Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transfusion ; 64 Suppl 2: S50-S57, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38362814

RESUMO

BACKGROUND: The Golden Hour Box (GHB), an iceless blood container designed for transfusion closest to the point of injury, is used by military medical teams in remote damage control resuscitation. While its performance is well-established in hot environments, it remains underexplored in cold conditions, a significant consideration in emerging global conflict zones. STUDY DESIGN AND METHODS: Four GHBs were preconditioned at +4°C or +18°C for 8 h and subsequently exposed to controlled laboratory simulated temperatures of -5, -15, and -25°C for 100 h. The study focused on their capability to maintain an internal temperature between +2 and +6°C, the recommended range for red blood cells unit storage and transport, using calibrated sensors for precise monitoring. RESULTS: When exposed to negative Celsius temperatures, GHBs showed varied performance depending on preconditioning temperatures. When preconditioned at +4°C, GHBs maintained an internal temperature within the target range (+2 to +6°C) for 100 h at -5°C, 52 ± 1 h at -15°C, and 29 ± 4 h at -25°C. In contrast, the internal temperature of GHBs preconditioned at +18°C exceeded this range in less than 30 min, then dropped below 2°C more rapidly than those preconditioned at +4°C, occurring within 20 ± 2 h at -15 and 13 ± 1 h at -25°C. CONCLUSION: The GHB, when properly preconditioned, effectively maintains internal temperatures suitable for blood product transport in extreme cold. Future research, including analyses of blood performances, is still needed to validate these results in more realistic operational conditions for use in cold environments.


Assuntos
Preservação de Sangue , Temperatura Baixa , Preservação de Sangue/métodos , Humanos , Fatores de Tempo
2.
J Hazard Mater ; 450: 131078, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36848843

RESUMO

Despite recent attention being paid to the biodegradation of petroleum hydrocarbons in cold environments, scale-up studies of biodegradation are lacking. Herein, the effect of scale-up on the enzymatic biodegradation of highly contaminated soil at low temperatures was studied. A novel cold-adapted bacteria (Arthrobacter sp. S2TR-06) was isolated that could produce cold-active degradative enzymes (xylene monooxygenase (XMO) and catechol 2,3-dioxygenase (C2,3D)). Enzyme production was investigated on 4 different scales (lab to pilot scale). The results showed a shorter fermentation time, and the highest production of enzymes and biomass (107 g/L for biomass, 109 U/mL, and 203 U/mL for XMO and C2,3D after 24 h) was achieved in the 150-L bioreactor due to enhanced oxygenation. Multi-pulse injection of p-xylene into the production medium was needed every 6 h. The stability of membrane-bound enzymes can be increased up to 3-fold by adding FeSO4 at 0.1% (w/v) before extraction. Soil tests also showed that biodegradation is scale-dependent. The maximum biodegradation rate decreased from 100% at lab-scale to 36% in the 300-L sand tank tests due to limited access of enzymes to trapped p-xylene in soil pores, low dissolved oxygen in the water-saturated zone, soil heterogeneity, and the presence of the free phase of p-xylene. The result demonstrated that formulation of enzyme mixture with FeSO4 and direct injection of enzyme mixture (third scenario) can increase the efficiency of bioremediation in heterogeneous soil. In this study, it was demonstrated that cold-active degradative enzyme production can be scaled up to an industrial scale and enzymatic treatment can be used to effectively bioremediate p-xylene contaminated sites. This study could provide key scale-up guidance for the enzymatic bioremediation of mono-aromatic pollutants in water-saturated soil under cold conditions.


Assuntos
Petróleo , Poluentes do Solo , Solo , Biodegradação Ambiental , Poluentes do Solo/metabolismo , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Reatores Biológicos , Microbiologia do Solo
3.
J Appl Toxicol ; 42(6): 961-969, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34850419

RESUMO

Skin decontamination in cold weather temperatures might be challenging due to the aggravating circumstances. However, no information is available on the efficacy of commonly used procedures in winter conditions. Therefore, the efficacy of the reactive skin decontamination lotion (RSDL) and soapy water decontamination following skin exposure to the nerve agent VX was evaluated at three ambient air temperatures (-5°C, -15°C and room temperature). Experiments were performed in vitro using human dermatomed skin. The ability of RSDL to degrade VX at the three different air temperatures was separately evaluated. The ambient air temperature in experiments without decontamination did not influence the penetration rate of VX through skin. RSDL decontamination was highly efficient in removing VX from skin when performed in all three ambient temperatures, despite the slower agent degradation rate of VX at the lower temperatures. Decontamination with soapy water at RT resulted in an increased skin penetration of VX compared with the control without decontamination; however, in colder temperatures the VX skin penetration was similar to the corresponding control without decontamination. At RT, dry removal prior to washing with soapy water did not improve decontamination of VX compared with washing solely with soapy water. This study demonstrated high efficacy of RSDL decontamination following skin exposure to VX also at cold temperatures. The previously reported 'wash-in' effect of soapy water on VX skin penetration was reduced at cold temperatures. Altogether, this study found a scientific basis to establish guidelines for skin decontamination of chemical casualties at cold weather temperatures.


Assuntos
Substâncias para a Guerra Química , Compostos Organotiofosforados , Temperatura Baixa , Descontaminação/métodos , Humanos , Pele , Sabões , Temperatura , Água/metabolismo , Tempo (Meteorologia)
4.
J Sci Sport Exerc ; 3(3): 257-269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38624672

RESUMO

At the 2022 Winter Olympics in Beijing, the XC skiing, biathlon and nordic combined events will be held at altitudes of ~ 1700 m above sea level, possibly in cold environmental conditions and while requiring adjustment to several time zones. However, the ongoing COVID-19 pandemic may lead to sub-optimal preparations. The current commentary provides the following evidence-based recommendations for the Olympic preparations: make sure to have extensive experience of training (> 60 days annually) and competition at or above the altitude of competition (~ 1700 m), to optimize and individualize your strategies for acclimatization and competition. In preparing for the Olympics, 10-14 days at ~ 1700 m seems to optimize performance at this altitude effectively. An alternative strategy involves two-three weeks of training at > 2000 m, followed by 7-10 days of tapering off at ~ 1700 m. During each of the last 3 or 4 days prior to departure, shift your sleeping and eating schedule by 0.5-1 h towards the time zone in Beijing. In addition, we recommend that you arrive in Beijing one day earlier for each hour change in time zone, followed by appropriate timing of exposure to daylight, meals, social contacts, and naps, in combination with a gradual increase in training load. Optimize your own individual procedures for warming-up, as well as for maintaining body temperature during the period between the warm-up and competition, effective treatment of asthma (if necessary) and pacing at ~ 1700 m with cold ambient temperatures. Although we hope that these recommendations will be helpful in preparing for the Beijing Olympics in 2022, there is a clear need for more solid evidence gained through new sophisticated experiments and observational studies.

5.
New Phytol ; 227(5): 1307-1318, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32391569

RESUMO

Marine microalgae within seawater and sea ice fuel high-latitude ecosystems and drive biogeochemical cycles through the fixation and export of carbon, uptake of nutrients, and production and release of oxygen and organic compounds. High-latitude marine environments are characterized by cold temperatures, dark winters and a strong seasonal cycle. Within this environment a number of diverse and dynamic habitats exist, particularly in association with the formation and melt of sea ice, with distinct microalgal communities that transition with the season. Algal physiology is a crucial component, both responding to the dynamic environment and in turn influencing its immediate physicochemical environment. As high-latitude oceans shift into new climate regimes the analysis of seasonal responses may provide insights into how microalgae will respond to long-term environmental change. This review discusses recent developments in our understanding of how the physiology of high-latitude marine microalgae is regulated over a polar seasonal cycle, with a focus on ice-associated (sympagic) algae. In particular, physiologies that impact larger scale processes will be explored, with an aim to improve our understanding of current and future ecosystems and biogeochemical cycles.


Assuntos
Ecossistema , Microalgas , Adaptação Fisiológica , Mudança Climática , Camada de Gelo , Oceanos e Mares
6.
Antonie Van Leeuwenhoek ; 110(3): 415-428, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27915412

RESUMO

We investigated previously under explored cold aquatic environments of Andean Patagonia, Argentina. Oily sheens similar to an oil spill are frequently observed at the surface of water in creeks and small ponds in these places. Chemical analysis of a water sample revealed the occurrence of high concentrations of iron and the presence of a free insoluble indigoidine-derived pigment. A blue pigment-producing bacterium (strain EB) was isolated from the water sample and identified as Vogesella sp. by molecular analysis. The isolate was able to produce indigoidine and another derived-pigment (here called cryoindigoidine) with strong antifreeze properties. The production of the pigments depended on the cell growth at cold temperatures (below 15 °C), as well as on the attachment of cells to solid surfaces, and iron limitation in the media. The pigments produced by strain EB showed an inhibitory effect on the growth of diverse microorganisms such as Candida albicans, Escherichia coli and Staphylococcus aureus. In addition, pigmented cells were more tolerant to freezing than non-pigmented cells, suggesting a role of cryoindigoidine/indigoidine as a cold-protectant molecule. The possible roles of the pigments in strain EB physiology and its interactions with the iron-rich environment from which the isolate was obtained are discussed. Results of this study suggested an active role of strain EB in the investigated iron-oxidizing ecosystem.


Assuntos
Ferro/metabolismo , Neisseriaceae/fisiologia , Pigmentos Biológicos/metabolismo , Piperidonas/metabolismo , Aclimatação , Argentina , Candida albicans/efeitos dos fármacos , Temperatura Baixa , Microbiologia Ambiental , Escherichia coli/efeitos dos fármacos , Congelamento , Água Doce/química , Água Doce/microbiologia , Neisseriaceae/genética , Neisseriaceae/isolamento & purificação , Neisseriaceae/metabolismo , Filogenia , Pigmentos Biológicos/química , Piperidonas/química , Lagoas/química , Lagoas/microbiologia , RNA Ribossômico 16S/genética , Staphylococcus aureus/efeitos dos fármacos , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA