Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(8): 114640, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39163202

RESUMO

Functional enhancer annotation is critical for understanding tissue-specific transcriptional regulation and prioritizing disease-associated non-coding variants. However, unbiased enhancer discovery in disease-relevant contexts remains challenging. To identify enhancers pertinent to diabetes, we conducted a CRISPR interference (CRISPRi) screen in the human pluripotent stem cell (hPSC) pancreatic differentiation system. Among the enhancers identified, we focused on an enhancer we named ONECUT1e-664kb, ∼664 kb from the ONECUT1 promoter. Previous studies have linked ONECUT1 coding mutations to pancreatic hypoplasia and neonatal diabetes. We found that homozygous deletion of ONECUT1e-664kb in hPSCs leads to a near-complete loss of ONECUT1 expression and impaired pancreatic differentiation. ONECUT1e-664kb contains a type 2 diabetes-associated variant (rs528350911) disrupting a GATA motif. Introducing the risk variant into hPSCs reduced binding of key pancreatic transcription factors (GATA4, GATA6, and FOXA2), supporting its causal role in diabetes. This work highlights the utility of unbiased enhancer discovery in disease-relevant settings for understanding monogenic and complex disease.


Assuntos
Diferenciação Celular , Elementos Facilitadores Genéticos , Pâncreas , Humanos , Elementos Facilitadores Genéticos/genética , Diferenciação Celular/genética , Pâncreas/metabolismo , Pâncreas/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Células-Tronco Pluripotentes/metabolismo , Sistemas CRISPR-Cas/genética , Fator de Transcrição GATA6/metabolismo , Fator de Transcrição GATA6/genética
2.
Cell Rep ; 43(7): 114436, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38968069

RESUMO

Single-gene missense mutations remain challenging to interpret. Here, we deploy scalable functional screening by sequencing (SEUSS), a Perturb-seq method, to generate mutations at protein interfaces of RUNX1 and quantify their effect on activities of downstream cellular programs. We evaluate single-cell RNA profiles of 115 mutations in myelogenous leukemia cells and categorize them into three functionally distinct groups, wild-type (WT)-like, loss-of-function (LoF)-like, and hypomorphic, that we validate in orthogonal assays. LoF-like variants dominate the DNA-binding site and are recurrent in cancer; however, recurrence alone does not predict functional impact. Hypomorphic variants share characteristics with LoF-like but favor protein interactions, promoting gene expression indicative of nerve growth factor (NGF) response and cytokine recruitment of neutrophils. Accessible DNA near differentially expressed genes frequently contains RUNX1-binding motifs. Finally, we reclassify 16 variants of uncertain significance and train a classifier to predict 103 more. Our work demonstrates the potential of targeting protein interactions to better define the landscape of phenotypes reachable by missense mutations.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Humanos , Sítios de Ligação , Linhagem Celular Tumoral , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Mutação/genética , Mutação de Sentido Incorreto , Fenótipo , Análise de Célula Única/métodos
3.
Immunol Rev ; 322(1): 53-70, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38329267

RESUMO

Inborn errors of immunity (IEI) comprise a diverse spectrum of 485 disorders as recognized by the International Union of Immunological Societies Committee on Inborn Error of Immunity in 2022. While IEI are monogenic by definition, they illuminate various pathways involved in the pathogenesis of polygenic immune dysregulation as in autoimmune or autoinflammatory syndromes, or in more common infectious diseases that may not have a significant genetic basis. Rapid improvement in genomic technologies has been the main driver of the accelerated rate of discovery of IEI and has led to the development of innovative treatment strategies. In this review, we will explore various facets of IEI, delving into the distinctions between PIDD and PIRD. We will examine how Mendelian inheritance patterns contribute to these disorders and discuss advancements in functional genomics that aid in characterizing new IEI. Additionally, we will explore how emerging genomic tools help to characterize new IEI as well as how they are paving the way for innovative treatment approaches for managing and potentially curing these complex immune conditions.


Assuntos
Genômica , Humanos , Síndrome
4.
BMC Genomics ; 25(1): 46, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200428

RESUMO

BACKGROUND: The polygenic risk score (PRS) is used to predict the risk of developing common complex diseases or cancers using genetic markers. Although PRS is used in clinical practice to predict breast cancer risk, it is more accurate for Europeans than for non-Europeans because of the sample size of training genome-wide association studies (GWAS). To address this disparity, we constructed a PRS model for predicting the risk of renal cell carcinoma (RCC) in the Korean population. RESULTS: Using GWAS analysis, we identified 43 Korean-specific variants and calculated the PRS. Subsequent to plotting receiver operating characteristic (ROC) curves, we selected the 31 best-performing variants to construct an optimal PRS model. The resultant PRS model with 31 variants demonstrated a prediction rate of 77.4%. The pathway analysis indicated that the identified non-coding variants are involved in regulating the expression of genes related to cancer initiation and progression. Notably, favorable lifestyle habits, such as avoiding tobacco and alcohol, mitigated the risk of RCC across PRS strata expressing genetic risk. CONCLUSION: A Korean-specific PRS model was established to predict the risk of RCC in the underrepresented Korean population. Our findings suggest that lifestyle-associated factors influencing RCC risk are associated with acquired risk factors indirectly through epigenetic modification, even among individuals in the higher PRS category.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Estratificação de Risco Genético , Estudo de Associação Genômica Ampla , Estilo de Vida , Neoplasias Renais/genética , República da Coreia/epidemiologia
5.
Basic Clin Pharmacol Toxicol ; 134(2): 206-218, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37987120

RESUMO

Aberrant dopamine (DA) signalling has been implicated in various neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), schizophrenia, bipolar disorder (BPD) and addiction. The availability of extracellular DA is sculpted by the exocytotic release of vesicular DA and subsequent transporter-mediated clearance, rendering the presynaptic DA transporter (DAT) a crucial regulator of DA neurotransmission. D2-type DA autoreceptors (D2ARs) regulate multiple aspects of DA homeostasis, including (i) DA synthesis, (ii) vesicular release, (iii) DA neuron firing and (iv) the surface expression of DAT and DAT-mediated DA clearance. The DAT Val559 variant, identified in boys with ADHD or ASD, as well as in a girl with BPD, supports anomalous DA efflux (ADE), which we have shown drives tonic activation of D2ARs. Through ex vivo and in vivo studies of the DAT Val559 variant using transgenic knock-in mice, we have uncovered a circuit and sex-specific capacity of D2ARs to regulate DAT, which consequently disrupts DA signalling and behaviour differently in males and females. Our studies reveal the ability of the construct-valid DAT Val559 model to elucidate endogenous mechanisms that support DA signalling, findings that may be of translational and/or therapeutic importance.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Humanos , Masculino , Camundongos , Animais , Feminino , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Transtorno do Deficit de Atenção com Hiperatividade/genética , Camundongos Transgênicos , Transdução de Sinais
6.
Cell Genom ; 3(11): 100420, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38020975

RESUMO

TRAF1/C5 was among the first loci shown to confer risk for inflammatory arthritis in the absence of an associated coding variant, but its genetic mechanism remains undefined. Using Immunochip data from 3,939 patients with juvenile idiopathic arthritis (JIA) and 14,412 control individuals, we identified 132 plausible common non-coding variants, reduced serially by single-nucleotide polymorphism sequencing (SNP-seq), electrophoretic mobility shift, and luciferase studies to the single variant rs7034653 in the third intron of TRAF1. Genetically manipulated experimental cells and primary monocytes from genotyped donors establish that the risk G allele reduces binding of Fos-related antigen 2 (FRA2), encoded by FOSL2, resulting in reduced TRAF1 expression and enhanced tumor necrosis factor (TNF) production. Conditioning on this JIA variant eliminated attributable risk for rheumatoid arthritis, implicating a mechanism shared across the arthritis spectrum. These findings reveal that rs7034653, FRA2, and TRAF1 mediate a pathway through which a non-coding functional variant drives risk of inflammatory arthritis in children and adults.

7.
Front Neurosci ; 17: 1275959, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901434

RESUMO

The lysosomal protein TMEM106B was identified as a risk modifier of multiple dementias including frontotemporal dementia and Alzheimer's disease. The gene comes in two major haplotypes, one associated with disease risk, and by comparison, the other with resilience. Only one coding polymorphism distinguishes the two alleles, a threonine-to-serine substitution at residue 185 (186 in mouse), that is inherited in disequilibrium with multiple non-coding variants. Transcriptional studies suggest synaptic, neuronal, and cognitive preservation in human subjects with the protective haplotype, while murine in vitro studies reveal dramatic effects of TMEM106B deletion on neuronal development. Despite this foundation, the field has not yet resolved whether coding variant is biologically meaningful, and if so, whether it has any specific effect on neuronal phenotypes. Here we studied how loss of TMEM106B or expression of the lone coding variant in isolation affected transcriptional signatures in the mature brain and neuronal structure during development in primary neurons. Homozygous expression of the TMEM106B T186S variant in knock-in mice increased cortical expression of genes associated with excitatory synaptic function and axon outgrowth, and promoted neurite branching, dendritic spine density, and synaptic density in primary hippocampal neurons. In contrast, constitutive TMEM106B deletion affected transcriptional signatures of myelination without altering neuronal development in vitro. Our findings show that the T186S variant is functionally relevant and may contribute to disease resilience during neurodevelopment.

8.
BMC Med ; 21(1): 258, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37455310

RESUMO

BACKGROUND: Preterm birth (PTB), defined as delivery before 37 gestational weeks, imposes significant public health burdens. A recent maternal genome-wide association study of spontaneous PTB identified a noncoding locus near the angiotensin II receptor type 2 (AGTR2) gene. Genotype-Tissue Expression data revealed that alleles associated with decreased AGTR2 expression in the uterus were linked to an increased risk of PTB and shortened gestational duration. We hypothesized that a causative variant in this locus modifies AGTR2 expression by altering transcription factor (TF) binding. METHODS: To investigate this hypothesis, we performed bioinformatics analyses and functional characterizations at the implicated locus. Potential causal single nucleotide polymorphisms (SNPs) were prioritized, and allele-dependent binding of TFs was predicted. Reporter assays were employed to assess the enhancer activity of the top PTB-associated non-coding variant, rs7889204, and its impact on TF binding. RESULTS: Our analyses revealed that rs7889204, a top PTB-associated non-coding genetic variant is one of the strongest eQTLs for the AGTR2 gene in uterine tissue samples. We observed differential binding of CEBPB (CCAAT enhancer binding protein beta) and HOXA10 (homeobox A10) to the alleles of rs7889204. Reporter assays demonstrated decreased enhancer activity for the rs7889204 risk "C" allele. CONCLUSION: Collectively, these results demonstrate that decreased AGTR2 expression caused by reduced transcription factor binding increases the risk for PTB and suggest that enhancing AGTR2 activity may be a preventative measure in reducing PTB risk.


Assuntos
Nascimento Prematuro , Feminino , Humanos , Recém-Nascido , Nascimento Prematuro/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Fatores de Transcrição/genética
9.
J Hepatol ; 79(4): 945-954, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37328071

RESUMO

BACKGROUND & AIMS: Lymphedema cholestasis syndrome 1 or Aagenaes syndrome is a condition characterized by neonatal cholestasis, lymphedema, and giant cell hepatitis. The genetic background of this autosomal recessive disease was unknown up to now. METHODS: A total of 26 patients with Aagenaes syndrome and 17 parents were investigated with whole-genome sequencing and/or Sanger sequencing. PCR and western blot analyses were used to assess levels of mRNA and protein, respectively. CRISPR/Cas9 was used to generate the variant in HEK293T cells. Light microscopy, transmission electron microscopy and immunohistochemistry for biliary transport proteins were performed in liver biopsies. RESULTS: One specific variant (c.-98G>T) in the 5'-untranslated region of Unc-45 myosin chaperone A (UNC45A) was identified in all tested patients with Aagenaes syndrome. Nineteen were homozygous for the c.-98G>T variant and seven were compound heterozygous for the variant in the 5'-untranslated region and an exonic loss-of-function variant in UNC45A. Patients with Aagenaes syndrome exhibited lower expression of UNC45A mRNA and protein than controls, and this was reproduced in a CRISPR/Cas9-created cell model. Liver biopsies from the neonatal period demonstrated cholestasis, paucity of bile ducts and pronounced formation of multinucleated giant cells. Immunohistochemistry revealed mislocalization of the hepatobiliary transport proteins BSEP (bile salt export pump) and MRP2 (multidrug resistance-associated protein 2). CONCLUSIONS: c.-98G>T in the 5'-untranslated region of UNC45A is the causative genetic variant in Aagenaes syndrome. IMPACT AND IMPLICATIONS: The genetic background of Aagenaes syndrome, a disease presenting with cholestasis and lymphedema in childhood, was unknown until now. A variant in the 5'-untranslated region of the Unc-45 myosin chaperone A (UNC45A) was identified in all tested patients with Aagenaes syndrome, providing evidence of the genetic background of the disease. Identification of the genetic background provides a tool for diagnosis of patients with Aagenaes syndrome before lymphedema is evident.


Assuntos
Colestase , Peptídeos e Proteínas de Sinalização Intracelular , Linfedema , Humanos , Recém-Nascido , Regiões 5' não Traduzidas/genética , Proteínas de Transporte/genética , Colestase/genética , Células HEK293 , Peptídeos e Proteínas de Sinalização Intracelular/genética , Linfedema/diagnóstico , Linfedema/genética , Linfedema/metabolismo , Miosinas/genética , Miosinas/metabolismo
10.
BMC Med Genomics ; 16(1): 143, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344844

RESUMO

Bi-allelic variants in the mitochondrial arginyl-transfer RNA synthetase (RARS2) gene have been involved in early-onset encephalopathies classified as pontocerebellar hypoplasia (PCH) type 6 and in epileptic encephalopathy. A variant (NM_020320.3:c.-2A > G) in the promoter and 5'UTR of the RARS2 gene has been previously identified in a family with PCH. Only a mild impact of this variant on the mRNA level has been detected. As RARS2 is non-dosage-sensitive, this observation is not conclusive in regard of the pathogenicity of the variant.We report and describe here a new patient with the same variant in the RARS2 gene, at the homozygous state. This patient presents with a clinical phenotype consistent with PCH6 although in the absence of lactic acidosis. In agreement with the previous study, we measured RARS2 mRNA levels in patient's fibroblasts and detected a partially preserved gene expression compared to control. Importantly, this variant is located in the Kozak sequence that controls translation initiation. Therefore, we investigated the impact on protein translation using a bioinformatic approach and western blotting. We show here that this variant, additionally to its effect on the transcription, also disrupts the consensus Kozak sequence, and has a major impact on RARS2 protein translation. Through the identification of this additional case and the characterization of the molecular consequences, we clarified the involvement of this Kozak variant in PCH and on protein synthesis. This work also points to the current limitation in the pathogenicity prediction of variants located in the translation initiation region.


Assuntos
Arginina-tRNA Ligase , Doenças Cerebelares , Atrofias Olivopontocerebelares , Humanos , Atrofias Olivopontocerebelares/genética , RNA Mensageiro/genética
11.
EMBO Mol Med ; 15(2): e16478, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36652330

RESUMO

Exome sequencing has introduced a paradigm shift for the identification of germline variations responsible for Mendelian diseases. However, non-coding regions, which make up 98% of the genome, cannot be captured. The lack of functional annotation for intronic and intergenic variants makes RNA-seq a powerful companion diagnostic. Here, we illustrate this point by identifying six patients with a recessive Osteogenesis Imperfecta (OI) and neonatal progeria syndrome. By integrating homozygosity mapping and RNA-seq, we delineated a deep intronic TAPT1 mutation (c.1237-52 G>A) that segregated with the disease. Using SI-NET-seq, we document that TAPT1's nascent transcription was not affected in patients' fibroblasts, indicating instead that this variant leads to an alteration of pre-mRNA processing. Predicted to serve as an alternative splicing branchpoint, this mutation enhances TAPT1 exon 12 skipping, creating a protein-null allele. Additionally, our study reveals dysregulation of pathways involved in collagen and extracellular matrix biology in disease-relevant cells. Overall, our work highlights the power of transcriptomic approaches in deciphering the repercussions of non-coding variants, as well as in illuminating the molecular mechanisms of human diseases.


Assuntos
Sequenciamento do Exoma , Humanos , Recém-Nascido , Sequência de Bases , Éxons , Mutação , RNA Mensageiro/genética
12.
Genomics Proteomics Bioinformatics ; 21(2): 385-395, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34973416

RESUMO

Non-coding genomic variants constitute the majority of trait-associated genome variations; however, the identification of functional non-coding variants is still a challenge in human genetics, and a method for systematically assessing the impact of regulatory variants on gene expression and linking these regulatory variants to potential target genes is still lacking. Here, we introduce a deep neural network (DNN)-based computational framework, RegVar, which can accurately predict the tissue-specific impact of non-coding regulatory variants on target genes. We show that by robustly learning the genomic characteristics of massive variant-gene expression associations in a variety of human tissues, RegVar vastly surpasses all current non-coding variant prioritization methods in predicting regulatory variants under different circumstances. The unique features of RegVar make it an excellent framework for assessing the regulatory impact of any variant on its putative target genes in a variety of tissues. RegVar is available as a web server at https://regvar.omic.tech/.


Assuntos
Genômica , Redes Neurais de Computação , Humanos , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla
13.
Front Genet ; 13: 1031495, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561316

RESUMO

Non-coding regions are areas of the genome that do not directly encode protein and were initially thought to be of little biological relevance. However, subsequent identification of pathogenic variants in these regions indicates there are exceptions to this assertion. With the increasing availability of next generation sequencing, variants in non-coding regions are often considered when no causative exonic changes have been identified. There is still a lack of understanding of normal human variation in non-coding areas. As a result, potentially pathogenic non-coding variants are initially classified as variants of uncertain significance or are even overlooked during genomic analysis. In most cases where the phenotype is non-specific, clinical suspicion is not sufficient to warrant further exploration of these changes, partly due to the magnitude of non-coding variants identified. In contrast, inborn errors of metabolism (IEMs) are one group of genetic disorders where there is often high phenotypic specificity. The clinical and biochemical features seen often result in a narrow list of diagnostic possibilities. In this context, there have been numerous cases in which suspicion of a particular IEM led to the discovery of a variant in a non-coding region. We present four patients with IEMs where the molecular aetiology was identified within non-coding regions. Confirmation of the molecular diagnosis is often aided by the clinical and biochemical specificity associated with IEMs. Whilst the clinical severity associated with a non-coding variant can be difficult to predict, obtaining a molecular diagnosis is crucial as it ends diagnostic odysseys and assists in management.

14.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34643213

RESUMO

Understanding the impact of non-coding sequence variants on complex diseases is an essential problem. We present a novel ensemble learning framework-CASAVA, to predict genomic loci in terms of disease category-specific risk. Using disease-associated variants identified by GWAS as training data, and diverse sequencing-based genomics and epigenomics profiles as features, CASAVA provides risk prediction of 24 major categories of diseases throughout the human genome. Our studies showed that CASAVA scores at a genomic locus provide a reasonable prediction of the disease-specific and disease category-specific risk prediction for non-coding variants located within the locus. Taking MHC2TA and immune system diseases as an example, we demonstrate the potential of CASAVA in revealing variant-disease associations. A website (http://zhanglabtools.org/CASAVA) has been built to facilitate easily access to CASAVA scores.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Genoma Humano , Genômica , Humanos , Aprendizado de Máquina
15.
Clin Genet ; 101(2): 255-259, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34713892

RESUMO

The developmental disorder Burn-McKeown Syndrome (BMKS) is characterised by choanal atresia and specific craniofacial features. BMKS is caused by biallelic variants in the pre-messenger RNA splicing factor TXNL4A. Most patients have a loss-of-function variant in trans with a 34-base pair (bp) deletion (type 1 Δ34) in the promoter region. Here, we identified two patients with BMKS. One individual has a TXNL4A c.93_94delCC, p.His32Argfs *21 variant combined with a type 1 Δ34 promoter deletion. The other has an intronic TXNL4A splice site variant (c.258-3C>G) and a type 1 Δ34 promoter deletion. We show the c.258-3C>G variant and a previously reported c.258-2A>G variant, cause skipping of the final exon of TXNL4A in a minigene splicing assay. Furthermore, we identify putative transcription factor binding sites within the 56 bp of the TXNL4A promoter affected by the type 1 and type 2 Δ34 and use dual luciferase assays to identify a 22 bp repeated motif essential for TXNL4A expression within this promoter region. We propose that additional variants affecting critical transcription factor binding nucleotides within the 22 bp repeated motif could be relevant to BMKS aetiology. Finally, our data emphasises the need to analyse the non-coding sequence in individuals where a single likely pathogenic coding variant is identified in an autosomal recessive disorder consistent with the clinical presentation.


Assuntos
Atresia das Cóanas/diagnóstico , Atresia das Cóanas/genética , Surdez/congênito , Genótipo , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Mutação , Ribonucleoproteína Nuclear Pequena U5/genética , Alelos , Sítios de Ligação , Surdez/diagnóstico , Surdez/genética , Fácies , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Linhagem , Fenótipo , Regiões Promotoras Genéticas , Ligação Proteica , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Fatores de Transcrição/metabolismo
17.
Front Genet ; 12: 667866, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567058

RESUMO

The majority of the single nucleotide variants (SNVs) identified by genome-wide association studies (GWAS) fall outside of the protein-coding regions. Elucidating the functional implications of these variants has been a major challenge. A possible mechanism for functional non-coding variants is that they disrupted the canonical transcription factor (TF) binding sites that affect the in vivo binding of the TF. However, their impact varies since many positions within a TF binding motif are not well conserved. Therefore, simply annotating all variants located in putative TF binding sites may overestimate the functional impact of these SNVs. We conducted a comprehensive survey to study the effect of SNVs on the TF binding affinity. A sequence-based machine learning method was used to estimate the change in binding affinity for each SNV located inside a putative motif site. From the results obtained on 18 TF binding motifs, we found that there is a substantial variation in terms of a SNV's impact on TF binding affinity. We found that only about 20% of SNVs located inside putative TF binding sites would likely to have significant impact on the TF-DNA binding.

18.
Adv Exp Med Biol ; 1187: 435-453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33983593

RESUMO

Breast cancer is the most common invasive cancer in females worldwide and in Asian countries. Common variants found by genome-wide association studies (GWAS) only explain approximately 16% of the heritability of breast cancer: therefore, it is important to examine rare/low-frequency variants in GWAS-identified loci which may also contribute to breast cancer risk. Previous studies have reported that genetic variants with lower allele frequency are more likely to be functional than common variants in coding regions. In future studies, the contribution of observed rare variants will be estimated more clearly when additive and recessive genetic variants will be investigated using sequencing technology, eQTL studies, and improved statistical methods in large samples.


Assuntos
Neoplasias da Mama , Estudo de Associação Genômica Ampla , Ásia , Neoplasias da Mama/genética , Feminino , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único/genética
19.
Biochem Biophys Res Commun ; 557: 1-7, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33853029

RESUMO

Human organic anion transporting polypeptide 1B3 (OATP1B3, gene symbol SLCO1B3) is a liver-specific uptake transporter. Its function was reported to be largely affected by some positively charged amino acid residues. However, so far the effect of naturally occurring genetic variants of charged residues on OATP1B3's function has not been explored yet. Therefore, in the present study nonsynonymous single nucleotide variants that led to the replacement of charged residues of OATP1B3 were investigated. Our results demonstrated that rare coding variants c.542G > A (p.R181H) and c.592G > A (p.D198N) had a great effect on the function of OATP1B3 mainly due to their influence on protein's surface expression. Further mutation studies showed that a negatively charged residue at position 198 was indispensable to the proper expression of OATP1B3 on the plasma membrane, while a positively charged reside at position 181 was not a must. Structural modeling indicated that R181 is located at the center of putative transmembrane domain 4 (TM4) and its side chain faces towards TM2 instead of towards the substrate translocation pathway, whereas D198 is located at the border of TM4 and intracellular loop 2 and may electrostatically repulse negatively charged phospholipid head groups. In conclusion, our results indicated that rare coding variants that cause changes of charged amino acid residues might have large influence on the function and expression of OATP1B3.


Assuntos
Fígado/metabolismo , Mutação , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/genética , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Substituição de Aminoácidos , Transporte Biológico , Células Cultivadas , Humanos , Fígado/citologia , Mutagênese Sítio-Dirigida/métodos , Domínios Proteicos , Relação Estrutura-Atividade
20.
Front Cell Dev Biol ; 9: 631942, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33585489

RESUMO

Background: As a key component in the NOTCH signaling pathway, HES1 plays an important role in vertebrate heart development. Variants in the HES1 coding sequence are known to be associated with congenital heart disease (CHD). However, little is known about HES1 non-coding sequence variants and their association with the risk of developing CHD. Method and Results: We initially analyzed the non-coding sequence of the HES1 gene in 12 unrelated CHD families by direct sequencing and identified a previously unreported promoter region variant (NM_005524.4: c.-1279-1278 insAC, rs148941464) in the HES1 gene in four CHD families. The homozygous variant in patients was inherited from carrier parents with normal phenotypes, indicating a likely recessive genetic model. Given that the HES1 gene is predicted to be likely to exhibit haploinsufficiency (%HI: 11.44), we hypothesized that the HES1 homozygous variant is a genetic risk factor underlying CHD. We then carried out sequencing of this HES1 variant in 629 sporadic non-syndromic CHD cases and 696 healthy controls and performed association analysis. Interestingly, we observed a significant association of the homozygous HES1 promoter variant with CHD (18.92% of cases vs. 9.91% of controls; OR: 2.291, 95% CI: 1.637-3.207, p = 9.72 × 10-7). No significant association with CHD was observed for the HES1 promoter heterozygous variant (p > 0.05). However, association analysis tests of the HES1 homozygous variant with each subtype of CHD revealed that this homozygous variant was strongly associated with transposition of the great arteries (TGA) (OR: 3.726, 95% CI: 1.745-7.956, p = 0.0003). Moreover, the prevalence of HES1 homozygous variants in CHD patients with TGA (27.66%) was significantly higher than that in patients with other CHD subtypes or controls. Similar results were observed in a replication group of TGA (n = 64). Functional studies demonstrated that the homozygous variant in the HES1 promoter can disrupt its ability to bind RXRA, an inhibitory transcription factor, which results in abnormally high expression of the HES1 gene, indicating that this variant harbors gain-of-function effects. Conclusions: Our findings reveal that the non-coding homozygous variant in the HES1 promoter has a gain-of-function effect and is associated with an increased risk of CHD development, especially the severe TGA subtype.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA