Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pediatr Surg Int ; 38(5): 665-677, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35316841

RESUMO

PURPOSE: Enterocystoplasty is adopted for patients requiring bladder augmentation, but significant long-term complications highlight need for alternatives. We established a protocol for creating a natural-derived bladder extracellular matrix (BEM) for developing tissue-engineered bladder, and investigated its structural and functional characteristics. METHODS: Porcine bladders were de-cellularised with a dynamic detergent-enzymatic treatment using peristaltic infusion. Samples and fresh controls were evaluated using histological staining, ultrastructure (electron microscopy), collagen, glycosaminoglycans and DNA quantification and biomechanical testing. Compliance and angiogenic properties (Chicken chorioallantoic membrane [CAM] assay) were evaluated. T test compared stiffness and glycosaminoglycans, collagen and DNA quantity. p value of < 0.05 was regarded as significant. RESULTS: Histological evaluation demonstrated absence of cells with preservation of tissue matrix architecture (collagen and elastin). DNA was 0.01 µg/mg, significantly reduced compared to fresh tissue 0.13 µg/mg (p < 0.01). BEM had increased tensile strength (0.259 ± 0.022 vs 0.116 ± 0.006, respectively, p < 0.0001) and stiffness (0.00075 ± 0.00016 vs 0.00726 ± 0.00216, p = 0.011). CAM assay showed significantly increased number of convergent allantoic vessels after 6 days compared to day 1 (p < 0.01). Urodynamic studies showed that BEM maintains or increases capacity and compliance. CONCLUSION: Dynamic detergent-enzymatic treatment produces a BEM which retains structural characteristics, increases strength and stiffness and is more compliant than native tissue. Furthermore, BEM shows angiogenic potential. These data suggest the use of BEM for development of tissue-engineered bladder for patients requiring bladder augmentation.


Assuntos
Engenharia Tecidual , Bexiga Urinária , Animais , Colágeno , Matriz Extracelular , Humanos , Suínos , Engenharia Tecidual/métodos , Bexiga Urinária/cirurgia , Procedimentos Cirúrgicos Urológicos
2.
Elife ; 82019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31573513

RESUMO

The Drosophila Fog pathway represents one of the best-understood signaling cascades controlling epithelial morphogenesis. During gastrulation, Fog induces apical cell constrictions that drive the invagination of mesoderm and posterior gut primordia. The cellular mechanisms underlying primordia internalization vary greatly among insects and recent work has suggested that Fog signaling is specific to the fast mode of gastrulation found in some flies. On the contrary, here we show in the beetle Tribolium, whose development is broadly representative for insects, that Fog has multiple morphogenetic functions. It modulates mesoderm internalization and controls a massive posterior infolding involved in gut and extraembryonic development. In addition, Fog signaling affects blastoderm cellularization, primordial germ cell positioning, and cuboidal-to-squamous cell shape transitions in the extraembryonic serosa. Comparative analyses with two other distantly related insect species reveals that Fog's role during cellularization is widely conserved and therefore might represent the ancestral function of the pathway.


Assuntos
Epitélio/embriologia , Epitélio/metabolismo , Proteínas de Insetos/metabolismo , Transdução de Sinais , Tribolium/metabolismo , Animais , Animais Geneticamente Modificados , Blastoderma/embriologia , Blastoderma/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Endocitose , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Insetos/genética , Mesoderma/embriologia , Mesoderma/metabolismo , Morfogênese , Fenótipo , Tribolium/embriologia
3.
J Tissue Eng Regen Med ; 13(11): 1943-1954, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-29048769

RESUMO

Laryngeal functional impairment relating to swallowing, vocalisation, and respiration can be life changing and devastating for patients. A tissue engineering approach to regenerating vocal folds would represent a significant advantage over current clinical practice. Porcine hemi-larynx were de-cellularised under negative pressure. The resultant acellular scaffold was seeded with human bone marrow derived mesenchymal stem cells and primary human epithelial cells. Seeded scaffolds were implanted orthotopically into a defect created in the thyroid cartilage in 8 pigs and monitored in vivo for 2 months. In vivo assessments consisted of mucosal brushing and bronchoscopy at 1, 2, 4, and 8 weeks post implantation followed by histological evaluation post termination. The implanted graft had no adverse effect on respiratory function in 6 of the 8 pigs; none of the pigs had problems with swallowing or vocalisation. Six out of the 8 animals survived to the planned termination date; 2 animals were terminated due to mild stenosis and deep tissue abscess formation, respectively. Human epithelial cells from mucosal brushings could only be identified at Weeks 1 and 4. The explanted tissue showed complete epithelialisation of the mucosal surface and the development of rudimentary vocal folds. However, there was no evidence of cartilage remodelling at the relatively early censor point. Single stage partial laryngeal replacement is a safe surgical procedure. Replacement with a tissue engineered laryngeal graft as a single procedure is surgically feasible and results in appropriate mucosal coverage and rudimentary vocal fold development.


Assuntos
Deglutição , Laringe/metabolismo , Fonação , Transplante de Células-Tronco , Células-Tronco/metabolismo , Engenharia Tecidual , Animais , Feminino , Humanos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA