereby weakening the stability of C sequestration. Considering the expected changes in seagrass litter chemistry traits and decay rates due to long-term nutrient loading, this study provides useful information for improving C sequestration capabilities through effective pollution management.


Assuntos
Sequestro de Carbono , Nutrientes/análise , Hydrocharitaceae , Nitrogênio/análise , Lignina , Fósforo/análise , Carbono , Biodegradação Ambiental
5.
Mar Pollut Bull ; 208: 116918, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39265309

RESUMO

The role of macroalgae as blue carbon (BC) under changing climate was investigated in the subtropical western North Pacific. Sea surface temperatures (SSTs) and nutrient influx increased over the past two decades (2001-2021). The proliferation of climate-resilient macroalgae was facilitated. Using Pterocladiella capillacea and Turbinaria ornata, outdoor laboratory experiments and elemental assays underscored the influence of nutrient enrichment on their resilience under ocean warming and low salinity. Macroalgal incorporation into marine sediments, indicated by environmental DNA barcoding, total organic carbon (TOC), and stable isotope analysis. Over time, an increase in δ13C and δ15N values, particularly at greater depths, suggests a tendency of carbon signature towards macroalgaeand nitrogen pollution or high tropic levels. eDNA analysis revealed selective deposition of these species. The species-dependent nature of macroalgae in deep-sea sediments highlights the role of nutrients on climate-resilient macroalgal blooms as carbon sinks in the western North Pacific.

6.
Sci Total Environ ; 954: 175734, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39244048

RESUMO

Wetlands are highly diverse and productive and are among the three most important natural ecosystems worldwide, among which coastal wetlands are particularly valuable because they have been shown to provide important functions for human populations. They provide a wide variety of ecological services and values that are critical to humans. Their value may increase with increased use or scarcity owing to human progress, such as agriculture and urbanization. The potential assessment for one coastal wetland habitat to be substituted by another landscape depends on analyzing complex microbial communities including fungi, bacteria, viruses, and protozoa common in different wetlands. Moreover, the number and quality of resources in coastal wetlands, including nutrients and energy sources, are also closely related to the size and variety of the microbial communities. In this review, we discussed types of wetlands, how human activities had altered the carbon cycle, how climate change affected wetland services and functions, and identified some ways to promote their conservation and restoration that provide a range of benefits, including carbon sequestration. Current data also indicated that the coastal ocean acted as a net sink for atmospheric carbon dioxide in a post-industrial age and continuous human pressure would make a major impact on the evolution the coastal ocean carbon budget in the future. Coastal wetland ecosystems contain diverse microbial communities, and their composition of microbial communities will tend to change rapidly in response to environmental changes, as can serve as significant markers for identifying these changes in the future.

7.
Sci Rep ; 14(1): 20642, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232073

RESUMO

High-latitude ecosystems have been overlooked in carbon budgets, which traditionally focus on mangroves, salt marshes, and seagrasses. The benthic assemblages and their Nature Contributions to People in Namuncurá - Burdwood Bank I and II, two offshore sub-Antarctic Marine Protected Areas (MPAs), are the conservation values. Here we show that the carbon reservoirs of these MPAs can be greater than those of their Antarctic counterparts, which, together with their extension, emphasize the need to maintain their protected status. Considering their total area, these MPAs stored in biomass 52,085.78 Mg C, corresponding 34,964.16 Mg to organic carbon (OC) and 17,121.62 Mg to inorganic carbon (IC). Surficial sediments stored 933,258,336 Mg C with 188,089,629 Mg of OC and 745,168,707 Mg of IC. However, when accounting for CO2 production through CaCO3 precipitation, the IC fractions decrease to 3,150.37 Mg C and 137,111,042 Mg C for biomass and sediments, respectively. We assume low sediment deposition due to the oceanic location, as direct sedimentation rates for these areas are unavailable. Most blue carbon assessments have focused solely on OC, despite the formation of CaCO3 releases CO2, decreasing net carbon storage. We compared various approaches for incorporating carbonates into carbon estimations. These results underscore the importance of including IC into carbon assessments and highlights the importance of sub-Antarctic benthic ecosystems as nature-based solutions to climate change.

8.
Mar Pollut Bull ; 207: 116908, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232413

RESUMO

The increase in climate-related extreme events and ecosystem degradation demands consistent and sustainable climate mitigation efforts. Seagrass playing a key role in nature-based carbon sequestration mitigation strategy. Here, we investigated the role of coral reef connectivity in blue carbon dynamics with seagrass meadows with coral reef connectivity (SC areas) and without coral reef connectivity (SG areas) in Palk Bay, India. The high sediment organic carbon was recorded in SC areas (90.26 ± 25.68 Mg org.C/ha) and lower in SG areas (66.96 ± 12.6 Mg org.C/ha). The maximum above-ground biomass (AGB) was recorded in Syringodium isoetifolium (35.43 ± 8.50) in SC areas and the minimum in Halophila ovalis (7.59 ± 0.90) in SG areas, with a similar trend observed in below-ground biomass (BGB). Our findings highlight the importance of coral reefs in enhancing the blue carbon potential of seagrass ecosystems and underscore the need for integrated conservation and restoration strategies for coral reefs and seagrasses.


Assuntos
Baías , Sequestro de Carbono , Carbono , Recifes de Corais , Ecossistema , Índia , Carbono/análise , Biomassa , Monitoramento Ambiental , Sedimentos Geológicos/química
9.
Sci Total Environ ; 951: 175884, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39216760

RESUMO

Although seagrass meadows are intense carbon sinks, information on the regional variability in seagrass blue carbon stocks and carbon sequestration remains limited. We estimated the organic carbon (Corg) stocks and carbon accumulation rates (CAR) of seven seagrass meadows along the subtropical coast of China's Zhanjiang City and analyzed the driving factors of variability in sediment Corg stocks in three seagrass meadows. Results showed that most Corg (99.83 %) was stored in the sediments, and the contribution of living biomass was minor. The average Corg stocks of living biomass and sediments across all sites were 0.04 ± 0.01 and 42.03 ± 25.07 Mg C ha-1, respectively, which were significantly lower than the world average (2.52 ± 0.48 and 194.2 Mg C ha-1). The sediment Corg stocks of the upper 1 m ranged from 24.26 to 157.12 Mg C ha-1 with substantial variability among sites: Liusha Bay (64.93 ± 22.31 Mg C ha-1) > Donghai Island (33.8 ± 10.65 Mg C ha-1) > Dongshen Ferry (27.35 ± 4.15 Mg C ha-1). The average sediment CAR was 53.47 g C m-2 yr-1, and the total CAR of 864.18 ha seagrass meadows was 260.76 ± 4.86 Mg C yr-1 in these studied sites. Physicochemical factors, such as high moisture content, salinity, CaCO3 content, and low dry bulk density, jointly inhibited the mineralization rate of Corg in sediments. Our study provides data from understudied regions to a growing dataset on seagrass carbon stocks and sequestration rates and highlights the significance of local and regional differences in seagrass blue carbon storage to accurately assess the climate change mitigation potential of seagrass ecosystems.


Assuntos
Sequestro de Carbono , Monitoramento Ambiental , China , Sedimentos Geológicos/química , Carbono/análise , Biomassa , Alismatales/metabolismo
10.
Sci Total Environ ; 951: 175504, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147060

RESUMO

Coastal blue carbon ecosystems, typically comprising interconnected habitat mosaics, are globally important pathways of carbon sequestration and play a significant role in climate change regulation and mitigation. Current coastal management strategies often rely on simplified regional carbon stock estimates, that overlook the geographical variability and intricate ecological dynamics within these ecosystems. This study adopts a seascape ecology approach to evaluate the role of multiple seascape characteristics on carbon storage in two arid region coastal lagoons. We show that seascape location is the most influential driver of carbon stocks. Additionally, carbon isotopic variability, a proxy for connectivity, can be as influential as habitat type, particularly in the UAQ lagoon. This challenges the conventional reliance on data from individual habitat types (e.g., seagrass, mangrove, or tidal marsh) and highlights the context-dependency of carbon stocks. Moreover, the specific characteristics driving carbon stocks vary between seascapes: in Khor Faridah, connectivity to seagrass and mangrove habitats is crucial, while in the UAQ lagoon, sheltered and elevated areas are more influential. Our findings suggest that the interconnectivity between different habitat types, such as mangroves and saltmarshes, significantly enhances carbon storage. This is especially pronounced in large, sheltered mangrove habitat types within upper intertidal zones. Notably, small patches of mangroves, up to 10 ha, are associated with an approximate 10 % increase in carbon stocks. These results underscore the need for a more holistic, context-specific approach to designing nature-based solutions for coastal management and ecosystem restoration. By considering the specific characteristics and connectivity of seascape mosaics, we can more effectively enhance carbon stock potential in coastal ecosystems. This study contributes to a deeper spatially explicit understanding of the complex factors influencing carbon stocks in blue carbon ecosystems, highlighting the importance of tailored management strategies that reflect the unique ecological patterns of each seascape.

11.
Ambio ; 53(11): 1632-1648, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39207669

RESUMO

Mesopelagic fishes are a vital component of the biological carbon pump and are, to date, largely unexploited. In recent years, there has been an increased interest in harvesting the mesopelagic zone to produce fish feed for aquaculture. However, great uncertainties exist in how the mesopelagic zone interacts with the climate and food webs, presenting a dilemma for policy. Here, we investigate the consequences of potential policies relating to mesopelagic harvest quotas with a dynamic social-ecological modeling approach, combining system dynamics and global sensitivity analyses informed by participatory modeling. Our analyses reveal that, in simulations of mesopelagic fishing scenarios, uncertainties about mesopelagic fish population dynamics have the most pronounced influence on potential outcomes. The analysis also shows that prioritizing the development of the fishing industry over environmental protection would lead to a significantly higher social cost of climate change to society. Given the large uncertainties and the potential large impacts on oceanic carbon sequestration, a precautionary approach to developing mesopelagic fisheries is warranted.


Assuntos
Sequestro de Carbono , Mudança Climática , Ecossistema , Pesqueiros , Oceanos e Mares , Animais , Incerteza , Peixes , Conservação dos Recursos Naturais/métodos , Modelos Teóricos , Dinâmica Populacional , Cadeia Alimentar
12.
J Environ Manage ; 367: 122006, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39094414

RESUMO

Blue carbon ecosystems (BCEs), such as mangroves, saltmarshes, and seagrasses, are important nature-based solutions for climate change mitigation and adaptation but are threatened by degradation. Effective BCE restoration requires strategic planning and site selection to optimise outcomes. We developed a Geographic Information System (GIS)-based multi-criteria decision support tool to identify suitable areas for BCE restoration along the 2512 km-long coastline of Victoria, Australia. High-resolution spatial data on BCE distribution, coastal geomorphology, hydrodynamics, and land tenure were integrated into a flexible spatial model that distinguishes between passive and active restoration suitability. The tool was applied to identify high-priority locations for mangrove, saltmarsh, and seagrass restoration across different scenarios. Results indicate substantial potential for BCE restoration in Victoria, with 33,253 ha of suitable area identified, mostly (>97%) on public land, which aligned with the selection criteria used in the tool. Restoration opportunities are concentrated in bays and estuaries where historical losses have been significant. The mapped outputs provide a decision-support framework for regional restoration planning, while the tool itself can be adapted to other geographies. By integrating multiple spatial criteria and distinguishing between passive and active restoration, our approach offers a new method for targeting BCE restoration and informing resource allocation. The identified restoration potential will also require collaboration with coastal managers and communities, and consideration of socio-economic factors. With further refinements, such as incorporating multi-criteria decision analysis techniques, GIS-based tools can help catalyse strategic blue carbon investments and contribute to climate change mitigation and adaptation goals at different spatial scales. This study highlights the value of spatial identification for BCE restoration and provides a transferable framework for other regions.


Assuntos
Carbono , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Carbono/química , Técnicas de Apoio para a Decisão , Áreas Alagadas , Sistemas de Informação Geográfica , Vitória
13.
Front Microbiol ; 15: 1410195, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39144208

RESUMO

Anthropogenic activities are driving significant changes in coastal ecological environments, increasingly spotlighting microorganisms associated with seagrass bed ecosystems. Labyrinthula is primarily recognized as a saprophytic protist associated with marine detritus, and it also acts as an opportunistic pathogen affecting marine algae, terrestrial plants and mollusks, especially in coastal environments. The genus plays a key role in the decomposition of marine detritus, facilitated by its interactions with diatoms and through the utilization of a diverse array of carbohydrate-active enzymes to decompose seagrass cell walls. However, human activities have significantly influenced the prevalence and severity of seagrass wasting disease (SWD) through factors such as climate warming, increased salinity and ocean acidification. The rise in temperature and salinity, exacerbated by human-induced climate change, has been shown to increase the susceptibility of seagrass to Labyrinthula, highlighting the adaptability of pathogen to environmental stressors. Moreover, the role of seagrass in regulating pathogen load and their immune response to Labyrinthula underscore the complex dynamics within these marine ecosystems. Importantly, the genotype diversity of seagrass hosts, environmental stress factors and the presence of marine organisms such as oysters, can influence the interaction mechanisms between seagrass and Labyrinthula. Besides, these organisms have the potential to both mitigate and facilitate pathogen transmission. The complexity of these interactions and their impacts driven by human activities calls for the development of comprehensive multi-factor models to better understand and manage the conservation and restoration of seagrass beds.

14.
J Environ Manage ; 367: 122021, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39079488

RESUMO

Accumulations of macroalgal wrack are important for adequate functioning of the beach ecosystem. However, the sudden beaching of seaweed masses smothers the coastline and forms decomposing piles on the shore, harming tourism-based economies, but also affecting the beach ecosystem metabolism. The decomposition of sudden pulses of wrack can modify the biogeochemistry of beach sands and increase greenhouse gas (GHG) emissions. The presence of invasive species in the wrack deposits can superimpose harmful effects on the beach functioning. We quantified the wrack biomass of Rugulopteryx okamurae, an invasive species of extreme impact, on five sandy beaches from the Atlantic coast of the Strait of Gibraltar (Spain), and we tested the effects on in situ respiratory CO2 fluxes using an infrared gas analyser. All the beaches showed massive accumulations of Rugulopteryx wrack deposits. However, the biomass changed significantly between beaches, ranging (mean ± SE) from 968.3 ± 287.7 kg m-1 to 9210 ± 1279.4 kg m-1 of wet weight. Wrack supported high respiration rates, with CO2 fluxes averaging (±SE) 19.15 ± 5.5 µmol CO2 m-2 s-1 across beaches, reaching astounding maximum peaks of 291 µmol CO2 m-2 s-1. The within-beach variability was related to the distance of the wrack deposits from the shoreline, as the average metabolic rates tended to increase significantly from the swash to the drift line. Thicker wrack and a more degraded algae stage showed significantly higher CO2 fluxes. We estimated that the annual CO2 flux of R. okamurae in our study area ranged between 0.39 (±0.01) and 23.30 (±11.33) kg C m-2 y-1. We suggest that massive amounts of beach wrack can become a globally significant contributor to GHG emissions that can offset any potential carbon-sink capacity of macroalgal forests. However, the piles of wrack located several meters above the drift line showed non-measurable CO2 efflux. Transferring beach wrack from swash to drier upper-beach areas, a common practice in many coastal regions suffering from massive wrack accumulations, might help reduce GHG emissions while removing the wrack stockpiles from the intertidal. However, this practice is not necessarily suitable for all beaches and can create ecological and conservation problems in the dune system. There is an urgent need to implement practical and sustainable management practices for massive wrack deposits capable of presenting various solutions to achieve a balance between conservation and recreation actions, answering the consequences of a problem that links both, environmental and economic issues.


Assuntos
Dióxido de Carbono , Espécies Introduzidas , Alga Marinha , Alga Marinha/metabolismo , Dióxido de Carbono/metabolismo , Ecossistema , Biomassa , Espanha , Praias , Gases de Efeito Estufa , Monitoramento Ambiental
15.
Mycorrhiza ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073598

RESUMO

Symbioses with fungi are important and ubiquitous on dry land but underexplored in the sea. As yet only one seagrass has been shown to form a specific root-fungus symbiosis that resembles those occurring in terrestrial plants, namely the dominant long-lived Mediterranean species Posidonia oceanica (Alismatales: Posidoniaceae) forming a dark septate (DS) endophytic association with the ascomycete Posidoniomyces atricolor (Pleosporales: Aigialaceae). Using stereomicroscopy, light and scanning electron microscopy, and DNA cloning, here we describe a novel root-fungus symbiosis in the Indo-Pacific seagrass Thalassodendron ciliatum (Alismatales: Cymodoceaceae) from a site in the Gulf of Aqaba in the Red Sea. Similarly to P. oceanica, the mycobiont of T. ciliatum occurs more frequently in thinner roots that engage in nutrient uptake from the seabed and forms extensive hyphal mantles composed of DS hyphae on the root surface. Contrary to P. oceanica, the mycobiont occurs on the roots with root hairs and does not colonize its host intraradically. While the cloning revealed a relatively rich spectrum of fungi, they were mostly parasites or saprobes of uncertain origin and the identity of the mycobiont thus remains unknown. Symbioses of seagrasses with fungi are probably more frequent than previously thought, but their functioning and significance are unknown. Melanin present in DS hyphae slows down their decomposition and so is true for the colonized roots. DS fungi may in this way conserve organic detritus in the seagrasses' rhizosphere, thus contributing to blue carbon sequestration in seagrass meadows.

16.
J Environ Manage ; 366: 121791, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38991354

RESUMO

To clarify the impacts of tidal hydrological process shifts caused by sea level rise on the blue carbon cycle, a typical coastal wetland in Jiaozhou Bay was selected for this study. The soils of Suaeda salsa (SS) and Phragmites australis (PA) wetlands were collected to simulate the effects of three types of tidal hydrological processes (Neap tide group, NT; Middle tide group, MT; Spring tide group, ST) on the soil-water dissolved inorganic carbon (DIC) dynamic. The results showed that the concentration of water dissolved inorganic carbon (WDIC) increased rapidly (115% higher) at early stage (days 0-4) under the influence of the tidal hydrological processes. Significant differences were found in WDIC concentration during different tidal hydrological processes (P < 0.05), which were expressed as MT (52.7 ± 13.3 mg L-1) > ST (52.5 ± 12.9 mg L-1) > NT (48.4 ± 10.1 mg L-1). After experiencing the tidal hydrological processes, the soil DIC content showed a net accumulation (55.1 ± 1.29 mg L-1vs. 46.7 ± 1.76 mg L-1, P < 0.001), whereas the soil inorganic carbon (SIC) decreased (2.73 ± 1.64 mg L-1vs. 4.61 ± 1.71 mg L-1), which may be attributed to the dissolution of SIC caused by the uptake of CO2 to form DIC. The accumulation of soil DIC was directly related to the SIC (λ = 1.03, P < 0.01), and indirectly related to soil nutrients (SOC substrate, λ = -0.003) and microbes (microbial biomass, λ = -0.10), and was mainly dominated by abiotic processes (abiotic: 58.1 ± 1.8% to 82.7 ± 2.46% vs. biotic: 17.4 ± 2.46% to 41.9 ± 1.76%). The increase of tidal frequency generally inhibited the accumulation of soil DIC content and promoted the output of WDIC. However, the response of soil DIC in different wetland types to tidal frequency was divergent, which was mainly regulated by the trade-off between soil nutrients and SIC content. Taken together, tidal hydrological processes and their frequency changes reshaped DIC dynamics, promoted the dissolution of SIC and the potential uptake of CO2. These findings enhance the comprehension of the inorganic carbon cycle within coastal wetlands, particularly amidst the backdrop of climate change and the rising sea levels.


Assuntos
Carbono , Hidrologia , Solo , Áreas Alagadas , Solo/química , Ciclo do Carbono
17.
J Environ Manage ; 366: 121915, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39033627

RESUMO

Phosphorus is a limiting element for the productivity of mangroves, which in turn are important ecosystems in regulating nutrients cycle and climate change by sequestering carbon (C). Despite this, there is an intense process of degradation in these environments. In addition to providing socio-environmental services, mangrove replanting can also alter the dynamics of nutrients in soils. Therefore, this study aims to understand the changes in soil phosphorus (P) fractions after a mangrove restoration. Soil samples from an unvegetated area (NV), a mature mangrove (R) and 7 and 9 year old replanted mangroves at SE-Brazil (APA Guapi-mirim, Rio de Janeiro state) were collected and analyzed to characterize the redox conditions (Eh), pH, and iron (Fe) fractionation, Total Organic Carbon (TOC) contents and P fractionation (exchangeable P; P associated with reducible Fe and Mn oxyhydroxides; associated with Al silicates and hydroxides; associated with humic acids; associated with Ca and Mg; associated with humin). The results indicate an increase in TOC as the age of the mangrove restoration increases (from 8.6 to 17.9%). The pH values were significantly lower, reaching very acidic values, associated with an increase in Eh. Both parameters also showed strong seasonal variation, with a drop in Eh during the wet period (from 165% to -46%) and an increase in pH in the same period (from 6.0 to 6.7). Regarding P fractionation, the main P pool was organic P forms, which showed the highest concentrations in all studied sites. Unvegetated areas showed higher organic P forms (NV: 108.8 µg g-1) than vegetated areas (M7: 55.7 µg g-1, M9: 83.6 µg g-1, R: 87.3 µg g-1). Vegetated sites also showed lower levels of the PEx, PFeMn and Papatite fractions (total forest mean: 2.4 µg g-1, 5.8 µg g-1, 3.0 µg g-1, respectively). Besides no clear trend on P fractionation through seasons and forest age, pseudo-total P increased following the forest recovery (e.g. M7

Assuntos
Fósforo , Solo , Áreas Alagadas , Fósforo/análise , Solo/química , Carbono , Ecossistema
18.
Sci Total Environ ; 949: 175085, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39079647

RESUMO

Blue carbon ecosystems (BCEs), encompassing mangroves, saltmarshes, and seagrasses, are vital ecosystems that deliver valuable services such as carbon sequestration, biodiversity support, and coastal protection. However, these ecosystems are threatened by various anthropogenic factors, including tidal restrictions like levees, barriers, and embankments. These structures alter the natural seawater flow, often converting coastal ecosystems into freshwater environments. Identifying tidal restrictions and assessing their suitability for tidal restoration in areas amenable for coastal management is a crucial first step to successfully restore BCEs and the associated ecosystem services they provide, i.e., managed realignment. This study presents a novel approach for detecting tidal restrictions in the state of Victoria, Australia, using high-resolution LiDAR data, geospatial analysis techniques, and a multi-criteria scoring system. Our model successfully identified 90 % of known tidal restrictions from an existing dataset, while also detecting an additional 118 potential tidal restrictions, representing a 35 % increase. The model performance analysis revealed trade-offs between precision, recall, and noise ratio when using different noise reduction thresholds, highlighting the importance of selecting an appropriate threshold based on project objectives. The multi-criteria scoring system, which considered factors such as proximity to BCEs and current land use, enabled the selection of tidal restrictions based on their hydrological suitability for restoration. The results of this study have significant implications for BCE restoration efforts not only in Victoria, but more broadly across Australia and globally, providing a systematic approach to identifying and targeting areas with the greatest potential for successful restoration projects. While the approach is low-cost and user-friendly, it is dependent on the availability of LiDAR data for the study area. This can make it accessible to researchers and practitioners worldwide, allowing for its adaptation and application in diverse regions to support global efforts in restoring BCEs through tidal restoration.

19.
Mar Pollut Bull ; 206: 116784, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39083908

RESUMO

Large nutrient levels and herbivory stress, particularly when acting together, drive a variety of responses in seagrass communities that ultimately may weaken their carbon balance. An in situ three-months experiment was carried out in two contrasting seasons to address the effects of two levels of nutrient load and three levels of artificial clipping on Cymodocea nodosa plants. Nutrient enrichment shifted the community from autotrophic to heterotrophic and reduced DOC fluxes in winter, whereas enhanced community carbon metabolism and DOC fluxes in summer. Herbivory stress decreased the net primary production in both seasons, whereas net DOC release increased in winter but decreased in summer. A reduction of seagrass food-web structure was observed under both disturbances evidencing impacts on the seagrass ecosystems services by altering the carbon transfer process and the loss of superficial OC, which may finally weaken the blue carbon storage capacity of these communities.


Assuntos
Carbono , Ecossistema , Herbivoria , Carbono/metabolismo , Alismatales/fisiologia , Cadeia Alimentar , Estações do Ano , Ciclo do Carbono , Nutrientes
20.
Sci Total Environ ; 949: 174871, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39038672

RESUMO

Vegetated coastal ecosystems (VCE), encompassing tidal marshes, mangroves, and seagrasses, serve as significant 'blue' carbon (C) sinks. Improving our understanding of VCE soils and their spatial and temporal dynamics is essential for conservation efforts. Conventional methods to characterise the dynamics and provenance of VCE soils and measure their total organic carbon (TOC) and inorganic carbon (TIC) contents are cumbersome and expensive. We recorded the mid-infrared (MIR) spectra and measured the TOC and TIC content of 323 subsamples across consistent depths from 106 soil core samples. Using the spectra of each VCE, we determined their mineral and organic composition by depth. We then used a regression tree algorithm, cubist, to model TOC and TIC contents. We rigorously validated the models to test their performance with a 10-fold cross-validation, bootstrapping, and a separate random test dataset. Our analysis revealed distinct mineralogical and organic MIR signatures in VCE soils that correlated with their position within the seascape. The spectra showed decreased clay minerals and increased quartz and carbonate with distance from freshwater inputs. The mineralogy of tidal marsh and mangrove soils differed with depth, showing larger absorptions due to carbonate and quartz and weakening clay minerals and organics absorptions. The mineralogy of the seagrass soils remained the same with depth. The cubist models to estimate TOC and TIC content were accurate (Lin's concordance correlation, ρc≥ 0.92 and 0.93 respectively) and interpretable, confirming our understanding of C in these systems. These findings shed light on the provenance of the soils and help quantify the flux and accumulation of TOC and TIC, which is crucial for informing VCE conservation. Moreover, our results indicate that MIR spectroscopy could help scale the measurements cost-effectively, for example, in carbon crediting schemes and to improve inventories. The approach will help advance blue C science and contribute to the conservation and protection of VCE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA